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Abstract—Distribution of directional data is characterized by what is termed fabric tensors. A formal least
square approXimation is applied, and three kinds of fabric tensors are defined in connection with the choice
of a basis of the space of functions on a unit sphere or a unit circle. All the resulting equations are
Cartesian tensor equations, and they are interpreted in terms of the representation theory of the rotation
group and the potential theory in electrodynamics. It is also shown how this characterization is related to
the spherical harmonics expansion or the Fourier series expansion. Finally, a method of statistical test is
presented in the Cartesian tensor form to check the true form of the distribution. A physical example is
also given to illustrate the proposed technique.

1. INTRODUCTION .

PruysicaL and engineering systems involve not only scalar quantities but also vector and tensor
quantities. Therefore, many experiments require measurement of orientations, e.g. orientations
of velocity, polarization, or magnetization, principal axes of stress or strain, crystallographic
axes, etc. Orientation of a surface is characterized by the direction of its normal vector, so that
directional data also arise in observation of interfaces or crack surfaces in a material. After
obtaining these directional data, we must interpret them in terms of given external control
factors. A typical example is the study of the mechanics of granular materials from the
microscopic viewpoint, where the material is idealized as an assembly of solid spheres or
circuiar plates. There, a considerable achievement has been made in regard to techniques of
observing the distribution of interparticle contact directions and theories of interpreting it in
terms of the external loading {1-12].

The statistics of directional data is an old subject, perhaps dating back to Gauss, Bernoulli,
Rayleigh, von Mises and the like, and the modern statistical approach was initiated by people
like Pearson, Fisher and Rao, to name a few. (For details, see Mardia[13].) However, these
people have devoted themselves mainly to non-physical problems such as geography, biology,
ecology and social study. If, on the other hand, the underlying problem is a physical one, any
description of physical laws must be expressed in the frame indifferent form, i.e. tensor
equations invariant to coordinate transformations[14, 15]. It seems, however, that existing
theories on the statistics of directional data are lacking this point of view, or at least only small
attention has been paid to it so far.

In the following, the term *direction” or “‘orientation” actually means “axis”, and the
direction indicated by a unit vector n is identified with that indicated by — n. Extension to the
analysis of “truly directional” data is very easy. We first apply the least square approximation
and define three kinds of “‘fabric tensors™ in connection with the choice of a basis of the space
of functions on a unit sphere or a unit circle. All the resulting equations are Cartesian tensor
equations, and they are interpreted in terms of the representation thzory of the rotation group
and the potential theory in electrodynamics. We also examine the relationship to the spherical
harmonics expansion and the Fourier series expansion. This consideration leads to many useful
formulae of computing necessary quantities and converting one form into another. Finally, we
present a method of testing whether observed data are regarded as a sample from a given
distribution, applying the asymptotic statistical theory of testing the fitness of distribution by
the use of the “Fisher information matrix”. This is also obtained in the form of Cartesian tensor
equations. Both two and three dimensional cases are analyzed.

As an jllustrating example, we analyze the data of interparticle contact distribution of a two
dimensional granular material observed by Konishi et al.[16] to demonstrate our technique.
However, application of this theory is not limited to the mechanics of granular materials. It can
be applied to a wide variety of physical, mechanical and geological problems. Moreover, it can
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be combined with the so called *“stereological principles” to detect the structural anisotropy
from observed data on a random cross section. Our formulation gives a practical procedure
expressed in Cartesian tensor equations[17).

2. APPROXIMATION OF DISTRIBUTION AND FABRIC TENSORS

Let 1™, n®, ... and n'™ be observed directional data, where each member is a unit vector.
The most fundamental quantities are various averages of them. Since we are trying to seek
tensor quantities to characterize the data distribution, we first consider the average of their
tensor product, or the “moment”, and put

Nig, .0, = <nilni2 N 9 _ 2.1

where () designates the sample mean, e.g. (mn;) = Z3_, n{”n{”IN. We term N;, __;_ the “moment
tensor” or the “fabric tensor of the first kind” of rank n. This is a symmetric tensor, and any
contraction of it lowers the rank, e.8. Niymm = Nju, etc. due to nn; = 1. (Throughout this paper,
we adopt the summation convention over tensor indices). This tensor plays a fundamental role
in deriving tensor quantities characterizing the sample distribution, for all relevant information
is contained in this tensor. However, it is not easy to understand the intuitive meaning of this
tensor, and hence we now try to derive various characteristics in connection with the form of
the “distribution density” of m. Let f(n) be the “empirical” distribution density, namely

N
f(n)= % >, 8(n—n"), 2.2)

In the three dimensional case, 8(n — n‘®) = §(6 — 0°)8(¢ — ¢“)/sin 8, where 8(.) is the Dirac
delta function, and 0 and ¢ denote the spherical coordinates of n, i.e. n‘ = (sin 8 cos ',
sin 6’ sin 8, cos 6”). In the two dimensional case, 5(n — n‘*’) = 5(6 — "), where 8 is the
polar coordinate of n, i.e. n® = (cos 8, sin ). Then, it is easy to see

[rmdn=1, [m..mfmdn=n,...n), @3)

where dn is the differential solid angle, i.e. [ dn = fo™ 3" sin 8 d¢ d@ in the three dimensional case
and [dn = [¢" d6 in the two dimensional case. In general, (.)= [(.)f(r) dn. However, f(n) is a
very singular function. Hence, we now try to approximate the empirical distribution density
f(n) by a smooth one. This problem of smoothing is also viewed as a problem of estimating the
“true” population distribution.

In general, the estimation of distribution is achieved by first assuming a “model” or a
‘“‘parametric form”, i.e. a family of distributions involving several parameters and second
introducing some form of ‘“‘measure of approximation™ or the ‘‘distance” between two dis-
tributions. Then, the parameters are chosen in such a way that the introduced measure of
approximation is maximized or the distance is minimized. Let f(n) be a given distribution
density, and consider a problem of approximating it by F(n) which involves indeterminate
parameters. Typical parametric forms of F(n) are:

(I) F(n) =C+ C,'Il,' + C,,-n;n,- + Ci,-kn;n,-nk Hoeeey, (2.4)
(II) F(n) = [C + C,-n,~ + ijn,'ni + Cgikn;n,-nk +. ’]2, (25)
(III) F(n) =exp [C + C;ni + C;,'n,'ni + C;,-kn;nink +-- ']. (2.6)

Equation (2.4) is a polynomial in n and hence is easy to handle. However, the coefficients must
be chosen so that F(n) does not become negative. Equation (2.5) is always non-negative, and
eqn (2.6) is always positive. The form of eqn (2.6) is sometimes referred to as the “‘exponential
family”[18], [19] and is an extension of the ‘“‘von Mises distribution” in the two dimensional
case and the “Fisher distribution” in the three dimensional case (see[13]).
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Meanwhile, typical criteria of approximation are:

@ j [F(n) - f(a)P* dn - min, @)
an | (VE@ - VTGP dn > min, 28
(1119) f(n)

—ff(n)logmdnemax. 2.9

All of these are applied on the condition that [ F(n) dn = 1. Criterion (I') is the “least square
error approximation”, or the approximation in L? on S? (a unit sphere) or on S' (a unit circle).
This can be applied if f(n) is the empirical density of eqn (2.2) because (I') is equivalent to
JF(n)f(n) dn - max., and eqn (2.2) is an integrable function over S*> or S'. The measure of (II')
is sometimes referred to as the “‘Hellinger distance”. However, it cannot be applied to the
empirical density of eqn (2.2) because its square root is not defined. The measure of (II') is the
“entropy”[7] or the *“Kullback information”[20]. It is derived as the logarithm of the prob-
ability that the empirical distribution f(n) is observed when the true population distribution is
F(n) in the limit of an infinite number of samples. It can be applied if f(n) is the empirical
density of eqn (2.2) because (III') is equivalent to [ f(n) log F(n) dn—max., which yields the
*“maximum likelihood estimation”. Both the measure of (II) and the square root of the measure
of (I') give true “distances”, satisfying the triangular inequality and being symmetric, while that
of (IIT') is only a “quasi-distance”.

All these measures are invariant to coordinate rotations and hence have invariant meanings.
In the case of “linear” distributions, i.e. in the case of non-directional scalar data, only (II') and
(IIT') are invariant to transformations of the coordinate system. As we can see in the following,
the mathematical structure for distributions of directional data is very much different from
those of linear distributions, due to the fact that a distribution density of directional data is a
function on S or S', both of which is a topologically “compact” space.

Many other parametric forms and measures of approximation are possible, and any
combination of a parametric form and a measure of approximation could be adopted for
parameter estimation. In this paper, however, we consider only (I) and (I). This is because this
pair alone derives characteristics of distributions in terms of linear expressions of N;.i’s. All
necessary quantities are explicitly determined by linear calculations. Instead, of course,
approximated distributions could be negative theoretically. However, this does not happen for
most of practical problems. Moreover, our aim is not to describe distributions accurately but
rather to characterize them by tensors, which are then related to macroscopic physical
quantities. If the form of distribution itself is our aim, then other forms and measures must be
employed at the cost of simplicity.

As we see later, the least square approximation of the polynomial expansion turns out
nothing but the spherical harmonics expansion in the three dimensdional case and the Fourier
series expansion in the two dimensional case. Thus, the use of spherical coordinates or polar
coordinates would make the formulation much more familiar to us. However, our purpose is to
derive tensor characteristics, which we generally term “fabric tensors”, invariant to coordinate
transformations, and hence we try to derive useful formulae and schemes of statistical testing
in Cartesian tensor equations.

3. FABRIC TENSORS OF THE SECOND KIND
We first consider the three dimensional case. We assume that for each orientation a pair of
unit vectors with opposite directions are to be generated so that f(n) is a symmetric function
with respect to the origin. (The case of non-symmetric distribution is discussed later.) Combin-
ing (I) and (I') of the previous section, let us consider the following scheme:

E= J‘ [(C + C,','n,'nj + C,-,-k,n;njnkn, +-- ’) —'f(n)]2 dn - min. (3.])
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Terms of odd powers of n need not be included, since f(n) is symmetric. However, it is easy to
see that the coefficients are not uniquely determined. This is because 1, mn;, mnmn, . . . are not
linearly independent. In fact, contraction of n;n; over i = j yields 1, contraction of n n,nkn, over
k=1 ylelds n; and so on. Let V, be the vector space of functions on S? spanned by
ni, ...n;.’s. In view of the symmetry, its dimension is (n + 1)(n +2)/2. What we have observed
is that VoC V,C V,C.... Hence, if we want approximation up to the nth order, n;, ...n; alone
is sufficient as a basis. This means that it is sufficient to assume the nth approximation in the
form

fm)~ 7= Fi i, . M, (3.2

from the beginning. We call the coefficient tensor F; ; the “fabric tensor of the second kind”
of rank n. It is determined by 3E/aF; . ; =0, where E is the square error of the form of eqn
(3.1). The equation becomes

Fjl---l'nnh ce MG LW = Nil...ins ' (3.3)

where we have put . = [(.) dn/4w. Making use of identity

S

igig o

.8

i2n-1i20)?

n ... 0, = (34)

N P
2n+ 1'8""2

where 6 is the Kronecker delta and () designates the symmetrization of the indices, and taking
successive contraction of eqn (3.3), we can determine all components of F;,...i.. It takes on the
form

_2n+1(2n n
Fi,.. = T om ( )[Nq it an-28(1||2N|3 it an—48(l|lzal3l‘Nl5 .i,,)+ st a08(i|i28i3i4- .. 8:’,,_,5,,)]-
(3.5)
An explicit expression for ay, is given in the next section.
Example 3.1
F=1, (3.6)
15 1
F; =’2_ N; - 5851], 3.7
1
Fyy = [ T3 8(41Nk!)+21 5«15“)], (3.9
3003[,, 15 45 5
Fitan = 21| Niton =13 8Nstun + 155 818N~ 735 St | (39

Expression (3.2) in terms of F; ; has a compact form, and the number of tensor
components necessary to compute is minimum. However, this approximation is inflexible. For
example, suppose we want the (n + 2)th approximation. Then, we must recompute the tensor all
the way from the beginning. Is it not possible that the tensor is decomposed into several parts in
such a way that some still have sense in higher approximations? This is exactly the problem of
decomposing n;, ... n; ’s into several meaningful groups. This is done as follows.

Since V,C V,C V,C..., as we have observed, let Wy= V,and let W, (n =2, 4, ...) be the
*‘orthogonal complement” of V,_, in V,, ie., V,=W,@ V,_, (direct sum) and W, LV, _,,
where orthogonality is defined by the natural inner product (.,.) = [ ()(.) dn/47. Then, W, is a
2n + 1 dimensional subspace of V,, and we obtain an orthogonal decomposition

V,=W, D WD D W, (3.10)
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If we take bases of W,,’s as a basis of V,, we obtain the desire expansion, and the coefficient
tensors are determined independently of each other. This is just an extension of the “Schmidt
orthogonalization™ of the vectors 1, min, ... and n; ... n; . The decomposition (3.10) also has an
interpretation in terms of the representation theory of the rotation group as follows.

Let R be a three dimensional rotation. Then, the space V,, is invariant to rotation n— Rn,
because R ...R;; n; ...n; is again a vector of V,. Therefore, a basis of V, induces a
“representation” DD 66 the rotation group SO(3) of degree (n + 1)(n +2)/2. As is well
known, this representation is “‘completely reducible” and is reduced to the direct sum

D2 D @@ Dy, (3.11)

where D, is an “irreducible representation” of SO(3) of degree 2n + 1, and its representation
space is just W, in parallel with decomposition (3.10).
Let us briefly summarize the classical results. The “Laplace-Beltrami operator” on S* is
A = (1/sin 6)(3/28) sin 83/a0 + (1/sin® 8)8°/8¢>. (In terms of quantum mechanics, —h°A is the
“orbital angular momentum operator”.) The subspace W, is the eigenspace of A of
eigenvalue — n(n + 1) and of multiplicity 2n + 1. Its vectors are called “spherical harmonics’ of
degree n (n is the “azimuthal quantum number” in quantum mechanics). Hence, two spherical
harmonics with different n are mutually orthogonal. (One particular orthogonal basis of the
same n is the “Laplace spherical harmonics™ Y,,(f, ¢), and in quantum mechanics m = —
.n is the “magnetic quantum number™.) As is well known, these spherical harmonics
constltute a complete set for expansion in the sense of L*(SY).

4. FABRIC TENSORS OF THE THIRD KIND
Let us determine the subspace W, discussed in the previous section. Let v be a vector of
V,. Since v € V,, it is expressed as a linear combination ¢;, ; m; ... n; of n...n;’s, where
ci,...i, is a symmetric tensor. The condition that vE€ W, is v L V,, i.e. (v, m;, ... n; ) =0, where
(.,.)=J()() dn/47 is the natural inner product. This condition becomes

Gt illis & BpMlps s g s = 0 (4.1)
Contraction over i, =iy, ... and i,_3= i, yields ¢; jn; ... n; =0, which implies, in view of
identity (3.4) and the symmetry of c¢; ;. that ¢jjjj..j, ., =0 Combination of this and
contraction of eqn (4.1) over is=1,, ... and i, ;= 1, then yields c}m,-},-‘ b aia_siia = 0, and so
on. Thus, we can conclude that any contraction of ¢;,_; reduces to 0, or ¢;,_; is a “‘deviator
tensor”. Hence, W, is included in a space spanned by ¢; __; m;, ... n;'s with all deviator tensors
ci,...i,, However, since ¢; ; has only 2n + 1 independent components and the dimension of W,
is 2n+ I, these two spaces must coincide. Next, note that ¢ M ... 1 =Ci i Mg - My,
where {} designates the “deviator part” of a symmetric tensor. In other words, for a symmetric

tensor A; i,
A“:—“‘An}: ("":Ail---i.|+ CgS(EIiJAil-‘-ianli'\ Rl dabiial "‘Sflxhahia L 8i., ll':.lAﬁlilhh——-J'.z tin-1? (4.2)

where ¢ =1 and ¢5, ..., ¢! are determined in such a way that any contraction of Ay, is
zero. After some manipulation, we obtain

e = (—1)"'“(:])(””521) / (2"m' ‘). (43)

Now, we have shown that W, is a space spanned by ¢;, ; n; ...n;"s with all deviator tensors
¢i,..i» butitis the same as the space spanned by ¢;, i ng, ...n;,’s with all tensors ¢;,_; , which
1mphes that W, is spanned by ny; ... n;'s. Thus, lhe expansion takes the form

f(n)= l__[D + Dyngngy + Dygngnmeny + - - 1. (4.4)
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We call the coefficient tensor D; ; -the “fabric tensor of the third kind” of rank n. It is
determined by the least square error method. Since each term is orthogonal to the rest, each
coefficient is determined independently of the rest. By definition (4.4), D; __; is determined as a
deviator tensor. In view of egn (3.4), it is concluded that

D= o () N “5)

Since D;, _; is a deviator tensor, expansion (4.4) is also written as

f(n)= # [D+ Dy, + Dy + - - 1. (4.6)
Example 4.1
= 47)
D, 75[ i ] 4.8)
B %[N,-,-k, —g SN+ o= 5(,,3“,] 4.9)
Do %[N,—,-k.m,, 8N + 2 8PNy ~ 37 ama,‘,a,,,,,,] (4.10)

Once Dy, ... and D;,_; are known, we can compute F; ; by “summing” them up:

Fy =Dy F800Dh i 6 860, 0 Do F ¥ BB, ¢ < 8o (4.11)
Hence, the a;,’s in eqn (3.6) are given by
- § HHONG furiln)
k:even
Conversely, if F; _;’s are given, D; _; is obtained by taking the “difference”
Di,...i,,= Fj,...en"S(i,ngf,._.‘,,J- (4.13)
In the next section, we show that ny ...n;, is indeed a spherical harmonic of degree n.

Hence, eqn (4.4) or (4.6) is nothing but the spherical harmonics expansion. The first term in egn
(4.4) or (4.6) is always 1, and the “normalization” [ f(n) dn =1 is always satisfied, because all
the subsequent terms are orthogonal to 1. This illustrates the significance of the expansion (4.4)
or (4.6) with respect to mutually orthogonal subspaces. Moreover, with this formulation, we can
also make use of analogies with physical problems such as the potential theory in elec-
trodynamics as is seen in the next section. This provides us with a physical interpretation of the
tensor D; _; , which makes it easy to understand its intuitive meaning.

So far, we have discussed only the case of symmetric distributions. If the data are “truly
directional’” and the distribution is not symmetric, then we must add terms of n ...n; of odd
powers. However, subspaces V,, V;, ... are orthogonal to V,, V., .... Hence, expansions in
odd power terms can be treated independently of expansions in even power terms and is in
complete parallel with that of even power terms, e.g. ng ...n;, is a spherical harmonics of
degree n for odd n, too.

5. MULTIPLE MOMENT EXPANSION AND MULTIPOLE MOMENT TENSORS

Consider the following problem. Suppose f(n) is a surface charge density on a unit sphere
located at the origin. Then, what is the electrostatic potential ¢ at a given point r far away from
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the sphere? If a unit point charge is placed at r’, the potential at r is, as is well known,
1/p = 1f|lr — r'|+ const. (in esu). Let the arbitrary constant be zero. Since ||r||<|r|, it is
approximated by a Taylor series with respect to r' around the origin

ri...r, ¢.1

where 9; denotes 9/ar. Note 3;; ... 3;:(1/p)|,=0=(=1)"3;,... 8, (1r). (r =||r|.) Now, the tensor
3, - 8,(1/r) is a homogeneous form of degree —n—1in x, y and z and is a deviator tensor,
because 1/r is a harmonic function, i.e. A(1/r)=0, where A = ,9; is the Laplacian operator.
Comparing the coefficients and noting the uniqueness of the deviator part, we can conclude

iy oo 0, G) - CO ) a 'ln‘") . (5.2)

2"n! r*

n+1

Since this is also a harmonic function, ng; ... n;,/r""" is harmonic, and hence, as is well known,
r"ng, . .. my is also harmonic, which confirms that ny;, . .. n,, is a spherical harmonic of degree n.
Since both sides of eqn (5.2) is a deviator tensor, we can replace r ... r; in eqn (5.1) by its
deviator part ry;, ... ri,. Thus, we obtain a solution of the original potential problem in the form

(n) Q, iy
$()= Illr n||d _2 ‘ _L_'_n 5:3)
where
Qo =2 . ) (5.4

is what is usually referred to as the “multipole moment tensor”. In particular, Q; is the
“quadrupole moment tensor”. Equation (5.3) is known as the “‘multipole moment expansion”.
Comparing eqn (5.4) and eqn (4.5), we can see

p,.=2xq, ., (5.5)

if the observed data are interpreted as electric charges. Thus, eqn (4.6) is also interpreted as a
multipole moment expansion, D; describing the quadrupole moment in particular. This also
indicates the significance of using D;, ; instead of F; ;.

Some statisticians interpret the data as unit mass points on a unit sphere and calculate the
“moment of inertia” to characterize the distribution[13]. It is expressed as a tensor J; =
N(8; — N;) in our notation. This mechanical analogy also helps our intuitive understanding of
the data distribution.

6. EXPANSION IN THE LAPLACE SPHERICAL HARMONICS
As was shown, 2n + 1 independent ny; . .. n;)’s are spherical harmonics of degree n, but they
are not mutually orthogonal. Of course, orthogonalization is possible, and one such orthogonal
basis is the “Laplace spherical harmonics” Y,.(6, ¢), m = —n, ... n, defined by

Yon(6, 6) = \/W P7(cos B)e™™, 6.)
for m =0, and
Y, (8 &)= (=1)"Y (8, &), (6.2)

for m <0. Here, P'(x) is the “associated Legendre function”, and * denotes the complex



156 KEN-ICHI KANATANI
conjugate. They are orthonormal, or “‘unitary” to be specific, in the sense of

#I Ynm(n)Y:m’(n) dn = 6ml'smm' ’ (63)

and, as is well known, they form a complete orthonormal set on a unit sphere S? in L% Hence,
we can use them for the expansion. However, we must fix a specific coordinate system, in
reference to which the Laplace spherical harmonics are to be defined, and the expression is not
invariant to coordinate rotations. Of course, transformation of spherical coordinates is possible,
using the so called “addition theorem”, but it does not have so simple a form as the tensor
transformation. Still, if there is a preferred coordinate system, it is sometimes useful to express
the expansion in terms of them. (For details, see [21], for example.) The expansion takes the
form

o«

=753 3 AmYunln), (6.4

n
T n=0 m=-n

Aum = f f(m)Y % (n) dn. 65)

The expression of Y, as a homogeneous polynomial of degree n in x, y and z is obtained by
expansion of the following “generating function” of Y,,,,:

\/2n+1 x—iy _x+i)’ 2 n= < Ynm(0’¢)tm
n't" ( 2 T 2 ‘) ,g:,,\/(n+m)z(n—m)!' €9

Example 6.1
Let n =(x, y, z). Then,

Yoo=1, | 6.7)

Yy = @ (x*+2ixy-y?’), Yy=- Y;—o (xz +iyz),

Yn= -\/73(;:2+ y-229), Y.,=-Y3, Y,,=Y3, (6.8)
Yyu= 3\1/67—0 (x* + 4ix’y — 6x%y* - dixy* + y%),

Yiu=— 3\(43 (’z + 3ix2yz - 3xy*z - iy*2),

Yo= - 3\;ﬁ (x*+2ixy — 6x°2% + 2ixy* — 12ixyz® - y* + 6y%2?),

Yo = ¥ (3x°z + 3ix?yz + 3xy?z — 4x2° + 3iy*z — 4iyz?),
Y= % (3x*+ 6x2y? — 24x%22 + 3y* ~ 24y?2% + 82°). (6.9

The expansion coefficients are given by A,. =(Y h.(n)) from eqn (6.5). Hence, they are
expressed as linear combinations of N;..i,'s.

Example 6.2

An=1, (6.10)
V30 . 30 .
Az:=T(Nn‘21Nu— N»), A= _%(Nn‘ iN13),
__V5 " "
Ap= ‘T(Nu‘*‘ Nun—2Ny), As1=-Aj, Ar2=An, (6.11)
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3\/70 : : ,
Ay =—7—(Ny1—4iNy;2— 6N 122+ 4iN 222+ Noppp),

3\/35 .
An= T (N113=3iNj 123~ 3N 33+ iNpp),

3\/10 . . .
Ap= ‘_(Nnn 2iN|112— 6N 1133~ 2iN 1222+ 12iN 1233 — Nyamp + 6N2333),

3V5
An= 3 ——(3Ni1;3=3iNy13+ 3N 1223 — 4N 333~ 3iN 23 + 4iNy339),

A= 3 (3Nnn +6N,122— 24N 133+ 3Ny — 24N 33 + 8Nisy9). 6.12)

However, it is easier to express Y,,'s and A.,’s in terms of ny,...ny’s and D; s,

because the following identity is available:

Veenin

=" [f(n+m)(n—m)!

(@ +igyrarm(}) = 3 I PEE= Y 6,9, 613

(m =0). Hence, in view of eqn (5.2), we obtain for m =0

k m—-k n—m

@n)! 2n+1 m- T
Ynm(ei ¢) = 2"':!! (n+ m';'(n m)' 2 (” k ( )n“ Ny, <. N3y, (6.14)

A= T 20 (P m;; 53 O
Example 6.3
Ap= \/—ﬁi (D1 —2iDy;— Dy), Ay = —1\/3—9 (Dy3—iD3y), Ayp= —\g—g Ds;, (6.16)
Ay= \2/17(? (D111 —4iDyy3— 6Dy 32+ 4iDyy + Dy,
A= 2}(/]: (Diii3—3iDyi23— 3Dyp3 + iD2pp3),
Ap= V;O (D133 = 2iDyg33 = Dansy),
Ay= 2}{ (Dy333— iDy33)y, A= 3 Dm; (6.17)

This also illustrates the importance of the tensor D;, ;.

7. TWO DIMENSIONAL DATA DISTRIBUTIONS

Now, the previous results are adapted to two dimensional data distributions. Here again
VoC V,C V,C..., where V, is the vector space of functions on S' spanned by n;, ... n;’s and
its dimension is n + 1 (consider the number of 1's among iy,..., i,). For the same reason as
before, it is sufficient to seek an approximation in the form

f(n)~— oMy M (7.1

The coefficients are again determined by eqn (3.3), but identity (3.4) is replaced by

nn,...n, = i‘ll"(2n)8(;lizaili‘ BN 8,'2"_”':"). (72)
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Then, the “fabric tensor of the second kind” also takes the form

Fi, i, =2"[N;..i,+ an-286,,Ni;. it - - + @080, 80, - - - B _,in]- (7.3)
Example 7.1
F= (7.4)
Fy= 4[ 3o, (1.5
Fisa = 16] Ny =3 8o+ 75 8o | (1.6
F, =64[N =3 5iNummy+ > ScBuaNommy — 2 S8 ] .7
ifkimn ifklmn 4 (ijs Ykimn) 8 (ijOkt4 Y mn) 64 (HY9%1%mn) |- .

Again, the same discussion applies, and we can obtain the decomposition (3.10), where
orthogonality is defined by the natural inner product (.,.) = f ()() dn/27. Then, W, is obtained
as a two dimensional subspace of V,. The interpretation in terms of the representation theory
of the rotation group remains the same except that a representation E"*' of the two dimen-
sional rotation group SO(2) of degree n + 1in V, is decomposed into the direct sum

E"'=E,@QE® -®E, (7.8)

where E, (n > 0) is an irreducible representation (in the real domain) of SO(2) of degree 2 and
E, is the unit representation of degree 1. (In the complex domain, E, (n>0) is further
decomposed into two representations of degree 1, E, = E., @ E_,.) The subspace W, coincides
with the representation space of E, and is also the eigenspace of the two dimensional
“Laplace-Beltrami operator” d*/d6® of eigenvalue —n® and of multiplicity 2. Its vectors are
“circular harmonics™ or “trigonometric functions” of degree n. Hence, circular harmonics of
different n are mutually orthogonal, and they form a complete set for the expansion in L*(S").
One particular orthogonal basis of the same n is, of course, the “Fouriei” circular harmonics

e and e, As in the three dimensional case, the deviator part ny, . .. nyy spans the subspace
W,,, and f(n) is expanded in the form

1
f(n)= 2 [D + Dynginy + Dyangmmeny + -+ 1. (7.9)

The deviator part {} is again defined by eqn (4.2), but, instead of eqn (4.3), c,,’s are given by

—1)m2 -
en = 21.)" p— (" ml';/z). (7.10)
The “fabric tensor of the third kind” is given by
D;,.....,=2"Ng,...i,» 7.11)
Example 7.2
D=1, (7.12)
D; =4|:Nii_%8ii]’ (7.13)
Dy, = ]6[Niikl = 8;iNuny +% 5(:';5:«)], (7.149)

3 9
Di;'klmn = 64[Niiklmn 2 6(uNklmn) + 6(uakll‘lmn) 32 s(qaklsmn)] (70]5)
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Since D;,..;, is a deviator tensor, expansion (7.9) is also written as
i
f(ﬂ) = %[D + D,"n,‘n" + D;,-k,n;n,-nkn, +-- '], (7.16)

and D = 1 so that normalization [ f(n) dn = 1 is always satisfied. However, as we noted earlier,
D,,...;, has only two independent components. Let Dy ,=a, and D, _,,=b,, for example.

Then,
k

D22

~1)K2 .
\ ={ (-1)“"a, k: even a.17)

(=)%*D2p k. odd

Expansion (7.9) or (7.16) is nothing but the Fourier series, and a, and b, are its Fourier
coefficients. Namely, expansion (7.9) or (7.16) is rewritten as a Fourier series

f(n)= L[l + a,c05 20 + by sin 26 + a,cos 40 + bysin40 + - - -], (7.18)
27

Since the general form of D;, .. ; is known, the general form of F; .., is obtained by the
summation of eqn (4.11). Equation (4.12) is now replaced by

a,',‘,=-21—,. > 2%t m. (7.19)

Conversely, if F;,_; s are given, D; _; is obtained by the difference of eqn (4.13).

The electrostatic potential analogy in Section 5 becomes as follows. Here, a two dimensional
point charge in the x — y plane is actually an infinitely long charged line with unit line density of
charge extending parallel to the z-axis. Let f(n) be a line charge density on a unit circle located
at the origin in the x —y plane. (Actually, of course, it is a surface charge density on an
infinitely long cylinder extending vertically.) If a (two dimensional) unit point charge is placed
at r', the potential at r is 2 log (1/p) + const. (in esu), where p = [Jr — r'[. We choose the arbitrary
constant to be 1 so that the potential equals 1 at p = 1. If ||| <[|r|, the Taylor expansion is
available in the form

l l 1 . .

and 8;; ... d;; log (1/p)ly=0=(=1)"3;, ... &;, log (1/r). We can easily show that

d,...3, log 1 = (-1)'2"(n - Dt Ml (7.21)
Since this is a harmonic function, ny;,...n;/r" is harmonic, and hence r'ng, ... n;, is also

harmonic, which means ny; ... n; is a circular harmonic or a trigonometric function of degree
n. As in the three dimensional case, the solution of the original potential problem is

o(r) = J' f(n)(l +2log “) dn="3 —-—n—J—r——"‘n (7.22)
where the “multipole moment tensor” is given by
Qi,...i,=2"(n=Dlng ... myy, (7.23)

for n >0 and Q =1 for n =0. Hence, we can see that

S
Di,...i,, "'(n_ l)!Qil...i"' (7~24)
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As was remarked earlier, a particular orthogonal basis of W, is the “Fourier” circular
harmonics €™ =cos 7@ +isinnd and e =cos n@—isinng. The complex Fourier series
expansion takes the form

f(n)—— 2 A, " (7.25)
A, = f f(n)e™" dn = (e™"°). (7.26)

—ing -2i8 _

Since e™ =(x+iy)" and e =(x—iy)", we can see that e*®=x2+2ixy—y% e
x2~2ixy — y?, etc. corresponding to Example 6.1. Corresponding to Example 6.2 are Ao= 1,
A;=N;;—2iN\;— N, A_,= A}, etc. The two dimensional version of eqn (6.13) is

in6

(3, +id,)" log} =02 - e (7.27)

for n >0, and hence eqns (6.14) and (6.15) become

“23 ')"—k( )”{lk .« N, (7.28)

> (i) *( ) l(‘z (1.29)

and A_, = A}, for n > 0. Corresponding to Example 6.4 are A, = (D,, - 2iD;,— Dy,)/8, etc.

8. STATISTICAL TEST FOR THE FITNESS OF THE DISTRIBUTION

Since ny;, ... n;,’s form a complete basis in L? on S or S', the expansion of an empirical
density f(n) converges in the limit to the original f(n), while our aim is to characterize f(n) by a
smooth function with certain physical meaning. Therefore, only a small number of terms need
be retained, but how many of them are sufficient? In order to answer this questxon, we must
resort to a statistical test.

The simplest problem is the “test of uniformity”. Suppose the computed D; is very small
and the distribution is almost “‘uniform” or “isotropic”, i.e. f(n) ~ 1/47 in the three dimensional
case or f(r)~ 1/27 in the two dimensional case. Then, how small should D; be in order to
conclude that the true population is uniform aad that the computed non-zero D; is a statistical
fluctuation due to the finite size of the data? This problem is solved by calculating the
“likelihood ratio™, i.e. the probability that the observed data are generated by the uniform
distribution over the probability that the observed data are generated by the distribution
calculated up to the term of Dy If this ratio is too small, we cannot conclude that the true
population is uniform. Then, the second term must be retained. The same process also applies
to higher terms. For example, in order to test whether the term of D;z, can be neglected or not,
we compute the likelihood ratio with respect to the distribution up to the term of Dj; vs the
distribution up to the term of Dy, and so on.

Let A be the likelihood ratio. It is known that —2log A behaves according to the x’-
distribution, its degree of freedom being the number of independent parameters whose nullity is
to be tested, if the number N of independently observed data is sufficiently large. It is also
known that —2log A is expressed as a quadratic form of the parameters to be tested, the
coefficient being N times the “Fisher information matrix”, if N is sufficiently large. (Strictly
speaking, these results apply when the distribution is estimated by the ‘“maximum likelihood
estimation”, not the “‘least square error approximation”, but the difference is not so significant
if N is sufficiently large. For details, see [22], for example.)

First, consider the test of uniformity. Let F(n) be the distribution calculated up to the
second term from independently observed N data:

F(n)= é[] + D,','".‘n,'] or 1+ D.-,-n.-n,-], (8])

1
ﬁ[
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for the three and two dimensional cases respectively. The Fisher information matrix in this case
is a tensor defined by

1 8F oF
Iy = -5 4nlp,,.- 8.2
M= | F aD; 3Dy |0
Substitution of eqn (8.1) yields
1 3
Iiikl=§5(ij5kl) or gamakn, (8.3)

respectively. The statistics to be tested is NI;jyD;Dy, or

N DyD;;, 8.4

D,,D,, or 3

15

respectively. Let xX(p, a) be the value of y* whose upper probability is a, i.e. P}'ob{x2>

xXp, @)} = a, x* obeying the x*-distribution of degree of freedom p. If the value of (8.4) is

larger than x2(5, &) or x(2, a) respectively, the observation is “significant”, i.e. the distribution

cannot be regarded uniform, under “significance level” a. If we express the latter of (8.4) in

terms of the Fourier coefficients a, and b, (see eqns (7.16) and (7.17)), it becomes N(a3+ b3)/2.
A test for Dy, is obtained similarly. Let

1
F(n) = .4L1l'[1 + Di,-n,cn,- + D;,-k.n,-njnkn,] or i; [1 +-- ’] (8.5)
be the distribution calculated up to the term of Dy, The Fisher information in this case is

1 8F 9F
Iijklmnpq - ? aDifkl aDmnpq d”lD,,,“ =0 - (8-6)

This integration does not yield a simple form. If we expand it in D; and retain only Oth and first
terms of Dj, assuming D; is small compared to 1, we obtain

8N 8
m [DI]HDI}H uleuklem ]
NIl'iklmnpq Diilemnpq = ) (8.7)

N
1% DijuDiju

for the three and the two dimensional cases respectively. (Note that DyDjymD = 0 in the two
dimensional case. See eqn (7.17). The statistic becomes again N(a2+ b3)/2 in terms of the
Fourier coefficients.) This statistic is tested against xX(9, ) or xX(2, a) respectively as before.

We can also estimate the deviation, due to the finite size of data, of computed D; and Dy,
from D° and D,,,‘, respectively of the true population distribution by noting that (D;—
D‘,’,)I\/N s and (D.,k, .,k.)l\/N s obey the multivariate normal distribution with mean 0 and
with variance the inverse of the respective Fisher information matrix when N is sufficiently
large.

9. AN EXAMPLE OF CHARACTERIZING AND TESTING DISTRIBUTIONS

As an example, let us consider the interparticle contact distribution of granular materials.
Figures 1 and 2 show circular histograms (“‘rose diagrams”) of the contact directions in an
assembly of oval rods (a two-dimensional granular material) observed by Konishi et al.[16]. The
x- and y-axes are taken to coincide with the principal stress axes of the external loading. Figure
1 describes the distribution before the loading and Fig. 2 after the loading. Let us try to quantify
ES Vol. 22, No. 2—E
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Oth approx.

Fig. 2. The contact distribution of a two dimensional granular material (after loading).

this change of the packing configuration. First, consider the case of Fig. 1. The fabric tensors of
the first kind become as follows:

N" = 0.5605, N|2 = 0.005328, sz = 0.4395,
Ny =0.4483, N2 =0.01029, N2 =0.1122,
N2 = —0.004965, Ny = 0.3273, etc. 9.1

The fabric tensors of the second kind are

F" = 1.242, F]z = 0.02131, Fzz = 0.7579,
F"||= 1.447, F"|2=0.]327, Flm=0.1282,
F]zzz = -0.11 ]4, anz = 0.9631, etc., (9.2)

which implies that the distribution density is approximated as follows:

f(n)~ % (Oth order),

f(n)~ %[1.242)(2 +0.04262xy + 0.7579y7] ' (2nd order),

f(n)~ l[1.447x‘ +0.5308x "y +0.7692xy? — 0.4456xy* + 0.9631y*] (4th order).
2

9.3)



Distribution of directional data and fabric tensors 163

The corresponding approximated distributions are drawn over the rose diagram in the Fig. 1.
The fabric tensors of the third kind are

D, =0.2421, Dy»,=0.02131, Dy = —0.2421,
D”" = 0.2052, D|||2=0.1221, Dl|22= —0.2052,
D= —0.1221, Dyay =0.2052, etc. 9.4)

This means that the distribution density is approximated by
f(n)= il;[l +0.2421(x2 - y?) +0.04262xy + 0.2052(x* — 6x2y* + y*) + 0.4884(x>y — xy*) + - - -],
9.5

which can be extended up to any desired order. In fact, this expression corresponds to the
following Fourier series:

f(n)= 51-1;[1 +0.2421 cos 26 +0.02131 sin 26 +0.2052 cos 46 +0.1221 sin 46 ++ - -] (9.6)

The eigenvalues of Nj; are 0.5607 and 0.4393, and the angles made by their eigenvectors and the
x-axis are 2.51° and 92.52° respectively. Hence, if they are taken respectively as the new x'- and
y'-axes, the transformed fabric tensors are

Niy-= :0'5:0 ' 0.4(:)493]’ ©-
Fiy= :1'%)43 0.7%72]' ©8)
and the transformed approximation is
f(n)= ﬁ[l +0.2428(x"2 - y?) +0.2233(x" - 6x"2y" + y") + 0.3374(x"*y' — x'y?) + - - -1
| (9.10)

The same analysis can be done for Fig. 2, and approximations up to the fourth order are also
plotted in it.

Let us test the uniformity of the distribution. The statistic ND;Dy/4 (=N(a3+ b3)/2)
becomes 17.04 for Fig. 1 and 26.53 for Fig. 2. (The number of the data, N, is 577 for the former
and 527 for the latter.) Since x%(2, 0.005) = 10.60, both of them are “significant”, i.e. they cannot
be regarded as data from the uniform distribution, with significance level 0.005. Next, consider
the term of Dy, Since the statistic NDyuD;u/16 (= N (a3 + b3)/2) becomes 16.44 for Fig. 1 and
6.201 for Fig. 2, the former is “significant™ while the latter is not, i.e. the term of Dy, cannot be
neglected for Fig. 1 but it can be neglected for Fig. 2, with significance level 0.005.

It is conjectured that the principal axes of the fabric tensors of rank 2 (of any kind) coincide
with the principal stress axes. If they are assumed to be related to the stress tensor, then we can
think of various possibilities [5, 6, 9-11). Since Ny, =1, F, =3 or 2 (for the three and the two
dimensional cases, respectively) and D, =0, some simple forms are

N; = gjlow., 9.11)
F; = 30;/ow or 2030w, respectively, (9.12)

D,'i = const. Tij) (9]3)
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Kanatani [6, 12] assumed eqn (9.12), because in this case the distribution density approximated
up to the second order does not take negative values as long as the stress is in a compressive
state, i.e. oy is positive definite. In this connection, Satake[11] proposed a form of the
distribution density which yields the prescribed fabric tensor of rank 2 and is always positive.
However, his form is very much complicated, involving the eigenvalues of the fabric tensor and
the polar coordinates of its principal axes, so that physical interpretations or analogies and
statistical tests are difficult to apply.

The validity of the assumptions of eqns (9.11)=(9.13) must be judged from further experi-
mental observations, of course, but this illustrates how the analysis of this paper provides us
with.useful tools to cope with this kind of problems. In the above example, we considered the
stress tensor as an external control factor. It is clear that if quantities of higher ranks are
involved, fabric tensors of higher ranks should be also taken into consideration. We can also
see advantages of the use of fabric tensors over the use of spherical harmonics or Fourier
coefficients. The fabric tensors are calculated systematically without any reference to special
functions. Moreover, since they are tensors, they not only have a simple rule for trans-
formations of the coordinate system but also can be directly employed in describing the
physical laws governing the phenomenon, which should be expressed as tensor equations. At
the same time, we can easily understand the intuitive meaning of these tensors in connection
with the form of the distribution density, because the expansion corresponds to the multipole
moment expansion and each D;, ; describes the amount of the corresponding multipole
moment.
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