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Abstract—A general mathematical formulation is given to the problem of determining the
structural anisotropy by means of the stereological principle. Three cases are considered—
distributed curves in the plane, distributed curves in the space and distributed surfaces in the space.
The number of intersections with a probe line or plane is viewed as a transformation, which is
termed the “Buffon transform™, between two distribution densities, and a form of its inverse
transform is given. Then, the change of anisotropy due to the deformation of the material is
formulated, and the strain is shown to be determined from the data of the intersection counting.
All equations are written in the form of Cartesian tensor equations invariant to coordinate
translations and rotations. A typical example is also given.

1. INTRODUCTION

So cALLED “integral geometry” or “stereology” has provided a useful tool to measure
geometrical characteristics of distributed curves and surfaces by counting the number of
intersections on a probe line or plane [1-10]. For example, if the probe line or plane is
placed randomly, the number of intersections is proportionally related to the specific length
and the specific area of the distributed curves and surfaces respectively. The study of this
kind is old and stems from “Buffon’s needle problem”[11]. If intersections are counted for
each different orientation of the probe line or plane, then we can also determine the
“structural anisotropy”, i.e. the distribution of the curves or surfaces. This problem was
analyzed by Hilliard[12], and explicit formulae were presented to determine the “distribu-
tion density”.

On the other hand, if the problem under consideration is a “physical” one—like
anisotropic structures of metals and composite materials, the description of anisotropy
must be expressed in “frame indifferent forms” [13, 14], i.e. forms invariant to coordinate
translations and rotations. This is because the coordinate system to which parameters of
orientation are referred is completely arbitrary. Thus, any equation describing material
properties must have the same form irrespective of the choice of the coordinate system,
which implies that it must be a Cartesian tensor equation. Since the structural anisotropy
is completely specified by the distribution density, the distribution density itself must be
expressed in terms of Cartesian tensors. This problem was studied by Kanatani[15]. He
described distribution densities of directional data in terms of what he called the “fabric
tensors”, applying orthogonality properties of functions on a sphere or a circle, which is
also related to the representation theory of the rotation group and the spherical harmonics
expansion or the Fourier series expansion. He also gave explicit formulae to determine
these tensors from the moments of given data and a procedure of the statistical test of
fitness, applying the asymptotic theory of statistical testing.

In this paper, we give a Cartesian tensor formulation to Hilliard’s method by applying
Kanatani’s analysis. This makes it possible to generalize different types of problems into
a single mathematical framework called the “Buffon transform’. Then, we give a form of
its inverse transform in the form of Cartesian tensor equations, which makes it possible
to determine the tensors characterizing the distribution density, or the “fabric tensors”,
directly from the data of intersection counting. A typical example is given to illustrate the
technique. Finally, we consider the change of structural anisotropy due to the deformation
of the material. This problem was already studied by Philofsky and Flinn[16]. Here,
however, the change of the distribution density is characterized by transformations of
fabric tensors and is written as tensor equations. This enables one to know the strain tensor
of the material directly from the data of intersection counting.
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2. BUFFON TRANSFORM OF DISTRIBUTION DENSITY

Suppose curves are- distributed in the plane. Let the curves be dissected into
infinitesimal line elements of length d/ and each line element choose one of the two unit
normal vectors n or — n independently with probability 1/2. The “distribution density”
f(n) is defined in such a way that f(n) dn is the “total length” of those line elements whose
normal vector is lying between n and n + dn per unit area. Here, dn is a symbolic notation
for the differential angle. If we use a particular polar coordinate 6, then dn = d6. However,
as was discussed in Section 1, we adopt ‘““coordinate independent” notations throughout
this paper. Obviously f(n) is “symmetric”, i.e., f(#) = f( — n), and [f(n) dnis the total length
of the curves per unit area.

Let a line of direction m (a unit vector) be placed randomly in this plane, and consider
the number of intersections with the curves. Put the expected number of intersections per
unit length to be N(m).

Theorem 2.1

N(m)= 'f |m - n| f(n) dn. @1

Proof. The probability that a line element with its normal between n and dn intersects the
line equals the probability that the center of the line element falls within the distance
|m - n|d!/2 from the line (Fig. 1). Since there are f(n) dn/d! such line elements per unit area,
that probability is |m - n|f(n) dn per unit length of the line, which proves the theorem.

Here, we are not interested in “spatial correlations” of the distribution but considering
only the “expected number of intersections”. Hence, the above discussion is rigorous. If
we repeat this “line dropping” independently a large number of times and take the average
over all the trials, then the Lh.s. of eqn (2.1) can be interpreted in the sense of this data
average due to the “law of large number”. Obviously, N(m) is also symmetric, i.e.
N(m) = N(—m). We term a transformation of a distribution density of the form of eqn
(2.1) the “Bufforn transform™ after his pioneering work of this problem more than two
centuries ago[11]. :

Now, turn to the case of distributed surfaces in the space. Again, we treat the mutually
opposite normal vectors randomly with probability 1/2. Let f(n) be the distribution density
of surface elements with unit normal n, i.e., f(n) dn is the “total area” of those surface
elements whose normal vector is lying in the differential solid angle dn per unit volume.
(If particular spherical coordinates 8, ¢ are used, then dn =sin 6 d@ d¢). Obviously,
f(n)=f(—n) and [f(n) dn is the total area of the surfaces per unit volume. Place a line
of direction m (a unit vector) randomly in the space, and let N(m) be the expected number
of intersections with the surfaces per unit length.

Theorem 2.2
N(m)= Jlm - n| f(m)dn. | .2

Fig. 1. A line element intersects the line when its center falls within the distance |m -n|d//2
from the line.
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Fig. 2. A surface element intersects the lintla wheln its center falls inside a cylinder of base area
. m - n(dS.

Proof. The probability that a surface element of area dS with its normal lying in the
differential solid angle dn intersects the line equals the probability that the center of the
surface element falls inside the “cylinder” of base area |m - n|dS along the line (Fig. 2).
Since there are f(n)dn/dS such surface elements per unit volume, that probability is
|m - n| f(m)dn per unit length of the line. Hence, N(m) is given by the three dimensional
Buffon transform.

Finally, consider distributed curves in the space. Choosing the direction of each unit
“tangent” vector randomly as before, let f(n) be its distribution density of line elements
with unit tangent vector a, i.e. f(n)dn is the “total length” of those line elements whose
tangent vector is lying in the differential solid angle dm per unit volume. Hence,
Sf(m) =f(— n), and | f(n)dn is the total length of the curves per unit volume. Place a plane
whose unit normal is m randomly in the space, and let N(m) be the expected number of
intersections with the curves per unit area.

Theorem 2.3
N(m) = Jlm “n|f(n)dn. (23)

Proof. The probability that a line element of length d/ with its tangent lying in the
differential solid angle dm intersects the plane equals the probability that-the center of the
line element falls within the distance |m - n|d//2 from the plane (Fig. 3). Since there are
f(n)dn [dl such line elements per unit volume, that probability is |m - | f (n)dn per unit area
of the plane. Hence N(m) is again given by the Buffon transform of eqn (2.3).

3. INVERSE BUFFON TRANSFORM—3-DIMENSIONAL CASE

It was shown in the previous section that the distribution density of structural
anisotropy is related to the number of intersections on the probe line or plane by the
Buffon transform. Therefore, if its inverse transform is known, the distribution density can
be estimated by placing the probe line or plane in various different orientations and

Fig. 3. A line element intersects the plane when its center falls within the distance |m - n|d//2 from
the plane.
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counting the number of intersections on it. The simplest and the most practical way to
obtain the inversion formula is to express the distribution density in a parametric form.
Since we are seeking a frame indifferent form, the parametric form must be a Cartesian
tensor equation. This problem was fully studied by Kanatani[l5]. He expanded the
distribution density into a polynomial in s in such a way that each term is orthogonal to
the rest. In other words, it is a Cartesian tensor expression of the spherical harmonics
expansion in the 3-dimensional case and the Fourier series expansion in the 2-dimensional
case. He called the coefficient tensors “fabric tensors™. We first consider the 3-dimensional
case. Hereafter, we adopt the summation convention over repeated tensor indices.
A symmetric distribution density f(n) is expressed in the form

C
f(n)= e (1 + Dymm;+ Dygnimnyny + . . ], 3.1

where C and the “fabric tensor” D, , are given respectively by

¢ [ftasem, 6
Di.. vy & 22:-—1 (2: )N {f- - & (3.3

and N, , is the “moment tensor” defined by

1
Niy= C J"’i. .. ”i,f (n)dn. (34)

Here, { } designates the “deviator part”, i.e., the combination of the components such that
any contraction makes it vanish. In general, if 4, , is a symmetric tensor, its deviator part
is given by
Ay iy = oAy, .4, T 20 Aiy. .05t €301 As. . 1yekz
+o 00 Ay @.5)

where ; is the Kronecker delta and () designates the symmetrization of tensor indices.

Here, c%’s are defined by
. afnyn—1 2n —1
== ('")( m(2 )/ ( m ) G9

This formulation is very practical, because we can calculate all quantities from the moment
tensor of observed data. We discuss actual practical procedures later.
Since the fabric tensor D; , is a deviator tensor, eqn (3.1) can be also written as

Lip

C
f(n)= W [1 + Dy + Dygnynmny + ... 1. 3.7

(It can be easily checked that ny, ...n,, is in fact a spherical harmonic of degree n [15].)
Since the Buffon transform is a “linear” transformation, the Buffon transform of eqn (3.7)
is obtained once the Buffon transform of ny . . . n; is known. The following theorem plays
a fundamental role.

Theorem 3.1
27
J]m “nlng, ... n,dn = — M- My, (3.8

where a, is a constant.
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Proof. Note that the Buffon transform *“commutes’™ with rotations. Namely, consider
the function space L%S? on a unit sphere S* and put Bf(n)= j|n n | f(nydn’ and
R*f(n)=f(R~'n) for f(n)cL*(S?, where R is a 3-dimensional rotation. Then,
BR*f(n) = (|n-w’|fR"'n)dn’ = _Hn ‘Rn’ [f(n Ydn’ = [|R™n-n’'|f(n)dn’ =
j]R “'n-n | Sf(n )dn’ R*Bf (n) because dn is invariant to rotations. Smce B*R = R*Bfor
any R, or B is an “invariant operator”, the subspace W, of LYS?) spanned by n, ...n,)’s,
which is a representation space of an.irreducible representation of the rotation group, is
also an eigenspace -of B. (This is easily shown by the orthogonality of irreducible
representations and Schur’s lemma). Hence follows eqn (3.8), and 27 /a, is the eigenvalue.
Alternatively, we can show it by noting that an invariant operator is expressed as a power
series’ of the “Laplace-Beltrami operator” A = (1/sin6)(8/26)sin 62/90 + (1/sin’ 0)
0%/d¢>%. The subspace W, is an eigenspace of A and its elements are spherical harmonics
of degree n. Hence, W, is also an eigenspace of B.

‘In order to determine the eigenvalue 2x/a,, we can take an arbitrary coordinate system,
and it is sufficient to calculate a particular component or any linear combination of those
components of the same n, i.e. we can take any function which belongs to W,. Let us take
a particular Cartesian coordinate system such that the z-axis coincides with the direction
of m and use the associated spherical coordinates 6, ¢ to describe the direction of n. As
an eigenfunction, we can take the Legendre function P,(cos 0) as a representative, since
it is a vector of W,. Then, we have

J:x '[ |cos 8|P,(cos 8) sin 6d0dp =— P,,(l) ( in) (3.9)

n

The L.h.s. becomes 4 [} zP,(z) dz. Hence, using the Rodrigues formula and integration by
parts, we obtain

Theorem 3.2
a,= (_ ])0/2 19n= '(n - 1)('1 + 2)/( /2) (310)

For example, ay= 1, a,=4, a,= —24, a;= 64, ... . Hence, we obtain the following two
theorems.

Theorem 3.3.
The Buffon transform of eqn (3.1) is

2nC 1
N(m )——[l+ Dygnm; — 24Dwm,m,mkml+ ] @3.11)

Theorem 3.4.
Conversely, if N(m) is given in the form

C
N(m)=4_n (1 + Dymm;+ Dymmmem, + .. .1, (3.12)

then its inverse Buffon transform is given by

fm) = C/27t

(1 +4Dnn; — 24Dynnnam + ...} (3.13)

" Expression N(m) in the form of eqn (3.12) is easy. The simplest way is to choose the
orientation m of the probe line or plane randomly, i.e. according to the uniform distribution
over a-unit sphere. Suppose that m®, . .. ,m™ are the selected probe orientations and that
N@m®), ..., N(m™) are the corresponding observed data. Then, we can estimate C by

1JES 22/5-C C= <1>: (3.14)
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where {.) =4n ZI_, ()N(m®)/N (weighted average). The moment tensor N, is esti-
mated by

1
Ny..., =C (ny...m). (3.15)

(Equations (3.14) and (3.15) are nothing but evaluation of eqns (3.2) and (3.4) by the
“Monte-Carlo method”). Then, the fabric tensor D, ., is given by eqn (3.3). Once the
fabric tensor is known, the distribution density f(n) is given by eqn (3.13). It is sufficient
to take up to the second term in most applications. If necessary, we can perform a
statistical test of fitness by Kanatani’s procedure [15]. Moreover, in most of related
physical problems, what is important is not the form of f(n) itself but rather its fabric
tensors themselves, notably that of the second rank D,

If the probe orientations are chosen not uniformly over a unit sphere but according
to some probability density p(m), the same procedure is available except that each N(m®)
is divided by 4np(m®©). If, on the other hand, the probing is performed for m®, ..., m™
without any reference to probability, which is the most likely situation for most
experiments, we can estimate the density p(m) by the same technique[15]. Namely, put

1 X o
N, .. =—Na=§lm$f’...m$“’, (3.16)
and calculate D, , by eqn (3.3). Then p(m) is given by

1
p(m) = o [1+ Dynymy+ Dymmpmum + ... ). (3.17)

This turns out the “least square error approximation™ [15]. Again, it is sufficient to take
up to the second term in most cases, resorting to the above mentioned statistical test of
fitness, if necessary. (If we keep adding higher terms indefinitely, p(m) approaches its
“empirical density”, i.e. a discontinuous function with as many singularities as the data).

4. INVERSE BUFFON TRANSFORM—2-DIMENSIONAL CASE
In the 2-dimensional case, a symmetric distribution f(n) is expressed in the form

Cc
f(n)= I (1 + Dy + Dynnmeny + .. .1, “.1)

where C and the fabric tensor D, , are given, respectively, by

C= j Sf(n)dn, 42

Di..‘.l,, = 2"N(i|...i,,]a (4-3)

and N, is the moment tensor defined by eqn (3.4). The deviator part of a symmetric
tensor 4, ; also has the form of eqn (3.5) in the 2-dimensional case, but ¢”’s in this case
are given by

. _(=D™ n n—m/2
Em="3m n—m/2< m/2 ) “4)

The tensor ny, ... n,) turns out a circular harmonic function of degree n, i.e. a sinusoidal
function of argument n6. Hence, eqn (4.1) is nothing but a Cartesian tensor equation of
the Fourier series expansion of f(n) [15]. As in the 3-dimensional case, we have
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Theorem 4.1

4
ﬁm . nln{,l e n,“}dn = a—"m“‘ <My, 4.5

where 4/a, is the eigenvalue.

Proof. Let W, be the linear space generated by ny, ...n,’s. It is 2-dimensional and
spanned by e and e ~™ or by cos nf and sin n8. The proof of Theorem 3.1 does not apply
as it is, because Schur’s lemma holds only for “algebraically closed fields”. In other words,
the group representation theoretical properties of Theorem 3.1 is valid only in the complex
domain. This is no problem in the 3-dimensional case, but in the 2-dimensional case any
irreducible representation of the rotaton group is of degree 1 in the complex domain and
the basis is e or e~ (n =0, 1, 2,...), which must be an eigenvector of the Buffon
transform B. However, as long as we resort to the group theory, there is no guarantee that
e™ and e " share the same eigenvalue, though the eigenvalues must be a complex
conjugate pair because B is a real operator. In other words, the eigenvalue may be complex
and the “phase shift” may arise. However, as will be shown by a direct calculation, this
is not the case. The eigenvalue is real and there is no phase shift. Hence W, is an eigenspace
of B. (Recall the theory of control. A “time invariant™ or “stationary” linear system, i.e.
one whose operation “commutes” with the operation of time shift, has ¢ as an
eigenfunction, because it spans the 1-dimensional space of an irreducible representation
of the group of time shift, i.e. 1-dimensional translations. Its eigenvalue is complex in
general and called the *“frequency response”, its modulus being the “gain™ and its
argument being the “phase shift’).

In order to determine the eigenvalue, let us take a Cartesian coordinate system such
that the x-axis coincides with the direction of m and use the associated polar coordinate
@ to describe the direction of a. As an integrand, consider e”. Then, we have

2r
J; |cos 8] (cos n6 + i sin nB)d@ = ai,, (4.6)

Note, however, that the term of sin nf vanishes because it is an odd function in 6 while
|cos 0] is an even one. Hence, the eigenvalue is real, and e =" = cos n@ — i sin n0 also has
the same eigenvalue. Thus, we have

Theorem 4.2
a,=(—1)"?+*(n*-1). 4.7
For example, ay=1, a,=3, a,= —15, ag=35,... . Hence, we obtain
Theorem 4.3
The Buffon transform of eqn (4.1_) is given by
4C 1 1
= =D, - cen | 4.8
Theorem 4.4
Conversely, if N(m) is given in the form
C
N(m)= o (1 + Dyngm; + Dymmmm,+ .. .1, 4.9)

then its inverse Buffon transform is given by

C/4
f(n)= z—fz- [1+ 3Dy — 15Dgnnmn + ... 1. (4.10)
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The actual procedure is the same as in the 3-dimensional case. If the orientation m of
the probe is chosen according to the uniform distribution over a unit circle, then C and
the moment tensor N, _; are estimated by eqns (3.14) and (3.15), respectively, where the
weighted average is in this case {.) = 2n ), (. )N(m®)/N. Then, the fabric tensor D;
is determined by eqn (4.3) and f(r) is given by eqn (4.1). Here again, it is sufficient to take
up to the second term in most applications, or, more precisely, our interest is often not
in the form of f(m) but Dy itself. If m is chosen according to some probability density p(m),
the procedure is the same if N(m®) is divided by 2zp (m) in the weighted average. If, the
probe directions are chosen without reference to any probability, the density p(m) is
estimated as before. First, compute N, _, by eqn (3.16) and then D, ., by eqn (4.3). Then,
p(m) is given by .

. ‘ .
p(m) = o [1 + Dgnmy+ Dygmmmem; + . . . ]. : 4.11)

This is again the least square error approximation. In most applications, it is sufficient to
take up to the second term. ‘

Hilliard also proposed the use of a curved test array with a prescribed orientation
distribution for manual intersection counting [12]. In this case, however, we have to use
a particular coordinate system, because the coordinate system to describe the orientation
distribution of the test array and the coordinate system for the material are different and
independent. Hence, the Cartesian tensor expression cannot be used to describe his
procedure. For details, see [12]. On the other hand, the “parallel line scanning” is the most
practical procedure for manual calculation, and it is most easily implémented by a
computer image processing system on the graphic display screen. Today, we cannot think
of the full use of stereological principles without computers. In fact, it can be said that
the stereological principles will find their true appreciation only when computers are used
for implementation.

As an example, consider the pattern of Fig. 4, which is obtained after distorting an
initially isotropic random patter drawn by generating random numbers. This can be viewed
as a simulation of grain boundaries on a cross section of a polycrystalline metal which has
undergone a deformation. The data of intersection counting are shown in Fig. 5. (We used
equally spaced parallel lines, among which 27 intersected the circumference circle). The
solid curve in Fig. 5 shows the curve N(m) = C[1 + Dynm)/2r fitted as stated above. (The
data and the curve are normalized so that C = 1). The fabric tensor D, becomes

0.1786  —0.0109
D"f"[—o.01o9 —0.1786]’ 12

Fig. 4. An artificial pattern simulating grain boundaries on a cross section of a deformed
polycrystalline metal.
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Y y2re NMYIN(m)dm

Fig. 5. Normalized data of intersection counting on Fig. 4. and its fitted curve.

Thus, the distribution density of the line segments is given by f(n) = (C/4)[1 + 3D;nn}/2n.
Figure 6 shows the normalized density f(n)/{(n)dn. (Note that n is the unit “normal”, not
the “tangent”).

5. FABRIC CHANGE DUE TO DEFORMATION — CURVES IN THE SPACE

We now consider the change of structural anisotropy induced by the deformation of
the material. First, consider the case of distributed curves in the space. Suppose the
material undergoes a deformation described by a linear transformation

and let f(n) be the distribution density of the curves before the deformation. A unit vector
n, is deformed to A, and it is no longer a unit vector. Its length becomes

L(n) = /AuApny; 5.2)

Hence, the unit vector n’ describing its direction is given by

n;

1
= -L—('-'—)A,jn, (5.3)

Equation (5.3) is viewed as a map on a unit sphere on which the distribution density is
defined. Hence, we must calculate the “Jacobian” dn’/dn of the map in order to know the
transformed density. This is done as follows. Consider a transformation

i X g
X = A,*Am,x,‘x,Aax" (54)

yare  fn¥ffinkdn

S
3

~— -
B

-~ -
e e

Fig. 6. The distribution density of line segments of Fig. 4 obtained by the inverse Buffon transform
of Fig. 5. (The vector a is the unit “normal”, not the “tangent”).
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The restriction of this transformation on a unit sphere coincides with eqn (5.3), and the
distance from the origin is conserved by this transformation. Hence, in order to know the
area dn’ after transformation (5.3) of an infinitesimal region dn on the sphere, we have
only to consider the volume of a “cylinder” of base dm and with infinitesimal height after
transformation (5.4). In other words, it is sufficient to calculate the Jacobian of
transformation (5.4) at x = n. After some manipulations, we obtain

dnl
dn

(n) = det(dx;/0x;)|, ., = det A/L(n)". (5.5)

Hence, the new distribution density is given by

) L@ . fan
1) = 5o ) [ ). 56)

In order to obtain a more practical form, let us consider only small deformations and
put

and assume that Fj is small. The tensor Fj is called the “distortion tensor” and further
resolved into the “symmetric part” and the *“skew symmetric part”, namely

Fq = e,'j + rij, (5'8)
1
e4,=F@< = E(Fy+i},)), (5.9)
1
'ﬁ=ﬁal(=§(17ij"1'}t))’ (5.10)

where () and [] designate the symmetrization and the alternation of the tensor indices
respectively. The tensor e; is the “strain tensorand r, is the “rotation tensor”. The strain
tensor e; is further resolved into the “scalar part” and the “deviator part”, namely

. 1
e;=é;+ 3 0y (5.11)

o 1
e,:,' = e[”}( = ey - 3 ekkay). (5.12)

The tensor €; is known to be the “shear strain tensor” and e, the “volumetric strain”.
As is well known, these resolution is invariant to coordinate transformations.
Using these notations, and neglecting higher order terms, we obtain

1
Lin)=1 +§eu+e‘,,n,n,+0(i‘2), (5.13)
ni = nm+ én+ rgn,— Egnnn, + 0(F?), (5.14)
dnl
an =1-3énn+ O(F?), (5.15)

and det 4 = 1 + ¢, + O(F?), where 0(F?) designates terms of F; whose order is equal to and
higher than 2. The following theorem describes the practically most important case.
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Theorem 5.1
If the initial distribution density is given by

S(n)= 4% [l + D), (5.16)

then, the distribution density after the deformation becomes

cl
f(",)=Z; (1 + Djninj + Djmnininini] + O(F?), .17
, 2 2,
c =C(1—§ekk+l—5'e”Dy), (5.18)
, . 10, 2 10, _
, . 24 12 -
D{]kl = 68({- kD) — 75(,]8qu,"|[) + 3 6(,]5,‘,)e,,,,,D,,,,,, (5-20)

where | | designates the exclusion from the symmetrization operation.

These are first approximations, or, more precisely, we have obtained “infinitesimal
generators”. In other words, we have calculated d/dt|,, for “one parameter subgroups”
exp (et /3), exp (1) and exp (rt) respectively of the “deformation group” GL*(3, R),
which is a Lie subgroup of GL(3, R) consisting of those linear transformations whose
determinant is positive. For example, dc/dt|,,o = —2e,/3 for A(t) = exp (endt/3). Equa-
tions (5.18)—(5.20) must be interpreted in this sense. (Here, ed;/3, €; and r; span the “Lie
algebra” of GL*(3, R). This Lie algebra completely generates GL*(3, R) because it is a
“connected” Lie group).

In particular, if the initial structure is isotropic, i.e. f(n) = c¢/4n, the distribution density
after the deformation becomes

1 —2eu/3)

fny =2 (1 4+ daping] + O(F). (5.21)

Hence, if we use the stereological procedure discussed in the previous sections, we can
easily determine the strain tensor as follows.

Theorem 5.2

If the initial distribution density is f(n) = c/4rn and the data of intersection counting
is given by N(m)= C[l + Dymm;+ ...]/4r, the strain as a first approximation is given
by

. 3 C

If the initial structure is not isotropic but its distribution density f(n) is known in the
form of eqn (5.16), then we can deduce the strain from the two distribution densities before
and after the deformation. However, as is seen from eqns (5.18)—(5.20), ey, €; and r; are
coupled with each other, and hence we need a prior knowledge about the coupling. If, for
example, the material does not rotate, then eqn (5.19) provides a complete set of equations
to solve é; in terms of D; and Dj. Then, eqn (5.18) determines ey, in terms of known c,
¢’ and D If, on the other hand, the material rotates without strains, then eqn (5.19)
determines the rotation ry.

6. FABRIC CHANGE DUE TO DEFORMATION —SURFACES IN THE SPACE

We now consider the case of distributed surfaces in the space. Let f(n) be the
distribution density of the surfaces and consider the deformation (5.1) again. Let n; be the
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skew symmetric tensor describing a unit surface (mn;/2=1). Then, the tensor after
deformation (5.1) becomes

ng= AyAyng, (6.1)

which does not describe a unit surface any more. The unit normal » to the initial surface
is given by
1
n = 3 €illiks (6.2)

where ¢, is the Eddington epsilon, i.e. the signature of permutation (123)— (ijk ). The unit
normal to the deformed surface is, therefore, given by

: 1
hy = m efkfejmnAkmAlnnj' (6.3)

S(1) = o/ €w€imApAgApmA gt 2. (6.4)

Equation (6.3) defines a map on a unit sphere. The transformed density is calculated in
the same way as in the previous section. If the deformation is small, we obtain after
neglecting higher order terms

1
S(n) =1+ iekk = i;,-,n,-nj-!- O(FZ), (6.5)
ni=n;— e+ rgn+ Enmn; + 0(F?), (6.6)
‘;’; =1+ 38+ 0(F?), 6.7)

where we have used the notations defined in the previous section.

Theorem 6.1
If the initial distribution density has the form

f@) =1+ Dy, (6.8)

the distribution density after the deformation becomes

’ £ Ptk A S L
f(n)=E[1+D,3n,»nj+D,~J—Hn,-njnkn,]+0(F2), (6.9)
, R
c =C(l —gekk—ﬁe,jDﬁ), (610)
2 iy w04, 2o 10 5o,

DU — D‘J = 481]; == 7 (:’(,-]kalﬂ + E ekIDk!DEj + ﬁ 5,38,(;1)*, —_ 2?'(,1ka“], (61 l)

. 24 12 g
Efkf = — 69(,]'0;(,0} + 7 5weklmDmlﬂ = E 6(!}'6kf)errmDmn' (6. 12)

In particular, if the initial structure is isotropic, i.e. f(n) = ¢ /4x, the distribution density
after the deformation becomes

c(1 — ew/3)

Jn") = e

[1 — 4énn] + O(F?). (6.13)

Hence, the strain tensor is directly connected with the data of intersection counting by
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Theorem 6.2

If the initial distribution density if f(r) = ¢/4n and the data of intersection counting
is given by N(m) = C[1 + Dymm;+ ...)/4n, the strain as a first approximation is given
by

" c
&= — D, "’""=3(‘"51Tc)' (6.14)

If the initial distribution is not isotropic but its distribution density f(n) is known, the
procedure discussed in the previous section can be also applied.

7. FABRIC CHANGE DUE TO DEFORMATION — CURVES IN THE PLANE
Finally, consider the case of distributed curves in the plane, and let f(n) be the

distribution density of the curves. We again consider the linear transformation of eqn (5.1)
in the 2-dimensional space. Let ¢ be the unit tangent to a line element. It is deformed into
which is no longer a unit vector. The unit normal a to the initial line element is given by

n= egtj, (7’2)

where ¢; is the signature of permutation (12)—(§j). The unit normal to the deformed line
element is, therefore, given by

1
n; =——— ex€udut, (7.3)

L(n) = \/€u€pA A mntity. (7.4)

Equation (7.3) defines a map on a unit circle. The transformed density is calculated in the
same way as before. If the deformation is small, we obtain after neglecting higher order
terms

Ln)=1+ % ew. — ey + O(F?), (7.5
n; =n;— é},n, + riflj + é}kn,nkn[ + O(FZ), (7.6)
v 1 + 2énn;+ O(F?), (X))

where, as before, we have put 4;=6;+ F;, e;= Fy, ry=Fy and &;=¢;— eudyl2.

Theorem 1.1
If the initial distribution density has the form

c
Sf(n)= % [1 + Dynnj, (7.8)
the' distribution density after the deformation becomes
c’ 1.7 4 N S 4
f(n’)=§; (1 + Dinin} + Dygminjnini] + O(F?), (1.9

, 1 1.
c =c(1 —Ee,,,‘—ze,,D,-,), (7.10)
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1
Dj=D;— 3EU+ZEHDHD¢/—2D&"I¢ (7.11)
, - 10 5 .

In particular, if the initial structure is isotropic, i.e. f(n) = c¢/2n, the distribution density
after the deformation becomes

f(nﬁ:ﬂ;:—"*/zz [1 — 3&mn] + O(F?). (1.13)

Hence, the strain tensor is directly connected with the data of intersection by

Thorem 7.2 :

If the initial distribution density is f(#) = c¢/2r and the data of intersection counting
is given by N(m) = C[1 + Dymm,+ ...]/4r, the strain as a first approximation is given
by

&=—D, ey= 2(1 -%). (7.14)

If the initial distribution is not isotropic, the previous discussion also applies.

Let us consider the example of Fig. 4 again. Suppose this pattern is obtained by a small
deformation of an initially isotropic pattern. Then, in view of eqn (4.12) and Theorem 7.2,
the shear strain tensor is given by

. —~0.1786  0.0109
b ‘[ 0.0109 0.1786]’ (7.13)
The eigenvalues are +0.1789 and the directions of corresponding eigenvectors are
0 =91.8° 1.8° from the x-axis, respectively. Hence, if we take now x’- and y'-axes,
rotating the x- and y-axes by 1.8°, we obtain

. [-01789 o0
e”‘[ 0 0.1789]' (7.16)

Therefore, if we extend the pattern 1.4 times along the x’-axis, we will obtain a pattern
which is approximately isotropic.

8. CONCLUDING REMARKS

We first established the relationship between the distribution density of distributed lines
or surfaces and the data of intersection counting in a single form which we called the
Buffon transform and then gave a form of its inverse transform. Next, we gave a form
of the change of distribution densities due to the deformation of the material and related
the data of intersection counting to the strain of the material.

As a matter of fact, the results formulated here are essentially not new, as was
mentioned in Introduction, and there are many studies which show calculations that are
essentially the same as ours. However, in most cases, these calculations are done in
reference to a specific spherical or polar coordinate system, and distribution densities are
expressed in the Laplace spherical harmonics expansion or the Fourier series expansion.
In contrast, we presented in this paper all the formulations in coordinate independent
Cartesian tensor equation forms. The advantage is three-fold.

First, we can obtain general expressions in a very compact form, which reveals
equivalences among seemingly different problems. Thus, we obtained the concept of the
Buffon transform irrespective of the geometry of distributed figures and the spatial
dimensionality, which leads to a common analytical technique to handle it despite the
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difference in physical interpretation. Second, describing a problem in the coordinate free
form often saves otherwise tedious calculations involving specific coordinates and func-
tions (sin’s, cos’s and associated Legendre functions, for example). Thus, we obtained a
form of the inverse Buffon transform by noting that the operation of the Buffon transform
on functions on a unit sphere commutes with that of rotations and by applying the group
theoretical properties. Third, since any physical laws must be expressed in frame indifferent
forms, the stereological principles expressed in frame indifferent forms can be connected
with physical properties readily. Thus, we showed that the data of intersection counting
expressed in the Cartesian tensor form is directly related to the strain tensor of the material.

The theory generalized in this paper has a wide variety of applications. Consider the
example of Fig. 4, for instance. It is not a mere illustrating example. We are simulating
a test of grain boundaries of polycrystalline metals. In any experiment of mechanical
properties of metals, the experimenter must carefully choose a specimen to avoid the effect
of factors outside the present consideration, and the past history of deformation is one
of them. Therefore, he must first test if a given specimen is free from past deformations,
and if not he must annhilate the past history, say, by annealation. Then, he must check
whether the past history has completely disappeared or not. These tests are most easily
done by observing the metal surface by a microscope and by applying the procedure we
showed in this paper. The same technique is also applied to computer image processing—
for example, measuring the orientation of a surface from a projected image and recovering
the true surface pattern by cancelling the effect of projective distortion[17].

Since computers are coming into use in physical experiments more and more these days,
it seems that stereological principles like those given here will be indispensable and play
a major role in physical observations and data processings.
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APPENDIX—SECOND FORM OF THE BUFFON TRANSFORM
In the text, we considered three cases, i.e. distributed curves in the plane vs. a probe line, distributed surfaces
in the space vs. a probe line and distributed curves vs. a probe plane. There is, however, another possibility left.
i.e. distributed surfaces vs. a probe plane. What is measured, in this case, is the “length” of the cross-section curves
per unit area of the probe plane. Let f(n) be the distribution density of the surfaces and m be the unit normal
to the probe plane. Then, the expected length L(m) of the cross-section curves per unit area of the probe plane
is given by

1,(m)=J\|m x n| f(n)dn. (A1)
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This is obtained by the following observation. Consider those surface elements with area dS whose normals
lie in the differential solid angle dm around a. There are f(n)dn/dS such surface elements per unit volume.
Obviously, the expected length of the cross ‘section of the probe plane with unit normal m and such a surface
clement is the same as that of the cross-section of the same probe plane and an image of that surface element
orthographically projected onto a plane spanned by m and m x n. The area of the projected surface element is
lm x #[|dS, and it coincides with the average cross-section length per unit area of the probe plane if it vertically
cuts the unit area containing the image at random. )

Turn to the case of distributed curves in the plane. In the text, the distribution density f(n) was defined with
respect to the “normal” n to a line element, and eqn (2.1) was obtained. If, on the other hand, the distribution
density f(n) is defined in terms of the “tangent” to a line element, the transformation of eqn (2.1) is rewritten
as follows. ‘

N(m) = J‘"m x n| f(n)dn, (A2

where [m x n| denotes |mn, — myn|.

Eqn (A1) and (A2) give a second form of the Buffon transform. This transform maps L%S?) and LXS") into
themselves respectively and also commutes with rotations. Hence, it is an “invariant operator” and has ng,..om,
as an eigenvector. The corresponding eigenvalue is n%/b, for the 3-dimensional case and 4/b, for the 2-dimensionai

case, where .
—2”'"";/( " )2 (for 3 dim.)
= n nf2 .
b {l —n? (for 2dim.) A3

(Caution: b, =1.) Then, the same procedure as in the text applies, and this form of the Buffon transform also
serves to determine the structural anisotropy and deformation of the material.



