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PROCEDURES FOR STEREOLOGICAL ESTIMATION
OF STRUCTURAL ANISOTROPY

KEN-ICHI KANATANI
Department of Computer Science, Gunma University, Kiryu, Gunma 376, Japan

Abstract—Actual procedures are given for detecting structural anisotropy by the stereological
method, i.e. by observing only cross-sections in the material, on the basis of the theoretical
formulation of the previous article [1]. First, computation by the Monte Carlo method is described
explicitly in terms of observed data, determining the distribution density completely. Next,
alternative procedures are given by the use of restricted cross-sections on the assumption that the
anisotropy is “weak,” facilitating actual experiments a great deal. Observations are made only on
planes parallel to the three coordinate planes or cylindrical surfaces around the three coordinate
axes. “Fabric tensors” describing the anisotropy and the “‘equivalent strain” are given explicitly in
terms of observed data.

1. INTRODUCTION

THIS IS a continuation of the previous study [1] of the stereological estimation of
structural anisotropy. In [1], we considered three cases: lines and curves distributed on a
two-dimensional plane, surfaces distributed in a three-dimensional material, and lines
and curves distributed in a three-dimensional material. These are the most fundamental
instances of structural anisotropy. The distributions of such internal structures are
characterized by appropriately defined “distribution densities,” but measurement of these
densities according to their definitions are impractical, and in many cases impossible. As
has been known, however, stereological procedures give indirect ways of measuring those
densities. All we have to do is to count the number of intersections of the internal
structure with randomly placed probe lines or planes (if the intersections are points) or
to measure the length of intersections of the structure with randomly placed cutting
planes (if the intersections are lines and curves).

These observed data are related to the distribution density by what is called the
“Buffon transform” in [1], where it is formulated as a tensor equation and its inversion
process is given on the basis of group theoretical considerations. The distribution density
is characterized by what is called “fabric tensors™ [2], and they are expressed explicitly in
terms of observed data. Then, we can immediately know the “equivalent strain,” i.e. the
strain according to which the present anisotropy would be realized from an initially
isotropic state. All these results are expressed as tensor equations invariant to coordinate
transformations in [1]. Background of the problem is also reviewed there. As is pointed
out in [1), the stereological procedure has significance not only in material science but
also in many other fields. For example, the stereological technique is used to detect the
orientation and motion of an object from its projected image on a plane of vision in the
field of artificial intelligence and computer vision (Kanatani [3, 4]). In geology, the same
technique is used to estimate the distribution of crack orientation in a rock mass, which
determines the anisotropy of its mechanical properties, by observing cross-sections of the
cracks appearing on a surface (Oda [5, 6] and Kananani [7]).

Since the discussion given in [1] is quite general and all equations are written in the
form of tensor equations, we first describe actual procedures, using the Monte Carlo
method implied there, in terms of particular polar or spherical coordinates to elucidate
the results there. The Monte Carlo method is the most consistent way, in the sense that
we can determine the distribution density to any degree of accuracy by letting the number
N of observations be large enough. Meanwhile, if we are to carry out these procedures in
an actual experiment, we immediately face a problem. For example, if we are to cut a
material by planes of various orientations, we must prepare a large number of material
samples, all of which are supposed to have the same anisotropy and choose, by generating
random numbers, the orientations of the cross-sections to be observed. The experiment

587



588 K. KANATANI

would be much easier if we only had to observe cross-sections, say, parallel to the xy-,
yz-, and zx-planes with respect a fixed xyz-coordinate system instead.

Keeping this in mind, we next present a way of estimating structural anisotropy from
restricted observations of this type alone, which will facilitate actual experiments a great
deal. Of course, we cannot detect all sorts of anisotropy from restricted observations,
because the information we obtain is insufficient. However, if we confine our consideration
to “weak anisotropies” (whose precise definition is given later), restricted observations of
this type are sufficient. In fact, there exist infinite ways of detecting the anisotropy from
restricted observations if the anisotropy is weak, for the distribution density is characterized
by a finite number of parameters. However, we must try to devise a method insensitive
to possible random fluctuations of observed data. Here, we present a way in which two-
dimensional analysis is done on three types of surfaces, and the necessary input data take
the form of averages of a large number of observed values, so that possible errors may
cancel out. The assumption of weak anisotropy does not restrict the scope of application,
because most of the anisotropies we encounter in engineering problems are regarded
as weak.

2. PROBING LINES AND CURVES IN TWO DIMENSIONS WITH LINES

Suppose lines and curves are distributed on a two-dimensional plane. They may be
scattered as disjoint segments or form a connected mesh. Fix on the plane a Cartesian
coordinate system. Place on the plane a line making an angle © from the x-axis randomly,
and let M(©) be the expected number of intersections per unit length of the probe line
with the lines and curves. Since M©) is a periodic function in © with period 2, it can
be expanded into the following Fourier series.

N@O) = % [1+ %’ (A, cos nO + B, sin nO)], (2.1)
n=2
2
C= A N(©)do, 2.2)
2 2x 2 2w .
A, = C A N(©) cos nOdO, B, = C J; N(©) sin nOdO. 2.3)

Here, Z' designates summation only with respect to even indices. Odd harmonics do not
appear because MO) is “symmetric” with respect to the origin, i.e. M©O) = N(© + ).
This Fourier series expansion can be expressed as a Cartesian tensor equation. If we put
m = (cos O, sin ©)", T standing for transpose, we obtain (see [2])

N(m) = -2% [1 + Dymm; + Dymimpmymy + -« + +]. (2.4)

The Einstein summation convention over repeated indices is adopted throughout this
article. In [2], the coefficient tensors are referred to as the “fabric tensors” of the data
distribution, and D;,...;, is expressed in terms of the nth Fourier series coefficients A,
and B,. For example, Dj; is given by

A Bz] @.5)

(Dy) = [Bz -4

The anisotropy of the structure is characterized by the distribution density f(#) defined
in such a way that f{#)d is the total length of those line elements in unit area whose
orientations are between 8 and 6 + d8. Here, 6 and § + = designate the same orientation
of a line element, so that one of them is chosen randomly with a probability of §. Hence,
f(0) is “symmetric” with respect to the origin, i.e. f{§) = {0 + 7), and ¢ = f:’ f(8)do is
the total length of the lines and curves in unit area, which we call the “length density.”
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The distribution density f{8) can also be expanded into a Fourier series, and it takes the
form

fi6) = % [n- %‘ (n* — 1)(4, cos nf + B, sin nf)]. (2.6)

n=2
(See [1] for the proof.) In the Cartesian tensor form, this is written as

C/4
f(n) = _2/; [l - 3D,;,~n,~nj - lSng;n;njnkn, + o ], (2.7)

where n = (cos 8, sin 8)T. (Note that § and n designate the orientation of the “tangent”
to a line element. In [1], they are used to designate the orientation of the “normal” to a
line element. Hence, the signs of the coefficients in eqns (2.6) and (2.7) differ from those
in [1].) Thus, in order to know the distribution density f{#), we only have to know C and
D;,...;’s. In particular, the length density is given by ¢ = C/4.

The fabric tensor Dj; is related to the “equivalent strain” e; by

€; = —D,'j. (2.8)

Namely, the strain tensor of eqn (2.8) would yield the present anisotropy by deforming
a material of initially isotropic internal structure if higher order terms of f{6) are neglected.
(See [1] for the proof.) Of course, superposition of any isotropic expansion or contraction
does not change the fabric tensors, so that the equivalent strain is determined only up to
the freedom of volume change.

In summary, the actual procedure goes as follows.

Procedure 1

Step 1. Draw equally spaced parallel lines of orientation kn/N, k =0, 1,..., N on
the plane, and let N, be the number of intersections per unit length with the lines and
curves.

Step 2. Compute the following A4, and B,, n = 2, 4, 6, ..., corresponding to eqns
(2.2) and (2.3) by

N-1
C=2r X Ni/N, 2.9
k=0
N-1 N-1 N-1 N-1
A, =2 2 Ny cos (nmk/N)/ > Ng, B, =2 3 Ngsin (nwk/N)/ 3 Ni. (2.10)
k=0 k=0 k=0 k=0

Step 3. The coefficient C is given by eqn (2.9), and the fabric tensor D;,. .., is given
in terms of 4, and B, as described in [2]. In particular, Dj; is given by eqn (2.5). The
length density is given by ¢ = C/4, and the distribution density f{6) or f{n) by eqn (2.6)
or (2.7). The equivalent strain is given by eqn (2.8).

Thus, as long as the problem is two-dimensional, the procedure is straightforward and
no random numbers are necessary. If we are interested in ¢;, and hence D;;, the number
N of probe orientations need not be large due to Shannon’s sampling theorem, since we
only have to obtain the second harmonics of M(©). As can be seen by comparing eqn
(2.1) with eqn (2.6), measurement of N(©) amounts to application of a low-pass filter to
the distribution density f{6), attenuating high harmonics considerably.

Consider the synthetic pattern of Fig. 1, for example. The data of intersection counting
are shown in Fig. 2, where N = 18, i.e. at 10° intervals, and the spacing of parallel lines
is 3; the diameter of the circumference. (In Fig. 2, the scale is normalized so that the
average value becomes im.) We obtain 4, = 0.026 and B, = 0.057. Fig. 3 is the
distribution density f{f) estimated up to second Fourier harmonics. (Again, the scale is
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Fig. 1. Line segments scattered on a plane.

normalized so that the average value becomes §=.) It is difficult to obtain this result just
by looking at Fig. 1. The equivalent strain tensor is given by

-0.026 —0.057] . @11

(ey) = [—0.057 0.026

The orientations of its principal axes are # = 35.5°, 125.5°, and the corresponding
principal strains are —0.188 and 0.188, respectively. Another example related to metallurgy
is given in [1].

3. PROBING LINES AND CURVES IN THREE DIMENSIONS WITH PLANES

Consider a three-dimensional material in which lines and curves are distributed (as
disjoint segments or a connected mesh or both). Cut the material randomly with a plane
having a fixed normal. Let (O, ®) be the spherical coordinates (associated with a fixed
xyz-coordinate system) of the orientation of the normal, and let MO, &) be the expected
number of intersections per unit area of the cutting plane with the lines and curves. Since
it is a function of orientation, it can be expressed as a spherical harmonics expansion as
follows:

N®©, ®) = % [+ OZO:' {AnoPy(cos ©)

n=2

+ i P™(cos O)[A4,,, cos m® + B,,, sin m®]}], (3.1)

me=1

2% T
C= fo J; N(©, &) sin 0dOd®, (3.2)
Awm] _2@n+ 1) (n+m) (> m cos m®] |
[Bnm] T C  (n—-m) J; J:N(G, )P (cos e)[sin m<1>] sin 0dOd®. (3.3)

Fig. 2. Data of intersection counting normalized so that the average value becomes ir.
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Fig. 3. Distribution density computed from the data of Fig. 2 up to second harmonics and
normalized so that the average becomes ir.

Here, P,(z) is the nth Legendre polynomial and PJ'(z) is the associated Legendre function.
Odd spherical harmonics do not appear because MO, ®) is “symmetric” with respect to
the origin, i.e. N(©, ®) = Mx — O, ® + =). This expression can also be expressed as a
Cartesian tensor equation as follows (¢f [2]):

N(m) = % [1 + Dymim; + Dygmmpmypmy + « « -], 34

Here, m = (sin © cos &, sin © sin &, cos O), and the nth fabric tensor Dj,...;, is
expressed in terms of the nth spherical harmonics expansion coefficients A4,,,, and B,,,,
m=1,2,...,n(c [2]). For example, D; is given by

—1A450 + 345 3B, 34,
(Dy) = 3B, —342 — 34 3B, |. (3.5)
34, 3By, 142

The distribution density f(6, ¢) of lines and curves is defined in such a way that
S8, ¢) sin 6d0d¢ is the total length in unit volume of those line elements whose spherical
coordinates are between 6 and 0 + df and between ¢ and ¢ + d¢, where, as before, the
orientation of a line element is chosen randomly from the two possnbllmes with a
probability of 1. Thus, f(0 @) is “symmetnc” with respect to the origin, i.e. {6, ¢) = flwr
-0, ¢ + 7, and ¢ = J5* J§ 718, ¢) sin d9d¢ is the total length in unit volume of lines
and curves, or the “length density.” The distribution density can also be expressed as the
following spherical harmonics expansion (see [1] for the proof):

C/21r

f6,¢)=——1[1+ 2;\ {340 P(cos 6)

n=2

+ é P} (cos 0)(Apm cos mé + B, sin m¢)}]. (3.6)

m=1
= (=1\1/2—19n—1 — n
A =(=D""12"(n— 1)n+ 2)/(n/2) . 3.7

In terms of fabric tensors, this can be written as

C/21r

fin) = [1+ Z”\ Dy...,1 0 - o m,]

n=2

= _.._C/ 2w [1 + 4Dynin; — 24Dgumimmen + + + -1, (3-8)
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where n = (sin  cos ¢, sin 8 sin ¢, cos 8)T. The equivalent strain is given by
e; = Dy. (3.9

(See [1] for the proof.) Thus, if we compute the spherical harmonics expansion coefficients
C,Apmand By, m = 1,2, ..., n,n =20, 1, 2, ..., or equivalently fabric tensors
Dy,...;’s, we know the distribution density completely and the equivalent strain as well.
The Monte Carlo method can be adopted to serve that purpose as follows.

Procedure 2

Step 1. Choose N points on the unit sphere randomly according to the uniform
distribution and let (G, &), k=0, 1,2, ..., N — | be their spherical coordinates.

Step 2. Cut the material with equally spaced parallel planes whose normal is (O, ®;)
in spherical coordinates and let N, be the number of intersections per unit area of the
cutting planes with the lines and curves.

Step 3. Approximate the integrals of eqns (3.2) and (3.3) by appropriate weighted
sums of the data. For example, C, Ay, 42, Bz;, A» and B,; are given by

N-1
C=4r 3 NN, (3.10)
k=0
N-1 N-1
Ax =% 2 N1 +3c0s20,)/ 2 Ni, (3.11)
k=0 k=0
®
[Az'] 2 N sin Zek[c?s "] 2 N, (3.12)
B k=o &,
A 2%
[ ”] Z§'3 Nl — cos zek)[“’s "] z M. G.13)
322 k=0 2'I)k

Step 4. The length density is given by ¢ = C/2w, and the fabric tensor D;,. . .;, is given
as in [2]. In particular, Dy is given by eqn (3.5), and the equivalent strain e; by eqn (3.9).

4. PROBING SURFACES IN THREE DIMENSIONS WITH LINES

Suppose surfaces are distributed in a three-dimensional material as disjoint fragments
like crack surfaces or connected cell walls like grain boundaries or both. Place in the
material randomly a line whose orientation is (O, ®) in spherical coordinates, and let
N(©, ®) be the expected number of intersections per unit length of the probe line with
the surfaces. Again, this function is “symmetric” with respect to the origin, i.e. N(O, &)
= N(w — O, & + =), and is expanded into a spherical harmonics expansion of the form
of eqn (3.1) or as a Cartesian tensor equation of the form of eqn (3.4), and Dy, for
example, is given by eqn (3.5). A

The distribution density f(8, ¢) of the structure is defined in such a way that f(8, ¢)
X sin 6d0dé is the total area in unit volume of those surface elements whose normals lie,
in spherical coordinates, between 6 and 0 + df and between ¢ and ¢ + d¢, where the
normal is chosen for each surface element randomly from the two possibilities with a
probability of 3. Thus, f(O $) is “symmetric” with respect to the origin, i.e. f{0, ¢) = f(x
-0, ¢ + 7, and c= fo fo A8, ¢) sin 0dfd¢ is the total area in unit volume of the
surfaces, or the “area density.” The distribution density is given exactly by the spherical
harmonics expansion (3.6), (3.7) or in terms of the fabric tensors by eqn (3.8). In other
words, the relation between the number of intersections MO, ®) and the distribution
density f{8, ¢) is exactly the same with that in the case of lines and curves in a three-
dimensional material. (See [1] for the proof.) Thus, one has only to read in the previous
section “the orientation of the normal to the cutting plane” as “the orientation of the
probe line” and “the orientation of a line element” as “the orientation of the normal to
a surface element.”
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The only thing that differs is that the equivalent strain is given, instead of eqn (3.9),
by

ej = —Dy. (4.1)

(See [1] for the proof.) If we want to determine the fabric tensors and the equivalent
strain by the Monte Carlo Method, the procedure goes similarly.

Procedure 3

Step 1. Choose N points on the unit sphere randomly according to the uniform
distribution and let (O, ®;), k =0, 1,2, ..., N — 1, be their spherical coordinates.

Step 2. Cut the material with equally spaced parallel planes on which lies the
orientation (O, ®;) and draw on each cross-section parallel lines of orientation (O, ;)
whose spacing is the same as that of the parallel planes. Let N, be the number of
intersections per unit length of the probe lines with the surfaces.

Step 3. Compute the spherical harmonics expansion coefficients as before. In particular,
C, Az, Aay, B2y, A2», and By, are given by eqns (3.10)-(3.12) and hence D;; by eqn (3.5).

Step 4. The area density is given by ¢ = C/2w and the fabric tensors are given as
before. In particular, Dy is given by eqn (3.5), and the equivalent strain e; by eqn (4.1).

5. PROBING SURFACES IN THREE DIMENSIONS WITH PLANES

Suppose, as in the previous section, that surfaces are distributed in a three-dimensional
material. This time, instead of placing a line in the material, cut the material randomly
with a plane whose normal is in spherical coordinates (0, ®) and let MO, ®) be the
expected value of the total “length” of the intersection curves that appear on unit area
of the cross-section. Again, N(O, ®) is “symmetric” with respect to the origin, i.e. N(©,
®) = N(x — O, ® + =), and is expanded into the spherical harmonics expansion of eqn
(3.1) or as a Cartesian tensor equation of eqn (3.4). In particular, D; is given by eqn
(3.5). In this case, the distribution density f(6, ¢) is given by

116, 6) = C’—" [+ 3 in{bAroPalcos 6)

n=2

+ é P (cos 0)(Anm cOs mo + By, sin me)}l.  (5.1)

m=1
Bn = =22 — l)/n( " )2. (5.2)
" nf2

(See [1] for the proof.) In terms of fabric tensors, this becomes

C 2
ﬂn) / [+ z'ﬂn ive s oinllin® * 'ni,.]
n=2
C/x* 8
= U~ Dynin; — 3Dyggninyy + - - - 1. (5.3)
The equivalent strain is given by
e; = iDj. (5.4)

(See [1] for the proof.) The Monte Carlo method goes as follows.

Procedure 4
Step 1. Choose N points on the unit sphere randomly according to the uniform
distribution and let (O, ®:), k=0, 1, 2, ..., n — 1, be their spherical coordinates.

ES 23:5-G
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Step 2. Cut the material with equally spaced parallel planes whose normal is (O, ®;)
in spherical coordinates and let N, be the total length of the intersection curves per unit
area that appear on the cross-sections.

Step 3. Compute the spherical harmonics expansion coefficients as before. In particular,
C, Azo, A2| N le , Azz, and Bzz are given by eqns (310)-(3 13)

Step 4. The area density is given by ¢ = C/n? and the fabric tensors are given as
before. In particular, Dj; is given by eqn (3.5), and the equivalent strain e¢; by eqn (5.4).

6. DETERMINATION OF ANISOTROPY BY RESTRICTED OBSERVATIONS

The Monte Carlo method described so far requires the generation of random numbers,
and we must cut the material with planes of many different orientations. In order to do
so, we must prepare as many material samples all of which are supposed to have
statistically the same structural anisotropy. This may be a serious obstacle in some
situations. Is it not possible to determine the anisotropy by cutting the material with
planes of special orientations like those parallel to coordinate planes? This is not possible,
in general, because the information obtained is insufficient. The Monte Carlo method is
the most consistent way, in the sense that we can determine the spherical harmonics
expansion coefficients of any degree “in principle,” i.e. if the number N of observations
is sufficiently large and the smacing of parallel lines or planes is sufficiently small.
However, determination by restricted observations is possible only if the spherical
harmonics expansion of the data, and hence that of the distribution density itself, do not
have high spherical harmonics above a certain degree. The simplest solution of this
situation is when the distribution density has only zeroth and second degree terms. In
this case, we say that the anisotropy is “weak.” This type of distribution has the symmetry
of Dy, (in the Schonflies notation), a special case of orthogonal anisotropy.

If the anisotropy is weak, the distribution of observed data, i.e. either the “number”
or the “length” of intersections with the probe, is written in the form of

N(I'II) = % [l + D,-jm,-mj]. (6.‘)

As has been shown so far, our goal of determining the distribution density f{n) and the
equivalent strain ¢;; is attained by determining the coefficient C and the fabric tensor Dj;
from the data Mm) of various m. Since Dj; is a symmetric deviator tensor, i.e. Dy = D;
and D; = 0 (¢f [2]), it has only five independent elements. Hence, it is possible in
principle to determine C and D; from observations of six different orientations of m.
However, that would produce an unreliable result, because the result is sensitively
vulnerable to possible errors or fluctuations of the data. It is, therefore, preferable to
obtain the data in the form of sums or averages of a large number of observations, yet
such that the observations are restricted to special types.

Let us first consider the case where we are to count the number of intersections with
probe lines. If we cut a material with a plane whose unit normal is I, we can draw, on
the cross-section, lines of any orientation orthogonal to 1. Suppose the orientation of the
probe line is restricted to be orthogonal to a fixed orientation 1. Consider the following
quantities

M) = fal) N(m)dm, 6.2)
M) = fC(l) mm;N(m)dm. (6.3)

Here, C(1) is the unit circle encircling 1 perpendicularly and dm is the uniform measure
of C(1) normalized to 2w, i.e. the differential azimuthal angle with 1 as the pole (Fig. 4).
Since m is a unit vector, we see that M(1) = M;;(l). If we substitute eqn (6.1) in egns (6.2)
and (6.3), we obtain
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dmml

0
cm

Fig. 4. Unit vector m is on circle (1) encircling unit vector 1 perpendicularly.

MO = g(l — 1Dy, 6.4)

C
Myl = 2 Dy — Dilili + (1 — §Dwdid)dy — (1 — $Dilid)lid}), (6.5)

where §; is the Kronecker delta. These are easily obtained if we note the identities

dm = 27, (6.6)
an
fal) m,mjdm = 1r(6,, - lilj), (67)
fm) m,-m,-mkm,dm = %11'(3(,',5“) - 21(,-1‘,5;‘1) + Iiljlkll), (6.8)

where () designates the symmetrization of indices. Their validity is directly checked if
we take such a Cartesian coordinate system that 1 = (0, 0, 1)T. Since they are Cartesian
tensor equations invariant to coordinate rotations, they are necessarily valid in any
coordinate system once they are valid in some coordinate system.

Let us fix a Cartesian coordinate system and let e, = (1, 0, 0)7, e; = (0, 1, 0)T and
e; = (0, 0, 1)T be the basis vectors. From eqn (6.4), we see that

M(e)) = %(l —iD;), (i not summed). (6.9)

Adding this for i = 1, 2, 3, and noting D; = 0 (i summed), we obtain an expression for
C in the form

C = HMle,)) + M(e;) + M(es)). (6.10)

Then, from eqn (6.9), we obtain expressions for D,;, D5, and Ds; as

Dyy = 2[—2M(e,) + M(e;) + Mies))/[M(e;) + M(e;) + M(e3)), (6.11)
Dy = 2[M(e,) — 2M(e2) + M(e;))/[Mle) + Mlez) + M(es)), (6.12)
D33 = 2[M(e,) + M(e;) — 2M(e;))/[M(e,) + Mez) + M(e;)). (6.13)

If i, j, k is a permutation of 1, 2, 3, we obtain from eqn (6.5)
C
M(er) = 3 Dy. (6.14)

From this and eqn (6.10), we obtain expressions for D,,, D,;, and D3, as
Dy, = 12M5(e3)/[M(e,) + M(e;) + M(e;)), (6.15)
Dy3 = 12Mx3(e,)/[M(e,) + M(e,) + Mles)], (6.16)
Dj, = 12M5(e;)/[M(e,) + M(e;) + Mie;)]. (6.17)

It
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If the distribution is nearly but not strictly weak, the above results give approxi-
mations of C and D;;. A rough estimation of involved error is obtained by considering
in eqn (6.1) the next term of Djy. Then, the right-hand side of eqn (6.9) becomes
(C/2)(1 — 3)Dyi + (3)Dyii) (i not summed). Hence, the right-hand side of eqn (6.10)becomes
Cl + () 2 D), ie. the estimate of C by eqn (6.10) involves relative

error (3) > D,-;:,-. Similarly, the right-hand side of eqn (6.14) becomes (C/8YD; — Dyux)

(k not summed), and the estimate of D; by the right-hand sides of eqns (6.15)(6.17)
becomes (D — Dy )/(1 + (§) 2 D), where i, j, k is a permutation of 1, 2, 3 and k is
!

not summed.

7. PROCEDURES WITH RESTRICTED PROBE LINES AND PLANES

Consider the case of counting the number of intersections on probe lines with surfaces
in the material. The procedure described in the previous section is summarized as follows.

Procedure 5

Step 1. Fix a Cartesian coordinate system in the material. Cut the material with
equally spaced planes parallel to the jj-plane.

Step 2. On each cross-section, draw equally spaced parallel lines whose spacing is
equal to that of the cutting planes and whose orientation is mn«/N, m =0, 1,2,..., N
— 1, from the i-axis (or from the j-axis). Let MY be the number of intersections per unit
length of the probe lines of orientation m=/N (see Fig. 5).

Step 3. Compute M(e,) and M;;(ex) by

N-1
Miey) =27 3 NP/N, (7.1)
m=0
N-1
My(ex) = © X N sin 2em/N)/N, 7.2)
m=0

where i, j, k is a permutation of 1, 2, 3.

Step 4. All necessary data are obtained by doing this for the xj~, yz-, and zx-planes.
The coefficient C is given by eqn (6.10) and, the fabric tensor D;; by eqns (6.11)—(6.13),
(6.15)—(6.17). The length or area density c, the distribution density f{n), and the equivalent
strain e; are obtained from C and Dj; as stated before.

Thus, we have only to cut the material with planes parallel to the coordinate planes
and hence to prepare just three material samples supposedly of statistically the same
anisotropy. The necessary data are obtained by “planning down” a plane surface
successively. '

Next, consider the case of counting the number of points or measuring the length of
curves on cutting planes. This time, only one data is obtained for one orientation of the
cutting plane, and hence cutting with planes parallel to the coordinate planes is not
sufficient. Still, there exists a method which is a kind of “dual” to the above described
method, requiring only three material samples. As before, let i, j, kK be a permutation of
1, 2, 3. Suppose the distribution of the internal structure is spatially homogeneous.

Xy

w

X

i %

Fig. 5. Equally spaced planes parallel to the ij-plane cutting a material. Observations are made on
each plane.
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Procedure 6

Step 1. Cut the material with equally spaced “concentric cylindrical surfaces” whose
central axis coincides with the k-axis.

Step 2. Consider, on each cylindrical surface, the strip defined by 2n(m — 1/2)/N < ¢
< 2m(m + 1/2)/N, where ¢ is the angle from the i-axis (or from the j-axis). (See Fig. 6).
Observe that strip (i.e. count the number of points or measure the length of curves on
it), and divide the observed data by the area of that strip. Let N, m =0, 1,2, ..., N
— 1, be the “weighted average” of that value over all the cylinders, the weight being
proportional to the radius of the cylinder.

Step 3. Compute M(e;) and M;;(e;) by

N-1

M(e,) =2z Z NJIN, (1.3)
m=0
N—-1

Ny(e) =« X N sin (4xm/N)/N. (7.4)
m=0

Step 4. All necessary data are obtained by doing this for cylinders with the x-, y-, and
z-axes as the axes. The coefficient C is given by eqn (6.10), and the fabric tensor D by
eqns (6.11)-(6.13), (6.15)-(6.17). The length or area density ¢, the distribution density
f(n) and the equivalent strain e; are obtained as before.

Thus, we need to prepare just three material samples supposedly of statistically the
same anisotropy. We can obtain the necessary data by “lathing” a big cylinder, thinning
it successively.

8. CONCLUDING REMARKS

In this article, we have presented practical procedures of determining the structural
anisotropy and the equivalent strain by the stereological method, i.e. by counting the
number of points on probe lines or cutting planes or by measuring the length of curves
on cutting planes, on the basis of the theoretical study in the previous articles [1, 2].
First, we illustrated the relationship between the observed data and the distribution
density of the internal structure in terms of both polar or spherical coordinates and
Cartesian tensors. We also gave the form of the equivalent strain tensor explicitly.

We then described an actual procedure for the two-dimensional case. It is quite
straightforward, and we gave a synthetic example. However, things are not so simple in
the three-dimensional case. First, we described the Monte Carlo method which computes
all relevant quantities. This is theoretically the most consistent method. However, it
requires a large number of material samples supposedly of statistically the same anisotropy.
Then, we gave procedures requiring only three material samples, assuming that the
structural anisotropy is “weak,” i.e. the distribution density has only spherical harmonics
up to degree 2. We have only to cut the material with planes parallel to the coordinate
planes or cylindrical surfaces around the coordinate axes. We also gave an estimate of
involved error of approximation when the distribution is nearly weak.

In this article, we used equally spaced parallel lines or planes both in the Monte Carlo
method and in the restricted cutting. This is because we did not assume the “translational
homogeneity” of the internal structure of the material, so that we must place lines or

X i

Fig. 6. Equally spaced concentric cylinders along the k-axis cutting a material. Observations are
made on each cylinder.
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planes “homogeneously” according to the invariant Haar measure [8]. On the other
hand, the use of concentric cylinders is possible only when the distribution is homogeneous.
If the distribution is known to be roughly translationally homogeneous and uncorrelated
between different points, we need not use equally spaced lines or planes. In fact, only
one representative line or plane in the material can be used for each cutting orientation.
However, the variance of the data increases inversely proportional to the total length or
area of the probe line or the cutting plane.
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