Invited Paper

Model-based Determination of Object Position
and Orientation without Matching

KEen-1cHl KanaTan* and Kazuvuki YamMapa®

This paper presents an algorithm for computing, from a single image, the 3D position and orientation of an
object whose 3D shape is known. This algorithm does not require ‘‘matching’’ of the object with its image. The
3D position and orientation of the object is determined by computing the hypothetical ‘3D motion’’ of the ob-
ject from a known position to the position of the observed image. The motion is iteratively estimated and up-
dated from the values of ‘‘observables’’ globally defined over the model image and the observed image. Various
technical issues are discussed, and examples based on real images are shown. The technique can be applied to
various manufacturing processes by industrial robots where the positioning control of machine parts is not very

precise.

1. Introduction

We present a solution to the problem of determining,
by vision, the location of an object, say a machine part
in a robotic manufacturing situation, whose 3D shape is
known and stored in a database. It is important to solve
this problem in many flexible manufacturing cir-
cumstances where low precision, general purpose
fixtures and positioners are employed. In a typical ap-
plication, the uncertainty in the location of the object is
small relative to its dimensions, but sometimes errors
that are more than an order of magnitude greater than
the allowed tolerances may occur. In some cir-
cumstances, the machine parts are not placed precisely
in the same location every time, but randomly placed
within a certain area. In order to relax the need to con-
strain the environment, the robot must autonomously
adapt to its environment.

The problem of object localization is usually solved
by first matching a database description of the object
with the observed image. Then, the robot computes the
position and orientation of the object in analytical
terms [14]. Alternatively, the robot iteratively generates
images of the object model, each time updating its posi-
tion and orientation so that the discrepancy, say the
sum of the squares of the distances between specified
feature points and their corresponding points on the im-
age, always decreases. The motion from the initial posi-
tion to the observed position is established if the
generated model image sufficiently coincides with the ob-
served image [12].

However, it is not easy to match the object model
with its image. Many combinatorial possibilities must

*Department of Computer Science, Gunma University

Journal of Information Processing, Vol. 12, No. 1, 1988

be exhausted, and some justification is necessary to en-
sure that the matching we choose is in fact correct. One
approach is to find possible partial matches and com-
pute the 3D motion solution for each partial match.
Most of these candidates may be false matches, but they
should contain multiple true matches. Hence, the cor-
rect match can be chosen by the majority rule. This
strategy is known as the generalized Hough transform
[14]. An alternative approach is to actually generate
an object image on the assumption that the chosen
matching is correct and see if the generated image pre-
cisely coincides with the observed image. In any case,
whatever approach is used, the matching is confirmed
only when the motion is correctly computed. It follows
that a method to compute the motion without matching
is very much desired.

In this paper, we present a method for computing mo-
tion which does not require matching. Instead of mat-
ching images, we measure observables of the generated
model image and the observed image: The 3D motion is
computed from the numerical values of the obser-
vables. This idea was first proposed by Amari [1] with
regard to pattern recognition, and applications to mo-
tion detection of planar surfaces have extensively been
studied by Kanatani [6-8], Amari and Maruyama {2],
and others. In particular, Kanatani used, as obser-
vables, the statistics of surface textures [6], the
characteristics of the contour shape {7], and the in-
tegrals along contour or over closed planar regions [8].
However, although the knowledge of point-to-point cor-
respondence is not required, his method requires the
knowledge of face-to-face correspondence, since obser-
vables is defined over some identified planar surface.
Moreover, his method is based on the optical flow equa-
tions, which theoretically give instantaneous velocities

XY

0
§ (xy)

(

Fig. 1 Perspective projection of the scene onto the image plane
Z=0 from the viewpoint (0, 0, —f) on the negative side of
the Z-axis.

on the image plane. Hence, the discrepancy between the
generated model image and the observed image must be
very small so that the displacements can be approx-
imated by instantaneous velocities (assuming that the
motion takes unit time).

Later, this method was modified to allow large
discrepancies by introducing iterations [9], and a
method which does not require identification of planar
faces was suggested by Chou and Kanatani [4]. This
paper extends their idea and gives a consistent al-
gorithm of computing motion without requiring match-
ing at all. In particular, the object need not have
planar faces or straight edges; curved edges and curved
surfaces can exist.

2. Image Flow Resulting from Object Motion
Take an XYZ-coordinate system in the scene. The

XY-plane is identified with the image plane, and point
(0, 0, —f) is identified with the center of perspective

K. KANATANI and K. YAMADA

projection, which we call the viewpoint (Fig. 1). A
point (X, Y, Z) is projected onto the intersection (x, y)
of the image plane with the ray starting from the view-
point and passing through the point (X, Y, Z). From
Fig. 1, we see that
=X I
+z’ 'Trvz
If the 3D shape of an object is known, it can be map-
ped, by computation, in an arbitrary position in the
scene. Suppose the object has some distinctive points
(e.g., corner vertices). We call such points feature
points. As is well known, a 3D rigid motion is specified
by a translation (A4, B, C) at a reference point and a
rotation R=(r;) (orthogonal matrix) around that point.
Let (X, Y, Z) be a feature point, and (X, Yo, Zo) the
reference point. If the object undergoes a 3D motion
specified by translation (4, B, C) and rotation R, the
point (X, Y, Z) moves into position (X', Y’, Z’) given
by

2.1

X’ Xo A
Y |=| Y |+| B
z’ Zy (&
i N2 s X—Xo
+| rarars Y-Yo |. 2.2)
rsi Iz I3 Z—2Z,

Now, let us define the following quantity:

_JfZ
z=—.
f+z
We call z the reduced depth (as opposed to the depth Z).
Let us put

(2.3)

o= SXo _ Y o= JZ
0 f+Zo’ yo—f+ZO, o_f+Zo'
Then, it is easy to show that the image coordinates (x,

») and the reduced depth z change their values, after the
motion of eqn (2.2), in the form

2.4)

x+(1 =2/)A+(rn—DE(x, 2)+r2y(y, 2)+raz(z)

X'= [+ =2/)CHruX(x, 2)+ray(y, 2)+(rs—1)2(2) ’
PO Bk)+ rm = DI D+t () @9
Y A=) CHri(x,)+ 123 (3 D)+ (= DE(D) ° :
, 2t (1=2/)CHrk(x, D) +raf(y, 2) +(rs— D2(2)
N S U=2) CHmi(x, D+ rp (3 D+ (- DE()
where we defined
Sz . -z . f—z
X(X, 7)=X— =y- =z- . 2.
x(x,2)=x =X y(,)=y =z z2(z)=z —n (2.6)

A 3D rotation is specified by its axis (1., n2, n;), which is taken to be a unit vector, and the angle of rotation 2
around it screw-wise. As is well known, the corresponding rotation matrix is given by

Model-based Determination of Object Position and Orientation without Matching 3

cos Q+(1—cos Q)n,?
R=| (1—cos 2)n,n,—sin 2n;

If a rotation is infinitesimal, i.e., if the angle of rotation
Q is infinitesimally small, the rotation matrix takes the
form R=I+AR where

0 25 —Q
AR=| —2; 0 +0(2%). 2.8)
Q, -, 0

Here, we put :=Qn;, i=1, 2, 3, and O(2? denotes
terms of orders equal to or higher than the power 2 of
Q.

If the motion is smooth, the instantaneous transla-
tion velocity (a, b, ¢) and the rotation velocity (w:, w2,
w;3) are obtained by taking the limit 4/—0 of (4/4¢,
B/At,C/At) and (Q,/At, 2,/At, 25/ At), respec-
tively, where At is the time of the duration of the mo-
tion. This instantaneous rotation is also interpreted as a
rotation around axis (wi, ws, ws) by angular velocity
Jol+wi+w] (rad/sec) screw-wise around it.

Taking the limit 470 of ((x’' —x)/4t, (¥’ —y)/At),
we obtain, from eqns (2.5), the velocity (x, y) of point
(x, ») on the image plane in the form

x=u(x, y,2)a+ux(x,y, 2)b+us(x,y, 2)c
Fus(x, y, D tus(x, y, 2w+ ue(x, y, 2)ws,
y=wx,y,2)atvi(x,y,2)b+vi(x, y,2)c
+vi(x, ¥, 2)wi1+vs(x, ¥, Dw2+vs(x, ¥, 2)ws,
2.9)

where we put

Z
u.(x,y,z)!l-—f-, uy(x, y, 2)=0,

us(x)=—£(l—£)
X,), 2)= f f »

x
us(x, y, 7)= —7y(y,z),

us(x, y, z)Ei(z)+£J?(x, 2), us(x, ¥, 2)=—3(», 2),

f

vi(x, », 2)=0, Vz(x,y,z)sl—%

vi(x, ¥, z)E—§<l—§),

VA(X, Vs Z)E —f(z)‘§f’(y, Z),

Vs(X,) D=2 £(x, 2), Velx, 7, 2) =R, 2). (2.10)

f

(1—cos Q)nn,+sin Qn; (1—cos Q)nsn,—sin Qn,
cos 2+ (1—cos Q)n;?
(1—cos 2)n;n3+sin Qn, (1—cos Q)n,n;—sin 2n,

(1—cos 2)n3n,+sin Qn; | . 2.7
cos Q+(1—cos Q)n;?

3. Computing Motion from Observables

If the object model is placed in the scene by computa-
tion, its image can be generated by the projection equa-
tions (2.1). Let (x;, ¥), i=1, . . . , n, be the image coor-
dinates of n feature points of the model image. We
define the following observables of the feature points:

J=,§ w(xi, yi). 3.1

Here, w(x, y) is an arbitrarily given weight function.
If a velocity field (x, y) exists on the image plane,
observable J changes its value in the form

iw

dJj_ oW _ -
dt— 3x (x,,y,)x, ay (xuyi)yi ’ (.)

i=1
where x;=x(x;, y;, z;) and y;=y(x;, y;, z;) are given by
eqns (2.9). Substitution of egns (2.9) yields

aj
E=C|a+Czb+C3C+C4w1+C5wz+CGU)3, (3.3)

where
c _i ow
k—,‘=| ax (xn y:)llk(x:, Yis ZI)
ow
+6— (xi» YVie(Xi Yir 2i) 3.9
y
for k=1, ..., 6. The image coordinates (x;, y), i=1,

., n, of the feature points are known quantities.
Their reduced depths z;, i=1, . . ., n, are also known
for the model image. Hence, all Cy, k=1, ..., 6, are
known quantities.

Now, consider the object image taken by the camera.
Suppose it is very close to the generated image. Then,
we can regard it as resulting from an infinitesimal ‘‘mo-
tion’’ of the object model. Hence, the time derivative
dJ/dt can be approximated by the finite difference of
the values of observable J for the two images. (We take
the time laps between the two images to be unit time.)
Thus, we can compute all quantities in eqn (3.3) except
a, b, ¢, w, wy, ws. This means that eqn (3.3) imposes a
linear constraint on the six velocity components a, b, c,
w,, w2, ws. Hence, if six or more independent weight
functions w(x, y) are used, a set of simultaneous linear
equations are obtained, and the six unknowns a, b, c,
w,, w2, w; are determined. The determination does not
require any knowledge of which feature point cor-
responds to which feature point between the two im-
ages.

Next, suppose the observed image is not close to the

4

model image. This means that the ‘‘motion’’ is not in-
finitesimal. Then, we can apply iterations, iteratively
moving the model image according to the estimated mo-
tion so that the model image approaches closer and
closer to the observed image. This is numerically done
as follows. First, we apply the method for infinitesimal
motion and estimate the velocities a, b, ¢, w,, w,, w;.
From these, the translation and the rotation are
estimated to be A=aAt, B=bAt, C=cdt, Q=
YotHtwlt+wldt, n=wAt/Q, i=1, 2, 3. The corre-
sponding matrix is constructed by eqn (2.7). Then, a
new model image is generated, and the image coor-
dinates (x;, y;)) and the reduced depths z; for i=0,
1, ..., nare updated by eqns (2.5).

If the newly generated model image sufficiently coin-
cides with the observed image, our estimation is correct.
(The coincidence of the two images is measured by the
coincidence of the values of their observables.) Other-
wise, the same process is repeated: From the values of
the observables of the newly generated model image
and the observed image, we can again estimate the
translation (A’, B’, C’) and the rotation R’. An improv-
ed estimate is obtained by the combined motion
specified by translation (4+A4’, B+B’, C+C’) and
rotation R’R. This process is repeated until no further
improvement takes place.

4. Observables Based on Edge Images

Suppose there are m edges L;, i=1, ..., m, in the
model image. They need not be line segments; they can
be arbitrarily shaped curves. Since the 3D positions of
the corresponding edges of the object model are
known, the image coordinates (x, y) and the reduced
depth z are known for every point on edges L;, i=1, . . .,
m. Consider an observable defined by the sum of cur-
vilinear integrals along the edges

J=ZS w(x, y)ds, .1
i=1Jdy,
where w(x, y) is an arbitrarily given weight function.

Suppose a velocity field (x, y) exists on the image
plane. If each edge is parameterized by the arc length s,
it is easy to show that observable J changes its value in
the form

dj_n
dt—

i=1JL

[132455 505+ we,)
’ axx(s) ay}'s) w(x, y

X d—xl)+dy1() d. “4.2)

as 'Ot g he)) | ds: :
where (/i(s), /2(s)) is the unit tangent to the edge at (x(s),
¥(s)) in the direction of increasing arc length s. Substitu-
tion of eqn (2.9) yields

aJ
—=C1a+Czb+Cgc+C4w|+C5wz+C6w3, (43)

at

where

K. KanaTaNi and K. YAMADA

m ow iw
Ck=§ L [3 (x, Y)ur(x, y, z)+5 06 YIve(x, y, 2)

d d
+w(x,) (% (s)ll(s)+d—v;(s)12(s)” ds, (4.4)

for k=1, ...,6.

Since the 3D shape, position and orientation of the
object model are known, all C, k=1, . . ., 6, can be
computed immediately. Thus, if observables of the
form of eqn (4.1) are computed for six or more indepen-
dent weight functions w(x, y) over all the edges, the 3D
motion of the object is determined by exactly the same
procedure as stated in the preceding section without do-
ing any matching at all.

To be specific, consider an edge L, Take on it a se-
quence of dividing points (of not necessarily equal inter-

vals) (xi, yx), K=0, 1, ..., N, such that (xo, ¥o) and
(xn, yn) are the end points of L. Put wx= w(xk, Yk),
K=0,1, ..., N. Then, we can use approximation

N-1

j w(x, y) dszi > (Wt wks) Ask 4.5)
L 2 K=0

for the computation of the observable of eqn (4.1),
where Asg= V(xx+1=x)’+ (Jxe1—) K=0, 1, . . .,
N—1. Note that the dividing points are taken along
each edge in both the model image and the observed im-
age, but the dividing points need not correspond be-
tween the two images. They can be chosen arbitrarily
and independently, since eqn (4.5) is merely a discrete
approximation of integration.

On the other hand, eqn (4.4) need be computed only
for the model image. Consider an edge L. Take on it a
sequence of points (of not necessary equal intervals)
(XK, Y[(, ZK), KZO, 1, c e ey N, such that (Xo, Yo, Zo)
and (X, Y, Zn) are the end points. Let (x, yx) and zx
be the image coordinates and the reduced depths, res-
pectively, of these points computed by the projection
equations (2.1) and eqn (2.3). Then, each term in eqn
(4.4) is approximated by finite summation. For exam-
ple, if we put wx=ui(xx, yx, 7x), wr= w(xk, ¥x) and
Ow/dx| x=0w/dx(x, yx) for K=0, 1, . .., N, we can
use approximations

S ow
ox (x, y)ui(x, y, z)ds

1 M=t fow aw
z;é(; JMext o Kﬂuk,KH)AsK, (4.6)
S wix, y) ot (s)i(s)ds
L ds

z—,vz_:l(w +wi) (u - Axx
2K=0 K+1 K N Ukk+1 uk,K)AsK, 4.7

where Axk=xxii—xxk and Asg= V(xge; —xx)*+
(.y,(:g.—y,()2 for K=0, 1,..., N—1. Other terms are
similarly computed. If a motion is estimated, the image
coordinates (xx, yx) and the reduced depths zx for K=0,

1, ..., Nare updated by eqn (2.5).

Model-based Determination of Object Position and Orientation without Matching

S. Discussions and Examples

Our algorithm is summarized as follows. First, an im-
age of the object model placed in a known position is
generated by using its 3D shape data stored in a
database. If this generated image coincides with the ob-
served image, the object is correctly placed. Otherwise,
the real position and orientation of the object is deter-
mined by computing the motion that brings the object
from that position to the position where it appears in
the image.

The observables to be computed can be defined with
respect to either feature points or object edges. (If the
object is a polyhedron, the corner vertices can be used
as typical feature points.) However, although we need
not know which feature point or edge corresponds to
which feature point or edge, the model image and the
observed image must have the same set of feature points
or edges. In view of this, the use of the object edges for
defining observables has the advantage that the com-
putation is robust even if the detected edges are not com-
plete: The curvilinear integration is not so much
affected as long as the total length of the missing or
false edges is very small.

A critical issue about our method is the possibility of
occlusion. 1f the manufacturing environment is prop-
erly controlled, the discrepancy of the object position
from the supposed position is expected to be very small.
However, if the discrepancy of the object orientation is
large, some part of the model image is occluded in the
observed image, while some part hidden in the model
image appears in the observed image. As a result, the
set of feature points or edges do not correspond as a
whole between the model image and the observed im-
age.

One solution is to prepare, in the database, ‘‘typical
views’’ of the object, and search for an appropriate one
by means of some criterion of similarity. This strategy
was used in another context by Ikeuchi [S] (also see [3,
10, 11] for object image representation). If no criterion
is available as to which to choose, we can try, as a last
resort, all the candidates one by one to see if the itera-
tion converges.

In our iteration procedure, the degree of convergence
is measured by the differences of the values of ‘‘obser-
vables’’ between the two images. In fact, our motion
estimation is performed by ‘‘matching’’ observables in-
stead of the images themselves. However, convergence
of observables does not necessarily mean convergence
of the images. It is desirable to introduce a measure of
convergence which is capable of assuring convergence
of the images, yet such that its computation does not re-
quire the matching. A simple one that satisfies this re-
quirement is the ‘‘area of the intersection of the convex
hulls’’. Given a set of feature points (or edges), we first
compute their convex hull. An efficient algorithm is
available, requiring only O(n log n) steps of computa-
tion, where n is the number of feature points [13]. After

5

computing the convex hulls for both the model image
and the observed image (separately and independently),
we measure the area of their intersection. Again, there
exists an efficient algorithm for computing the intersec-
tion of two convex polygons, requiring only O(n+n’)
steps of computation, where n and n’ are the numbers
of vertices of the respective polygons [13].

Since in general the iterations converge more rapidly
as the generated model image is closer to the observed
image, the following preprocessing is effective: Before
starting the iterations, the generated object model is
translated in the scene in such a way that the centroid of
its projection image coincides with that of the observed
image and also the approximate size of the model image
becomes equal to that of the observed image (cf. Appen-
dix).

Fig. 2 shows an object model. Fig. 3 is a real image of
this object placed in an unknown position. In our ex-
periment, we skipped the image processing stage and
picked out corner vertices and edges by hand. Fig. 4
shows the iterations to make the model image coincide
with the observed image. The first step is the
preliminary translation. Fig. 5 is another real image of
the same object placed in a different position. Fig. 6
shows the iterations. Figs. 7 and 8 show other examples
for the same images of Figs. 3 and 5 but from different
starting positions. In all these examples, we used ten
observables and solved the ten resulting equations by
the least square method (cf. Appendix).

200mm

145mm

80mm 75mm

130mm

Fig. 2 The 3D shape of the object used in our experiment. The
unit is millimeter.

Fig. 3 A real image of thd object of Fig. 2 placed in an unknown
position. The focal length is f=29.25 (mm).

K. KANATANI and K. YAMADA

Fig. 4 The iterations for moving the object model of Fig. 2 so that its projection image coincides with the object ima'ge of‘Fig. 3. Observables
based on corner vertices are used. The initial arrangement, the preliminary step, and the first through the fourth iteration steps are shown.

Fig. 5 Another real image of the object of Fig. 2 placed in an
unknown position. The focal length is f/=29.25 (mm).

Our experiment shows that the convergence is
smoother for observables based on edges than for obser-
vables based on corner vertices. The iterations of Figs. 4
and 6 are tracing motions which have six full degrees of
freedom—three translation components and three rota-
tion components. In the iterations of Figs. 7 and 8, the
starting positions are chosen by assuming that the ob-

O

ject is placed on a ‘‘horizontal table’’ whose height is ap-
proximately known. This means that the ‘“motion’’ has
approximately three degrees of freedom—translations
along the table surface and rotations around an axis
perpendicular to it. Although this knowledge is never
used in the iterations (hence all six nonzero motion com-
ponents are actually computed), the convergence is very
smooth. Since displacements of objects occurs on a
horizontal table in many industrial manufacturing cir-
cumstances, the use of this knowledge can facilitate the
convergence.

6. Concluding Remarks

We have presented an algorithm to compute, from a
single image, the 3D position and orientation of an ob-
ject whose 3D shape is known. Our algorithm does not
require matching of points of the object with points of
the observed image. The 3D position and orientation of
the object is determined by computing the hypothetical
3D motion of the object from a known position to the
position of the observed image: The motion of the ob-
ject model is iteratively estimated and updated from the

Fig. 6 The iterations for moving the object model of Fig. 2 so that its projection image coincides with the object image of Fig. 5. Observables
based on edges are used. The initial arrangement, the preliminary step, and the first through the fourth iteration steps are shown.

Model-based Determination of Object Position and Orientation without Matching 7

T T

Fig. 7 The iterations for moving the object model of Fig. 2 so that its projection image coincides with the object image of Fig. 3. Observables
based on corner vertices are used. The initial arrangement, the preliminary step, the first and the second iteration steps are shown.

—
Ny

Fig. 8 The iterations for moving the object model of Fig. 2 so that
its projection image coincides with the object image of Fig.
5. Observables based on edges are used. The initial arrange-
ment, the preliminary step, the first and the second itera-
tion steps are shown.

values of observables globally defined over the model
image and the observed image. The matching of the ob-
ject with the observed image is established as a result of
this motion detection. We have also discussed various
technical issues and shown some examples based on real
images. Our technique can be applied to various
manufacturing processes by industrial robots where the
positioning control of machine parts is not very precise.

Acknowledgments

This research originates from the study of the first
author (Kanatani) while he was visiting the University
of Maryland in 1985-1986. He thanks Azriel Rosen-feld
and Larry Davis for helpful discussions and Tsai-Chia
Chou for numerical experiments. The authors also
thank Kokichi Sugihara and Shun-ichi Amari of the
University of Tokyo for helpful communications, and
Seiji Uchiyama of Daikin Industries, Ltd. for his
preliminary experiments. Part of this work was sup-
ported by Casio Science Promotion Foundation,

Yazaki Memorial Foundation for Science and
Technology, Inamori Foundation, and the Ministry of
Education, Science, and Culture under Grant in Aid for
Scientific Research (No. 63550268).

References

1. AMARI, S. Invariant structures of signal and feature spaces in pat-
tern recognition problems, RAAG Memoirs, 4 (1968), 553-566.

2. AMARI, S. and MARUYAMA, M. A theory on the determination of
3D motion and 3D structure from features, Spatial Vision, 2 (1987),
151-168.

3. Best, P. J. and JaIN, R. C. Three-dimensional object recogni-
tion, Comput. Surveys, 17 (1985), 75-145.

4, CHou, T.-C, and KaNaTANI, K. Recovering 3D rigid motions
without correspondence, Proc. IEEE Ist Int. Conf. Computer Vi-
sion, London, June (1987), 534-538.

5. IkeucHI, K. Generating an interpretation tree from a CAD model
for 3D-object recognition in bin-picking tasks, Int. J. Comput. Vi-
sion, 1 (1987), 145-165.

6. KanaTan, K. Detection of surface orientation and motion from
texture by a stereological technique, Artif. Intell., 23 (1984), 213-237.
7. Kanatani, K. Tracing planar surface motion from a projection
without knowing the correspondence, Comput. Vision Graphics Im-
age Process., 29 (1985), 1-12.

8. KAaNATANI, K. Detecting the motion of a planar surface by line
and surface integrals, Comput. Vision Graphics Image Process., 29
(1985), 13-22.

9. Kanatani, K. and CHou, T.-C. Tracing finite motions without
correspondence, Proc. IEEE Int. Workshop on Industrial Appl.
Machine Vision and Machine Intell., Tokyo, February (1987), 118-
123.

10. KOENDERINK, J. J. and VAN DOORN, A. J. The singularities of
the visual mapping, Biol. Cybern., 24 (1976), 51-59.

11. KOENDERINK, J. J. and VAN DoORN, A. J. Internal representa-
tion of solid shape with respect to vision, Biol. Cybern., 32 (1979),
211-216.

12. GUNNARSSON, K. T. and PriNz, F. B. CAD model-based
localization of parts in manufacturing, Computer, (August 1987), 66—
13. PRrePARATA, F. P. and SHAMos, M. 1. Computational
Geometry, Springer, New York, 1985.

14. SILBERBERG, T. M., HARwoOD, D. and DAvis, L. Three dimen-
sional object recognition using oriented model points, Techniques for
3-D Machine Perception (ed. A. Rosenfeld), North-Holland, Amster-
dam, (1986), 271-320.

Preliminary Translation and Weight Func-
tions

Appendix.

Let (%, 7) be the centroid of the corner vertices (i.e.,
their average) of the generated model image, and let

8

(%', #’) be that of the observed image. We define the size
of the object image by the maximum of the distances of
the corner vertices from their centroid. Let / and !/’ be
the sizes of the generated model image and the observed
image. Let (X, ¥, Z) be the average of the 3D coor-
dinates of the corner vertices (i.e., their centroid) of the
object model. We define the apparent object size L by

L= (1 + z) l

7"

This is the size of the object regarded as a ‘‘flat plane’’

parallel to the image plane and passing through the cen-

troid (X, ¥, Z) (Fig. A). From Fig. A, we see that the

size of the model image becomes equal to that of the ob-

served image if the centroid (X, ¥, Z) is displaced into
the position (X', Y’, Z’) given by

(A.1)

VARS —L——l) X"—(z+l) X’
_<1, f; - f X',

r—(ﬁﬂ) _,
F)Y

Hence, as a preliminary step, the object model is
translated in the scene by

A=%'—-X, B=¥'-¥, C=2'-Z.

(A.2)

(A3)

Then, the iteration procedure is started as described
in Sections 3 and 4. As the weight functions for the
observables (for both corner vertices and edges), we
used

11, (x=x)/1, (y=3)/1,

K. KANATANI and K. YAMADA

Fig. A The preliminary translation of the model object so that the
centroid (%,) of the generated model image coincides
with the centroid (#’, 9') of the observed image and the ap-
proximate sizes of the two images become the same.

(x—xy*/ 1%, y=yy/,
(x—x)/P, (x=x)y=F)Y/P,
(y=yy/P. (A.9)
Since these ten weight functions define ten observables
for six unknowns, we used the least square method to
solve the resulting ten simultaneous linear equations.
These weight functions are revised at each iteration
step, since the centroid (%, #) and the size /[is altered
each time a new model image is generated.

x=0)(y=-»)10,
(=% (y=9)/P,

(Received June 1, 1988)

