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Abstract

We present a robust method for automatically matching points over two images for image mosaicing: after extracting feature points using a

feature detector, we progressively estimate the rotation, the scale change, and the projective distortion between the two images by random

voting and variable template matching. Using real images, we demonstrate that our method allows accurate image mosaicing even when

conventional methods fail.

q 2003 Published by Elsevier B.V.
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1. Introduction

Establishing point correspondences over multiple images

is the first step of many video processing applications. Two

approaches exist for this purpose: tracking correspondences

over successive image frames, and direct matching between

separate image frames. This paper focuses on the latter.

The basic principle is local correlation measurement by

template matching, but many incorrect matches, or outliers,

remain. To remove them, we need to apply a robust

estimation technique based on a geometric constraint such

as the epipolar equation [1,6,26]. However, standard

techniques such as LMedS [19] and RANSAC [4] do not

work unless the initial matches are sufficiently accurate.

In order to resolve this problem, many techniques

combining template matching, geometric constraints, multi-

resolution representation, random sampling and voting, and

various types of heuristics have been proposed [2,12–17,22,

24,25]. Still, it is very difficult to match images of a general

scene if the relationship between the two images is

completely unknown.

In this paper, we specifically focus on image mosaicing

applications [10,23,27], for which the two images are

related by a transformation called homography. Since the

entire image undergoes the same transformation (we later

allow some parts to deform differently), image matching

reduces to estimation of the eight parameters of the

homography.

Although the image transformation induced by a

homography has globally the same mathematical

expression, the actual image distortion can greatly differ

from location to location, so it is very difficult to find

correspondences by local correlation measurement alone.

In this paper, we introduce a hierarchical scheme: we

progressively estimate image distortions by random voting

followed by variable template matching compatible with the

estimated distortions. In order to distinguish this approach

from the traditional multiresolution method [2], we call it

stratified matching.

The multiresolution method may reduce the computation

time for exhaustive search of region matching. For a fixed

number of given feature points, however, it is powerless to

reduce the combinatorial complexity; lowering the resol-

ution only results in poor matching capability.

In Section 2, we discuss the method of our local

correlation measurement. Section 3 describes the compu-

tational procedure for our stratified matching. There, we

also discuss the merits and limitations of our approach. In

Section 4, we show real image examples to demonstrate that

our method allows robust image mosaicing even when

conventional methods fail. Our automatic thresholding

scheme [8] is summarized in Appendix A. The details of

the image transformation computations used in Section 3 are
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given in Appendix B. Our LMedS procedure, which is an

extension of the standard LMedS [19] to the general

geometric fitting problem, is described in Appendix C.

2. Template matching

Suppose we detect points P1;…;PN in the first image I1

and points Q1;…;QM in the second image I2; using a feature

detector [3,5,18,20,21]. We measure the similarity between

two points Pa and Qb by the residual (sum of squares)

Jða;bÞ ¼
X

ði;jÞ[N

lTPa
ði; jÞ2 I2ði

0
; j 0Þl2; ð1Þ

where TPa
ði; jÞ is the template obtained by cutting out a

square grid N centered on the point Pa in the first image I1:

We identify the center of N with the origin (0, 0). The pixel

(i 0; j 0) to which the template pixel (i; j) is matched in the

second image I2 is given by

i 0

j 0

 !
¼

x 0
b

y 0
b

0
@

1
Aþ

i

j

 !
; ð2Þ

where (x0b; y 0
b) are the image coordinates of Qa in I2; so the

template origin (0, 0) is matched to ði0; j0Þ ¼ ðx 0
b; y

0
bÞ: If any

pixel (i0; j0) is outside the image frame of I2; we regard

Jða;bÞ as 1; which in the actual computation we interpret

to be a very large value.

If one image is a translated copy of the other, the

neighborhoods of corresponding points should exactly

match in the absence of noise. Under a homography,

however, the residual Jða;bÞ for corresponding points Pa

and Qb is not 0 due to local image distortions even when no

image noise exists.

Such image distortions can be absorbed by distorting the

template N according to the same homography, but we do

not know the homography a priori. So, we progressively

estimate it as follows.

First, we use the standard template to estimate an

approximate image translation. Next, we estimate scale

changes and rotations by similarity template matching. The

image transformation is further refined by affine template

matching. Finally, we establish the correspondence by

homography template matching. In each stage, we gradually

expand the template and remove outliers using LMedS.

3. Stratified matching

3.1. Initial matching

For the N points {Pa} in I1 and the M points {Qa} in I2;

we compute the residuals Jða;bÞ for all possible pairs using

a 9 £ 9 template and apply the automatic thresholding

procedure (Appendix A). Then, we enforce the uniqueness

of matching. Many algorithms are known for obtaining

globally optimal combinations using backtracking. Here, we

adopt the following greedy algorithm for the sake of

efficiency.

We search the N £ N table of Jða;bÞ for the minimum

value Jðap;bpÞ and establish the match between points Pap

and Qbp : Then, we remove from the table the column and

row that contain the value Jðap;bpÞ and apply the same

procedure to the resulting ðN 2 1Þ £ ðN 2 1Þ table. Repeat-

ing this, we end up with at most minðN;MÞ matches, which

we use as initial candidates.

Let (xa; ya) and (x 0
b; y 0

b) be the image coordinates of

points Pa and Qb to be matched. We represent them by

vectors

xa ¼

xa=f0

ya=f0

1

0
BB@

1
CCA; x0

b ¼

x 0
b=f0

y 0
b=f0

1

0
BB@

1
CCA; ð3Þ

where f0 is an appropriate scale constant, e.g. the image size,

so chosen that xa=f0; ya=f0; x 0
b=f0; and y 0

b=f0 have the order of

1. We denote the pair of points Pa and Qb by (a; b).

3.2. Translation matching by one-point voting

We iterate the following computations with Sm ¼ 1 and

tm ¼ 0 as initial values:

1. Randomly sample one pair (a; b) from among the

candidate pairs {ða;bÞ}:

2. Compute the vector

t ¼ x 0
b 2 xa; ð4Þ

where xa and x 0
b are the vector representations (see Eq.

(3)) of Pa and Q 0
b; respectively (this convention is

understood throughout this paper).

3. Sort the candidate pairs {ða;bÞ} with respect to

D ¼ 1
2
kx0

b 2 xa 2 tk2; ð5Þ

and compute its median S:

4. If S , Sm; update Sm and tm : Sm ˆ S; tm ˆ t:

Repeat the above computations until the median Sm

reaches its minimum.1 Then, do the following compu-

tations:

1. Regard those among the candidate pairs {ða;bÞ} that

satisfy

1
2
kx 0

b 2 xa 2 tmk
2
, 7Sm ð6Þ

as inliers (Appendix C).

2. Compute the vector

t ¼
1

N

X
ðx 0

b 2 xaÞ ð7Þ

1 In our experiment, we exhaustively searched all the candidate pairs.
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as a representative translation, where
P

sums the

selected inliers and N is the number of them.

3. Discard the candidate pairs {ða;bÞ}; and select from

all the points {Pa} and {Qb} those pairs {ða;bÞ} that

satisfy

1
2
kx 0

b 2 xa 2 tk2 , 7Sm: ð8Þ

4. From the selected pairs {ða;bÞ}; remove those that have

large residuals, using the automatic thresholding scheme

(Appendix A).

The resulting pairs {ða;bÞ} are regarded as new

candidates.

3.3. Similarity matching by two-point voting

We represent points with image coordinates (xa; ya) and

(x0b; y0b) by complex numbers

za ¼ xa þ iya; z 0b ¼ x0b þ iy 0
b; ð9Þ

where i is the imaginary unit. We iterate the following

computations with Sm ¼ 1; zm ¼ 0; z 0m ¼ 0; Zm ¼ 1; and

sm ¼ 1 as initial values:

1. Randomly sample two pairs (a0; b0) and (a1; b1) from

among the candidate pairs {ða;bÞ}:

2. Compute the complex number Z and the real number s

Z ¼
z 0b1

2 z0b0

za1
2 za0

; s ¼ lZl; ð10Þ

where l·l denotes the absolute value of a complex

number.

3. Sort the candidate pairs {ða;bÞ} with respect to

D ¼
lz 0b 2 z 0b0

2 Zðza 2 za0
Þl2

1 þ s2
; ð11Þ

and compute its median S:

4. If S , Sm; update Sm; zm; z0m; Zm; and sm : Sm ˆ S; zm ˆ

za; z 0m ˆ zb; Zm ˆ Z; sm ˆ s:

Repeat the above computations until the median Sm

reaches its minimum.2 Then, do the following compu-

tations:

1. Regard those among the candidate pairs {ða;bÞ} that

satisfy

lz0b 2 z0m 2 Zmðza 2 zmÞl
2

1 þ s2
m

, 7Sm ð12Þ

as inliers (Appendix C).

2. Optimally fit a similarity transformation to the selected

inliers in the form

~x 0
b ¼ sR~xa þ ~t; ð13Þ

where ~xa and ~x 0
b are two-dimensional vectors consisting

of the image coordinates of points Pa and Pb;

respectively, and s; R; and ~t are the scale constant, the

two-dimensional rotation matrix, and the two-dimen-

sional translation vector, respectively (Appendix B).

3. Discard the candidate pairs {ða;bÞ}; and select from all

the points {Pa} and {Qb} those pairs {ða;bÞ} that satisfy

k~x 0
b 2 sR~xa 2 ~tk2

1 þ s2
, 7Sm: ð14Þ

4. Apply to the selected pairs {ða;bÞ} the similarity

template matching: we enlarge the template N in Eq.

(1) to 17 £ 17 and compute (i 0; j 0), instead of Eq. (2), by3

i 0

j 0

 !
¼

x 0
b

y 0
b

0
@

1
Aþ sR

i

j

 !
; ð15Þ

and remove those pairs {ða;bÞ} that have large residuals,

using the automatic thresholding scheme (Appendix A).

The resulting pairs {ða;bÞ} are regarded as new

candidates.

3.4. Affine matching by three-point voting

We iterate the following computations with Sm ¼ 1;

Am ¼ I; and W ¼ I as initial values (I denotes the unit

matrix):

1. Randomly sample three pairs (a0; b0), (a1; b1), and (a2;

b2) from among the candidate pairs {ða;bÞ}:

2. Compute the matrix

A ¼ ðx0
b0

x0
b1

x 0
b2
Þðxa0

xa1
xa2

Þ21
: ð16Þ

3. Sort the candidate pairs {ða;bÞ} with respect to

D ¼ ðx0
b 2 Axa;Wðx 0

b 2 AxaÞÞ ð17Þ

and compute its median S: Hereafter, (a; b) denotes the

inner product of vectors a and b: The matrix W in Eq.

(17) is defined by

W ¼

0

W 0

0 0 0

0
BB@

1
CCA; W ¼ ðI þ AATÞ21

; ð18Þ

where I denotes the two-dimensional unit matrix, and A

is the top-left 2 £ 2 supmatrix of A:

2 In our experiment, we stopped the search when no update occurred

100 times consecutively. This criterion was used in the subsequent

iterations, too.

3 The resulting coordinates ði 0; j 0Þ are no longer integers. In all

computations involving non-integer image coordinates, we determined

the pixel value by bilinear interpolation.
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4. If S , Sm; update Sm; Am; and Wm : Sm ˆ S; Am ˆ A;

Wm ˆ W:

Repeat the above computations until the median Sm

reaches its minimum. Then, do the following computations:

1. Regard those among the candidate pairs {ða;bÞ} that

satisfy

ðx 0
b 2 Amxa;Wmðx

0
b 2 AmxaÞÞ , 7Sm ð19Þ

as inliers (Appendix C).

2. Optimally fit an affine transformation to the selected

inliers in the following form (Appendix B):

x 0
b ¼ Axa: ð20Þ

3. Discard the candidate pairs {ða;bÞ}; and select from

all the points {Pa} and {Qb} those pairs {ða;bÞ} that

satisfy

ðx 0
b 2 Axa;Wðx 0

b 2 AxaÞÞ , 7Sm; ð21Þ

where the matrix W is computed by Eq. (18) using the

matrix A of the fitted affine transformation.

4. Apply to the selected pairs {ða;bÞ} the affine template

matching: we enlarge the template N in Eq. (1) to

25 £ 25 and compute (i 0; j 0) by

i 0

j 0

 !
¼

x 0
b

y 0
b

0
@

1
Aþ A

i

j

 !
; ð22Þ

where A is the top-left 2 £ 2 submatrix of A: Then,

remove those pairs {ða;bÞ} that have large residuals,

using the automatic thresholding scheme (Appendix A).

The resulting pairs {ða;bÞ} are regarded as new

candidates.

3.5. Homography matching by four-point voting

We iterate the following computations with Sm ¼ 1 and

Hm ¼ I as initial values:

1. Randomly sample four pairs ða0; b0Þ; ða1; b1Þ; ða2; b2Þ;

and ða3; b3Þ from among the candidate pairs {ða;bÞ}:

2. Compute the homography H determined by these four

pairs (Appendix B).

3. Sort the candidate pairs {ða;bÞ} with respect to

D ¼ ðx0
b £ Hxa;Wðx 0

b £ HxaÞÞ ð23Þ

and compute its median S; where Pk ¼ diagð1; 1; 0Þ: The

matrix W is defined by

W¼ðx 0
b£HPkHT£x 0

bþðHxaÞ£Pk£ ðHxaÞÞ
2
2 ; ð24Þ

where ð·Þ22 denotes the Moore-Penrose generalized

inverse with rank 2 (i.e. the smallest eigenvalue is

replaced by 0) [7]. For a vector a and a matrix A;

the product a£A denotes the matrix whose columns are

the vector products of a and the columns of A; the

product A£a denotes the matrix whose rows are the

vector products of a and the rows of A:

4. If S,Sm; update Sm and Hm :SmˆS; HmˆH:

Repeat the above computations until the median Sm

reaches its minimum. Then, do the following computations:

1. Regard those among the candidate pairs {ða;bÞ} that

satisfy

ðx 0
b £ Hmxa;Wmlðx

0
b £ HmxaÞÞ , 7Sm ð25Þ

as inliers (Appendix C), where the matrix Wm is defined

by Eq. (24) after replacing H by Hm:

2. Optimally fit a homography H to the inliers (Appendix B).

3. Discard the candidate pairs {ða;bÞ}; and select from all

the points {Pa} and {Qb} those pairs {ða;bÞ} that satisfy

ðx 0
b £ Hxa;Wðx0

b £ HxaÞÞ ,
d2

2f 2
; ð26Þ

where d is a user-definable constant and the matrix W

is defined by Eq. (24) from the optimally fitted

homography H:

4. Apply to the selected pairs {ða;bÞ} the homography

template matching: we enlarge the template N to

33 £ 33 in Eq. (1) and compute ði 0; j 0Þ by

i0=f0

j0=f0

1

0
BB@

1
CCA ¼ Z TH

ðxa þ iÞ=f0

ðya þ jÞ=f0

1

0
BB@

1
CCA

2
664

3
775; ð27Þ

where Z½·� denotes scale normalization to make the Z

component 1. The matrix H deforms the template

according to the estimated homography, and the matrix

T ¼ ði j k þ x 0
b 2 Z½Hxa�Þ ð28Þ

adjusts the position of the template so that xa exactly

matches x0
b; where i ¼ ð1; 0; 0ÞT; j ¼ ð0; 1; 0ÞT; and

k ¼ ð0; 0; 1ÞT: Then, we remove those pairs {ða;bÞ}

that have large residuals, using the automatic threshold-

ing scheme (Appendix A).

The resulting pairs {ða;bÞ} are regarded as the final

matches.

3.6. Summary of the procedure

In the above process, we progressively estimate the

image transformation using LMedS (Appendix C), starting

from translation to similarity, affine transformation, and

homography. At each stage, we discard the previous

candidate pairs and match the points all over again using

a new template compatible with the estimated transform-

ation; the template size is increased to 9, 17, 25, and 33 to
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upgrade the discriminative power. As a result, those pairs

initially rejected can be accepted in the later stage.

At each stage, we apply the automatic thresholding

procedure (Appendix A). To do this, we need an estimate of

the ratio of the percentage p of the correct matches to its

maximum value pmax (Appendix A). We gradually increase

it to p=pmax ¼ 0:6; 0.7, 0.8, and 0.9.

If we know that the two images should undergo a

particular transformation to a specified degree, the best

choice may be RANSAC [4]. Here, however, the inter-

mediate transformations are all approximate, so we do not

know to what extent they should be satisfied. LMedS best

suits such a case. On the other hand, we know that the true

transformation is a homography. So, in the final stage we

introduced a user-definable admissible discrepancy d: In our

experiment, we set d ¼ 3 (pixels).

Since our method is initialized by the standard template

matching, the image rotation and the zooming change

between the two images should not be extremely large.

Otherwise, the use of template matching would be mean-

ingless. If large zooming changes and rotations are known to

exist, we need to estimate them by other means. The

multiresolution approach [2] may be very effective for such

estimation.

We are also assuming that the entire scene undergoes the

same homography. This is a strong limitation as compared

with other general matching schemes. However, since our

method is based on majority voting, minority parts may

undergo different transformation. This property can be

exploited for intruder detection applications as shown in

Section 4.

4. Real image examples

We extracted 100 feature points from the images in

Fig. 1(a) and (b) using the Harris operator [5], as marked

in the images. Fig. 1(d) is the ‘optical flow’ (line

segments connecting the matching positions) of the initial

matches. Fig. 1(e)–(h) shows the upgraded matches

obtained by the translation matching, the similarity

matching, the affine matching, and the final homography

matching, respectively. We can see that the accuracy

progressively increases in each stage. Fig. 1(c) is the

resulting mosaiced image.

For comparison, we did the standard LMedS procedure

[19], directly computing the least-median homography by

random 4-point voting followed by outlier removal; Fig.

1(i) shows the resulting matches. In this example, the

distortion between the two images is relatively small, so

the automatic thresholding (Appendix A) alone produces

sufficiently correct matches (69.0% correct). As a result,

the direct LMedS can also gives a satisfactory result.

However, our procedure produces denser matches,

because our method can generate new matches by

adjusting the template.

Fig. 2 is another example similarly arranged. In this case,

the image distortion is large. In addition, periodic patterns

exist in the scene. As a result, the inlier ratio is very low

(28.3% correct), so the direct LMedS fails, as shown in

Fig. 2(i). However, our method produces correct matches, as

shown in Fig. 2(h). The reason is as follows.

Although only 28.3% of the matches in Fig. 2(d) are

compatible with a correct homography, most of them are

compatible with an approximate translation or an approxi-

mate similarity with a large error allowance given by

LMedS (Appendix C). Hence, we can successively narrow

down the correct matches.

The road images in Fig. 3(a) and (b) are taken from

different positions, and an intruding object (a car) appears in

one image. Also, non-planar parts (poles and bushes) exist

in the scene, so we cannot map one image to the other

entirely by a single homography.

Fig. 1. (a) and (b) Input images and extracted feature points. (c) Image mosaicing by our method. (d) Initial matches (69.0% correct). (e) Translation matching.

(f) Similarity matching. (g) Affine matching. (h) Homography matching. (i) Direct estimation by LMedS.
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The initial matches are shown in Fig. 3(d); they are only

44.8% correct. In the end, however, correct matches are

generated in the planar part of the scene, as shown in Fig.

3(e). Also, some of the initially incorrect matches are

correctly recombined.

The small square (33 £ 33 pixels) in Fig. 3(a)

indicates the template region around a feature point in

the final stage; the corresponding deformed template is

superimposed around the matched point in Fig. 3(b). The

evolution of its shape (to scale) through the translation

matching, the similarity matching, the affine matching,

and the homography matching is shown in Fig. 3(c).

Fig. 3(f) is the superposition of the mapped images,

and Fig. 3(g) displays the absolute value of their

difference. The non-overlapping parts indicate non-planar

parts of the scene.

Fig. 4 shows another example similarly arranged. In

this case, the initial matches in Fig. 4(c) are almost

entirely incorrect (16.3% correct). Yet, our procedure can

successfully recombine them into correct matches.

Fig. 5 shows an example of image mosaicing using our

method. The camera was somewhat rotated in the course of

shooting, but the panoramic image below was automatically

generated from the seven images above.

Fig. 3. (a) and (b) Input images and detected feature points. The template regions in the final stage are superimposed around a pair of matched points. (c) The

evolution of the template shape (to scale) for the match indicated in (a) and (b). (d) Initial matches (44.8% correct). (e) Final matches. (f) Image mosaicing. (g)

Difference image.

Fig. 2. (a) and (b) Input images and extracted feature points. (c) Image mosaicing by our method. (d) Initial matches (28.3% correct). (e) Translation matching.

(f) Similarity matching. (g) Affine matching. (h) Homography matching. (i) Direct estimation by LMedS.
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5. Conclusions

We have presented a robust method for automatically

matching feature points over two images for image

mosaicing. After extracting feature points using a feature

detector, we progressively estimate the rotation, scale

change, and the projective distortion between the two

images by random voting and variable template

matching.

Traditional approaches for image mosaicing based on

local correlations and optical flow [23,27] cannot deal

with a large amount of camera rotation, zooming, and

perspective distortion, such as the images in Fig. 3. Our

method works even in the presence of a large percentage

of initial outliers.
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Appendix A. Automatic thresholding for template

matching

Here, we summarize the procedure for our automatic

thresholding scheme [8].

Given N points in the first image and M points in the

second, we compute the template matching residual J

defined by Eq. (1) for all the NM combinations of the points

(even though some of them apparently do not satisfy

required geometric constraints). Let J1 # J2 # · · · # JNM

be the resulting NM residuals sorted in ascending order.

Intuitively, we may imagine that J1 # · · · # Jc for some

Jc are correct matches and the remaining Jcþ1 # · · · # JNM

incorrect matches. In reality, however, the distribution of

correct matches is in large part included in the distribution

of incorrect matches with a long tail, as depicted in Fig. A1,

indicating that no obvious threshold exists [8]. Hence, if we

want to pick out a large number of correct matches, we need

to set a high threshold, which inevitably accepts many

incorrect matches.

It follows that in order to set an optimal threshold, we

need to model the residual distribution and determine the

value that best balances the conflicting goals of collecting as

many correct matches as possible and rejecting as many

incorrect ones as possible. To this end, we fit a x2 density

function to the residual histogram.

Our starting point is the observation that the residual J of

a correct match should be due to small distortions between

the two images as well as random fluctuations of the image

intensity. If we model the intensity difference between the

matching pixels as a Gaussian distribution of mean 0 and

standard deviation s0; the ratio J=s2
0 should be subject to a

x2 distribution with n2 degrees of freedom, where n is the

template size, provided the pixel value difference is pixel-

wise independent.

The residual of an incorrect match, on the other hand, is

due to the inhomogeneity of that particular scene. If we

model the intensity difference between the matching pixels

as a Gaussian distribution of mean 0 and standard deviation

s1; the ratio J=s2
1 should be subject to a x2 distribution with

n2 degrees of freedom, provided the pixel value difference is

pixel-wise independent.

In reality, the pixel value difference should hardly be

independent. However, the interpixel correlations are

difficult to analyze, so we introduce the following

approximation. If there are N points in the first image and

M points in the second, the number of correct matches is at

most minðN;MÞ; which is much smaller than the total

number NM of all the pairs. If most of the matches are

incorrect, the average mJ and the variance s2
J of the residual

J over all the matches should be approximately n2s2
1 and

2n2s4
1 ; respectively, in the absence of correlations.

Eliminating s1; we obtain n2 < 2m2
J =s

2
J : However, n2

should be much smaller than this value due to correlations.

So, we define the effective template size as follows [8]:

n ¼

ffiffi
2

p
mJ

sJ

: ðA1Þ

In other words, we regard each pixel value as if independent

within the template of that size, which need not be an

integer.

Let p and q ð¼ 1 2 pÞ be the ratios of the correct and

incorrect matches, respectively, among the total NM

matches. According to our model, the probability density

of the residual J for all the matches is

f ðJÞ ¼
p

s2
0

fn2

J

s2
0

 !
þ

q

s2
1

fn2

J

s2
1

 !
; ðA2Þ

where fdðxÞ denotes the probability density of the x2

distribution with d degrees of freedom. We determine the

model parameters s0 and s1 by maximum likelihood

estimation from the NM residuals J1 # J2 # · · · # JNM :

Differentiating log
QNM

i¼1 f ðJiÞ with respect to s2
0 and s2

1 and

letting the results be zero, we obtain

s2
0 ¼

XNM

i¼1

AiJi

n2
XNM

i¼1

Ai

; s2
1 ¼

XNM

i¼1

BiJi

n2
XNM

i¼1

Bi

; ðA3Þ

where we define

Ai ¼
1

1 þ
q

p

s0

s1

� �n2

exp
Ji

2

1

s2
0

2
1

s2
1

 ! ! ;

Bi ¼
1

1 þ
p

q

s1

s0

� �n2

exp
Ji

2

1

s2
1

2
1

s2
0

 ! ! :

ðA4Þ

The values of s0 and s1 are obtained by iterations [8].

Experiments using real images have shown that this model
Fig. A1. The residual distribution of correct matches is in large part

included in the residual distribution of incorrect matches.
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with s0; s1; and n estimated as described above fits very

well to the actual residual histogram [8].

The ratios p and q ð¼ 1 2 pÞ are given empirically. Since

the number of correct matches between N points and M

points is at most minðN;MÞ; we let pmax ¼ minðN;MÞ=NM

and set, for example, p ¼ 0:6pmax if no knowledge is

available about the correctness of the matches. Experiments

have shown that the final results are only slightly affected by

the choice of p=pmax [8].

Suppose we set a threshold Jc for the residual J and

accept those matches with J # Jc as correct. Let a be the

ratio of the accepted correct matches among all the correct

ones; we call it the detection ratio. A correct match with

residual J is accepted with the probability

a ¼ P0½J , Jc� ¼ P0

J

s2
0

,
Jc

s2
0

" #
; ðA5Þ

where P0½·� denotes the probability for correct matches. Let

x2
n2ðaÞ be the ath percentile of the x2 distribution with n2

degrees of freedom. Since J=s2
0 for a correct match is subject

to a x2 distribution with n2 degrees of freedom, Eq. (A5)

implies that Jc=s
2
0 equals x2

n2 ðaÞ: Hence, the threshold Jc is

given by

Jc ¼ s2
0x

2
n2 ðaÞ: ðA6Þ

Some incorrect matches are necessarily accepted by this

thresholding. An incorrect match with residual J is accepted

with the probability

g ¼ P1½J # Jc� ¼ P1

J

s2
1

#
s0

s1

� �2

x2
n2ðaÞ

" #
; ðA7Þ

where P1½·� denotes the probability for incorrect matches.

Let Fn2ðXÞ ð¼
ÐX

0 fn2ðxÞdxÞ be the accumulated prob-

ability function of the x2 distribution with n2 degrees of

freedom. Since J=s2
1 for an incorrect match is subject to a

x2 distribution with n2 degrees of freedom, Eq. (A7)

implies

g ¼ Fn2

s0

s1

� �2

x2
n2 ðaÞ

 !
: ðA8Þ

Among the NM possible matches, the numbers of correct

and incorrect matches are pNM and qNM; respectively.

After the thresholding, we obtain apNM correct matches

and gqMN incorrect ones on average. Hence, the inlier

ratio, i.e. the ratio of correct matches among the accepted

matches, is approximately

b ¼
apNM

apNM þ gqMN
¼

ap

ap þ gq
: ðA9Þ

The detection ratio a should be large if we want to collect

many correct matches, but the number of incorrect matches

also increases, lowering the inlier ratio b as a result. So, we

determine the threshold Jc so that the detection ratio a

equals the inlier ratio b: This balances the ratio 1 2 a of

rejecting correct matches and the ratio 1 2 b of accepting

incorrect ones. Letting b ¼ a in Eq. (A9), we obtain

a ¼ 1 2
q

p
Fn2

s0

s1

� �2

x2
n2 ðaÞ

 !
; ðA10Þ

from which a is obtained by iterations [8]. Then, threshold

Jc is given by Eq. (A6).

Appendix B. Optimal fitting of image transformations

A homography from a point xa to a point x0
a is written in

the form

x0
a ¼ Z½Hxa�; H ¼

A B C

D E F

P Q R

0
BB@

1
CCA: ðB1Þ

(Recall the notation of Eq. (3) and the normalization

operation Z½·�:) Since the matrix H has nine elements up to

scale, it can be uniquely determined from four matches in

general position.

We regard the points {xa} and {x0
a} as Gaussian random

variables whose means are their true values {�xa} and {�x0
a}:

Let {V½xa�} and {V½x0
a�} be their covariance matrices. We

write

V½xa� ¼ e2V0½xa�; V½x0
a� ¼ e2V0½x

0
a�; ðB2Þ

and call e the noise level. The matrices V0½xa� and V0½x
0
a�

given up to scale are called the normalized covariance

matrices. We can assume

V0½xa� ¼ V0½x
0
a� ¼ diagð1; 1; 0Þ ðB3Þ

in the usual situation [11].

Since Eq. (B1) can equivalently be written in the form

x0
a £ Hxa ¼ 0; an optimal estimate of H for Nð$ 4Þ matches

{xa}; {x0
a; a ¼ 1;…;N; is obtained by minimizing

K ¼
XN
a¼1

ðxa 2 �xa;V0½xa�
2
2 ðxa 2 �xaÞÞ

þ
XN
a¼1

ðx0
a 2 �x0

a;V0½x
0
a�

2
2 ðx

0
a 2 �x0

aÞÞ; ðB4Þ

subject to the constraint

�x0
a £ H�xa ¼ 0: ðB5Þ

Using Lagrange multipliers and introducing first order

approximation, we can eliminate the constraint (B5) to

express Eq. (B4) in the following form [7]:

K ¼
XN
a¼1

ðx0
a £ Hxa;Waðx

0
a £ HxaÞÞ; ðB6Þ
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Wa ¼ ðx 0
a £ HV0½xa�H

T £ x 0
a þ ðHxaÞ £ V0½x

0
a� £ ðHxaÞÞ

2
2 :

ðB7Þ

In our experiment, we computed the solution by a

technique called renormalization4 [9].

An affine transformation is a special homography that

takes the form

x 0
a ¼ Axa; A ¼

A t1=f0

t2=f0

0 0 1

0
BB@

1
CCA; ðB8Þ

where A is a 2 £ 2 non-singular matrix. The matrix A is

determined from three matches {xa}; x 0
a; a ¼ 1; 2; 3; in

general position:

A ¼ ðx 0
1 x 0

2 x 0
3Þðx1 x2 x3Þ

21
: ðB9Þ

For N ð$ 3Þ matches {xa}; {x 0
a}; a ¼ 1;…;N; substi-

tution of Eqs. (B3) and (B8) into Eq. (B4) yields

K ¼
XN
a¼1

ðx 0
a 2 Axa;Wðx 0

a 2 AxaÞÞ; ðB10Þ

where W is given by Eq. (18). Optimal values of A and {ti}

are obtained using the Levenberg–Marquart method.

A similarity is a special affine transformation obtained by

replacing the matrix A in Eq. (B8) by

S ¼

s cos u 2s sin u t1=f0

s sin u s cos u t2=f0

0 0 1

0
BB@

1
CCA: ðB11Þ

By this transformation, the image is rotated by angle u

around the origin, scaled by s; and translated by ðt1; t2Þ:

In terms of the two-dimensional vectors ~xa and ~xb
consisting of the x and y image coordinates, the transform-

ation is written in the form

~x0a ¼ sR~xa þ ~t; ðB12Þ

where

R ¼
cos u 2sin u

sin u cos u

 !
; ~t ¼

t1

t2

 !
: ðB13Þ

The mapping is determined uniquely if two distinct

matches are given.

For Nð$ 2Þ matches {~xa}; {~x 0
a}; a ¼ 1;…;N; Eq. (B10)

reduces to

K ¼
1

1 þ s2

XN
a¼1

k~x 0
a 2 sR~xa 2 ~tk2: ðB14Þ

The minimizing solution is easily obtained using the

Levenberg–Marquart method.

Finally, translation is a special similarity with s ¼ 1 and

R ¼ I: It is uniquely determined by a single pair of points.

For Nð$ 1Þ matches {~xa}; {~x 0
a}; a ¼ 1;…;N; an optimal

translation ~t is given by the displacement of the centroid:

~t ¼
1

N

XN
a¼1

ð~x 0
a 2 ~xaÞ: ðB15Þ

Appendix C. LMedS for geometric fitting

Here, we describe our LMedS procedure, which is an

extension of the standard LMedS [19] to the general

geometric fitting problem.

Geometric fitting [7] is to fit a d-dimensional manifold

M defined by a constraint equation Fðj; uÞ ¼ 0 parameter-

ized by a p-dimensional vector u to N data points {ja} [
Rn: Each data point ja is assumed to be disturbed from its

true position �ja by independent Gaussian noise of mean 0

and standard deviation s in each coordinate. The true

positions { �ja} are assumed to be in the manifold M:

The constraint that a point ðx; yÞ in one image should be

mapped to a point ðx 0; y 0Þ in another by a translation T; a

similarity S; an affine transformation A; or a homography

H defines a two-dimensional manifold M with 2, 4, 6, or 8

parameters, respectively, in the four-dimensional joint space

of ðx; y; x 0; y 0Þ: Each data point is specified by the four-

dimensional vector ja ¼ ðxa; ya; x
0
a; y

0
aÞ

T consisting of the

coordinates of the corresponding points ðxa; yaÞ and

ðx 0
a; y

0
aÞ:

The LMedS [19] for fitting the manifold M to {ja} is to

minimize

S ¼ medN
a¼1Dðja;MÞ; ðC1Þ

where Dðja;MÞ measures the square distance of point ja
from the manifold M : its actual form is given by

Eqs. (5), (11), (17) and (23) for the translation T; the

similarity S; the affine transformation A; and the

homography, respectively.

Minimization of Eq. (C1) is done by repeating random

sampling of the minimum number dp=re of points that can

define the manifold M a sufficient number of times,

evaluating the median S each time, and choosing the

manifold M̂ that gives the least median Sm [19].

If the noise is small, Dðja;MÞ=s2 should be subject to a

x2 distribution with r degrees of freedom [7], where r ¼

n 2 d is the codimension of M; i.e. the number of

independent equations of the constraint Fðj; uÞ ¼ 0: Hence,

m ¼ med
N

a¼1

Dðja;MÞ

s2
; ðC2Þ

equals in expectation the 50th percentile x2
r;50 of the x2

distribution with r degrees of freedom. It follows that the

variance s2 can be estimated by

ŝ2 ¼
S

x2
r;50

: ðC3Þ

Here, the median S is defined by Eq. (C1) using the true

manifold M: In actual computation, M is approximated by

4 The program code is publicly available from http://www.ail.cs.

gunma-u.ac.jp/Labo/programs-e.html.
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the manifold M̂ fitted to dp=re sample points. In other word,

we use instead of S

Sm ¼ med
N

a¼1
Dðja; M̂Þ: ðC4Þ

Because we repeat sampling so as to minimize Sm; it is in

general smaller than S: So, we apply the correction

ŝ2 ¼ 1 þ
10

rN 2 p

� �
Sm

x2
r;50

: ðC5Þ

The term rN 2 p in the denominator is introduced to

account the fact that (i) if N ¼ p=r; the fitted manifold M̂
exactly passes through the data points with 0 median, so the

variance s2 cannot be estimated and (ii) Eq. (C5) gives a

good approximation for large N: The number 10 in the

numerator is determined so as to make Eq. (C5) agree with

the formula in Ref. [19] for r ¼ 1 :

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

10

N 2 p

� �s ffiffiffiffiffiffiffi
Sm

x2
1;50

s

< 1:4826 1 þ
5

N 2 p

� � ffiffiffiffi
Sm

p
: ðC6Þ

Using thus estimated variance ŝ2; we can remove outliers

with confidence level a% by rejecting those data ja that

satisfy

Dðja; ŜÞ

ŝ2
$ x2

r;a; ðC7Þ

where x2
r;a is the ath percentile of the x2 distribution with r

degrees of freedom.

For example, we have r ¼ 2 and p ¼ 8 for fitting a

homography, so for a ¼ 99 Eq. (C7) reduces to

Dðja;M̂Þ $ 6:44 1 þ
5

N 2 4

� �
Sm: ðC8Þ
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