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Abstract. The optical flow observed by a moving camera satisfies,
in the absence of noise, a special equation analogous to the epipo-
lar constraint arising in stereo vision. Computing the ‘‘flow funda-
mental matrix’’ of this equation is an essential prerequisite to under-
taking three-dimensional analysis of the flow. This article presents
an optimal formulation of the problem of estimating this matrix under
an assumed noise model. This model admits independent Gaussian
noise that is not necessarily isotropic or homogeneous. A theoretical
bound is derived for the accuracy of the estimate. An algorithm is
then devised that employs a technique called renormalization to de-
liver an estimate and then corrects the estimate so as to satisfy a
particular decomposability condition. The algorithm also provides an
evaluation of the reliability of the estimate. Epipoles and their asso-
ciated reliabilities are computed in both simulated and real-image
experiments. Experiments indicate that the algorithm delivers re-
sults in the vicinity of the theoretical accuracy bound. © 2000 SPIE
and IS&T. [S1017-9909(00)01202-2]

1 Introduction

Two distinct approaches are available for extracting thr
dimensional~3D! information from motion images. On
utilizes data in the form ofpoint correspondences,1–4 while
the other exploits data in the form ofoptical flow, which is
theoretically an instantaneous velocity field over the ima
frame. Under this latter approach, we can compute the
motion of the camera and the focal length, and hence
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3D structure of the scene, in an analytically closed form
regarding the image motion as infinitesimal.5,6 A similar
analysis can be carried out using the fundamental matrix7–9

but it requires many stages of complicated analysis
computation.

Optical flow analysis relies heavily upon the accuracy
the optical flow estimation. Usually, optical flow is dete
mined by applying a differential equation called thegradi-
ent constraintto the gray levels of the images.10–18This has
the advantage that the flow can be detected over the im
frame via a single operation. However, this process
volves many stages of approximation such as replacing
ferentials by finite differences, imposing smoothness c
straints, and applying regularization methods. As a res
the accuracy of the detected flow is not high enough for
reconstruction of the scene. In order to obtain accur
flow, we need to trace individual feature points directly
the same means as those used for finite motion, suc
template matching and spatio-temporal analysis. In this
ticle, we assume that optical flow has been obtained w
high accuracy for a limited number of salient feature poin

If the images are captured by a camera moving throu
a stationary scene, the associated optical flow satisfies
the absence of noise, a motion equation of special fo
This equation is analogous to the epipolar equation aris
in stereo vision. The coefficients of the motion equation c
be expressed in terms of a matrix, which plays the sa
role as the fundamental matrix in stereo analysis. For
reason, we call it theflow fundamental matrix. The main
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Fundamental matrix from optical flow
purpose of this article is to compute the matrix as ac
rately as possible from noisy data.

Our first step is to study the behavior of the noise, wh
is the cause of deterioration in accuracy. Having presen
a mathematical model of noise, we can work towards
optimal solution under that model by employing statistic
analysis. If a specific statistical model of noise is assum
an optimal computational method for that model can
derived; if another model is assumed, another met
should be derived. The assumed model should be cle
stated from the outset, and the computational met
should be derived with respect to the model. It is in follo
ing this methodology that our approach goes beyond
original works in this domain.5,6 A further advance is
achieved in that our performance evaluation takes into
count a newly derivedtheoretical accuracy bound. If the
method does not attain that bound, there is room for
provement; if the bound is attained, no further improv
ment is possible.

In this article, we describe a procedure for computi
the flow fundamental matrix under the model that noise
small, independent, and Gaussian but not necessarily
tropic or homogeneous; the noise behavior may be diffe
from point to point and dependent on orientation. We d
rive a theoretical accuracy bound under the assumed m
and demonstrate by experiments that our algorithm deliv
results in the vicinity of the bound. In this sense, the alg
rithm is optimal.

The algorithm has the added advantage that it can ev
ate the reliability of the solution automatically. This implie
that if we carry out 3D reconstruction based on the co
puted flow fundamental matrix, we can also evaluate
reliability of the recovered 3D structure.

If the camera is calibrated and the imaging geometry
be modeled as perspective projection with a known fo
length, extra constraints are imposed on the flow fun
mental matrix.2 A statistically optimal algorithm for com-
puting the flow fundamental matrix in this case has alrea
been proposed, and the reliability of the resulting 3D rec
struction was evaluated in quantitative terms.3,19 The algo-
rithm presented here is obtained from it by relaxing t
decomposability condition.

2 Flow Fundamental Matrix

In this section, we give basic definitions and terminolog
used throughout this article.

Let $(xa ,ya)% and $(xa8 ,ya8 )%, a51, . . . ,N, be image
coordinates~in pixels! of two sets ofN points on two dif-
ferent images. Here, separate rectangular coordinate
tems are assumed for each camera. We define the ‘‘flo
and the ‘‘midpoint’’ of theath point as

ẋa5S ~xa82xa!/ f 0

~ya82ya!/ f 0

0
D , xa5S ~xa1xa8 !/2f 0

~ya1ya8 !/2f 0

1
D , ~1!

where f 0 is a scale factor~for example, we can take this t
be the size of the image frame! chosen so thatxa / f 0 ,
ya / f 0 , xa8 / f 0 , and ya8 / f 0 have order 1. The two sets o
points satisfy the followingepipolar equation:3,5,6,19
d
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~xa ,Wẋa!1~xa ,Cxa!50, ~2!

where W5(Wi j ) is an antisymmetric matrix andC
5(Ci j ) is a symmetric matrix. Throughout this article, w
denote by (a,b) the inner product of the vectorsa andb.

The matricesW and C are not independent of eac
other. If the nondiagonal elements of the matrixW are
rearranged in the form

w5S W32

W13

W21

D , ~3!

the following relationship holds:5

~w,Cw!50. ~4!

We call this thedecomposability condition.
The epipolar equation~2! and the decomposability con

dition ~4! together constitute a necessary and sufficient c
dition for the flow to be induced on the image plane by
infinitesimal motion of a moving camera with varyin
zoom relative to a stationary scene.3,5,19 It can be shown
that if we know the matricesW andC to within a common
scale factor, we can compute the 3D motion of the cam
and the focus, hence the 3D structure of the scene, in
analytically closed form.5 Our main concern here is th
question of how these matrices may best be estimated in
first place.

Estimating the matricesW and C is equivalent to esti-
mating their sum

F5W1C, ~5!

sinceW andC are given by

W5A@F#, C5S@F#, ~6!

whereA@•# andS@•# denote, respectively, the antisymm
trization and symmetrization operations defined byA@A#
5(A2AT)/2 andS@A#5(A1AT)/2.

The matrix F plays a similar role to the fundamenta
matrix for finite motion images.1–4 In fact, the epipolar
equation~2! can be derived from the epipolar equation f
finite motion images in the limit of infinitesimal motion.3

For this reason, we callF theflow fundamental matrix. The
decomposability condition~4! corresponds to the wel
known constraint on the finite motion fundamental mat
that it should have rank 2.

From the epipolar equation~2!, we observe that the ma
trices W and C have scale indeterminacy and hence t
scale ofF is also indeterminate. So, we adopt the norm
ization iFi51, where the norm of a matrixA5(Ai j ) is

defined byiAi5AS i , j 51
3 Ai j

2 . In terms of the flow funda-
mental matrixF5(Fi j ), the decomposability condition~4!
is expressed in the following form:

(
i , j ,k,l ,m,n51

3

« ikl« jmnFi j FklFmn50. ~7!
Journal of Electronic Imaging / April 2000 / Vol. 9(2) / 195
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Kanatani et al.
Here,« i jk is the Eddington epsilon, taking values 1 and21
if ( i jk ) is an even and odd permutation of~123!, respec-
tively, and 0 otherwise.

3 Statistical Model of Noise

In this section, we state our assumptions about the natu
the image noise, on which the subsequent statistical an
sis is based.

Let x̄̇a and x̄a be the true values ofẋa andxa , respec-
tively, in the absence of noise. We write

ẋa5 x̄̇a1D ẋa , xa5 x̄a1Dxa ~8!

and regardD ẋa andDxa as independent Gaussian rando
variables of mean0 but not necessarily isotropic or homo
geneous. LetV@ ẋa# andV@xa# be the covariance matrice
of vectorsẋa andxa , respectively. In practice, we need n
know their absolute values; it suffices to know themup to a
common scale factor. So, we write

V@ ẋa#5e2V0@ ẋa#, V@xa#5e2V0@xa#, ~9!

and assume thatV0@ ẋa# and V0@xa#, which we call the
normalized covariance matrices, are known but the con
stante, which we call thenoise level, is unknown. Since the
third components ofẋa andxa are constants, the matrice
V0@ ẋa# and V0@xa# are singular with third columns an
third rows filled with zeros.

The normalized covariance matrices can be estima
from the residual of template matching or optical flo
detection.20–23If the noise can be assumed to have the sa
isotropic distribution for all (xa ,ya) and (xa8 ,ya8 ), a
51, . . . , N, we have

V0@ ẋa#52 diag~1,1,0!, V0@xa#5 1
2 diag~1,1,0!, ~10!

where diag(...) signifies the usual diagonal matrix. We
these as the default values when no information is availa
about the noise behavior.

Our goal is to estimate the flow fundamental matrixF
that satisfies the epipolar equation for the true values$ x̄̇a ,
x̄a} from their noisy observations$ẋa , xa%.

4 Theoretical Accuracy Bound

In this section, we present a theoretical bound on the ac
racy with which the flow fundamental matrixF may be
estimated, under the statistical model of image noise
scribed in the preceding section.

Let F̂ be an estimate of the flow fundamental matr
Regarded as a function of the random variablesẋa andxa ,

the estimateF̂ is also a random variable based on the sa
probability space as that upon whichẋa andxa are based.

Let F̄ be the true value of the flow fundamental matrix. T

uncertainty of the estimateF̂ is measured by itscovariance
tensor

V @ F̂#5E@P~~ F̂2F̄! ^ ~ F̂2F̄!!P T #, ~11!
196 / Journal of Electronic Imaging / April 2000 / Vol. 9(2)
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whereE@•# denotes expectation. The operator^ denotes
the tensor product: for matricesA5(Ai j ) andB5(Bi j ), the
( i jkl ) element ofA^ B is Ai j Bkl . For tensorsP5(Pi jkl )
andT5(Ti jkl ), the matrix productPTP T is a tensor whose
( i jkl ) element isSm,n,p,q51

3 Pi jmnPklpqTmnpq. The (i jkl )
element of the tensorP5(Pi jkl ) in Eq. ~11! is given by

Pi jkl 5d ikd j l 2F̄ i j F̄kl . ~12!

Here, d i j is the Kronecker delta, taking 1 fori 5 j and 0

otherwise. Define themoment tensorM̄5(M̄ i jkl ) by

M̄ i jkl 5
1

N (
a51

N

W̄aS x̄a( i ) x̄̇a( j )2 x̄a( j ) x̄̇a( i )

2
1 x̄a( i )x̄a( j )D

3S x̄a(k) x̄̇a( l )2 x̄a( l ) x̄̇a(k)

2
1 x̄a(k)x̄a( l )D , ~13!

wherex̄̇a( i ) and x̄a( i ) are thei th components ofx̄̇a and x̄a ,

respectively. The scalarW̄a is defined by

W̄a5
1

~W̄x̄a ,V0@ ẋa#W̄x̄a!1@W̄x̄̇a12C̄x̄a ,V0@xa#~W̄x̄̇a12C̄x̄a!#
,

~14!

whereW̄ andC̄ are the true values of the matricesW and
C. According to the general theory of Kanatani,10 the lower
bound on the covariance tensorV @ F̂# is given by

V @ F̂#.
«2

N
~P SM̄P ST !7

2 , ~15!

whereT .S for tensorsT andS means thatT2S is a posi-
tive semidefinite tensor, and the operation (•) r

2 denotes the
~Moore–Penrose! generalized inverse of rankr ~discussed
later!. The (i jkl ) element of the tensorP S5(Pi jkl

S ) in Eq.
~15! is given as follows:

Pi jkl
S 5d ikd j l 2

K̄ i j K̄kl

iK̄ i2
. ~16!

Here K̄5(K̄ i j ) is defined by

K̄ i j 5 (
k,l ,m,n51

3

@« ikl« jmnF̄kl1« i jk« lmn~ F̄kl1F̄ lk!#F̄mn .

~17!

For a tensorT5(Ti jkl ), a matrixA5(Ai j ), and a scalarl,
we say thatA is aneigenmatrixof T with eigenvaluel if
TA5lA, where the productTA is a matrix whose (i j )
element isSk,l 51

3 Ti jkl Akl . The eigenmatrices and eigenva
ues of a tensor can be computed by identifying a tensor
a matrix with a 939 matrix and a 9-vector.3

A tensor T5(Ti jkl ) is said to besymmetric if Ti jkl

5Tkli j . A symmetric 3333333 tensor has nine real ei
genvalues$l i%. The corresponding eigenmatrices$Ui% can
be chosen to be an orthogonal system of matrices of
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Fundamental matrix from optical flow
norm, where the inner product of matricesA5(Ai j ) and
B5(Bi j ) is defined by (A;B)5S i , j 51

3 Ai j Bi j . A symmetric
tensor ispositive semidefiniteif its eigenvalues are all non
negative.

Let l1>...>l9 (>0) be the eigenvalues of a positiv
semidefinite symmetric tensorT, and let$U1 , . . . ,U9% be
the corresponding orthonormal set of eigenmatrices of
norm. If l r.0, the ~Moore–Penrose! generalized inverse
of T of rank r is computed as follows:

T r
25(

i 51

r Ui ^ Ui

l i
. ~18!

The root-mean-square~rms! error of an estimateF̂ is
defined by

rms~ F̂!5AE@ iP~ F̂2F̄!i2#. ~19!

SinceP is a projection, it follows that 0<rms(F̂)<1. From
Eq. ~15!, we may infer the lower bound

rms~ F̂!>Atr V @ F̂#, ~20!

where thetrace trT of a tensorT5(Ti jkl ) is defined by

trT5 (
k,l 51

3

Tklkl . ~21!

5 Algorithm

In this section, we describe our algorithm for computing t
flow fundamental matrix. The algorithm has two stag
First, we compute the matrixF without considering the
decomposability condition by applying a technique cal
renormalization.3 In the second stage, we impose the d
composability condition on the resultingF in a statistically
optimal manner.

5.1 Renormalization

The renormalization computation algorithm proceeds
follows:

1. Let c50, Wa51, a51, . . . ,N, andJ5`.
~In real computation, the symbol̀ means a very
large number, e.g., 1010.)

2. Compute the tensorsM5(Mi jkl ) andN5(Ni jkl ) de-
fined by

Mijkl5
1

N (
a51

N

WaSxa(i)ẋa(j)2xa(j)ẋa(i)

2
1xa(i)xa(j)D

3Sxa(k)ẋa(l)2xa(l)ẋa(k)

2
1xa(k)xa(l)D, ~22!
t

Nijkl5
1

N (
a51

N

WaS14~V0@xa# ikẋa( j )ẋa( l )

2V0@xa# i l ẋa( j )ẋa(k)2V0@xa# jkẋa( i )ẋa( l )

1V0@xa# j l ẋa( i )ẋa(k)!1 1
2 ~V0@xa# ikxa( l )ẋa( j )

1V0@xa# i l xa(k)ẋa( j )2V0@xa# jkxa( l )ẋa( i )

2V0@xa# j l xa(k)ẋa( i )1V0@xa# ikxa( j )ẋa( l )

2V0@xa# i l xa( j )ẋa(k)1V0@xa# jkxa( i )ẋa( l )

2V0@xa# j l xa( i )ẋa(k)!1 1
4 ~V0@ ẋa# j l xa( i )xa(k)

2V0@ ẋa# jkxa( i )xa( l )2V0@ ẋa# i l xa( j )xa(k)

1V0@ ẋa# ikxa( j )xa( l )!1V0@xa# ikxa( j )xa( l )

1V0@xa# i l xa( j )xa(k)1V0@xa# jkxa( i )xa( l )

1V0@xa# j l xa( i )xa(k)D , ~23!

where ẋa( i ) and xa( i ) are thei th components ofẋa

andxa , respectively, andV0@ ẋa# i j andV0@xa# i j are
the (i j ) elements ofV0@ ẋa# and V0@xa#, respec-
tively.

3. Compute the nine eigenvaluesl1>...>l9 of the
tensor M and the corresponding orthonormal s
$F1 , . . . ,F9% of eigenmatrices of unit norm.

4. Perform the following computation:
• Updatec as follows:

c←c1
l9

~F9 ,NF9!
. ~24!

• ComputeWa , a51, . . . ,N, such that

Wa5
1

~Wxa ,V0@ ẋa#Wxa!1@Wẋa12Cxa ,V0@xa#~Wẋa12Cxa!#
.

~25!

• Compute the tensorsM andN given in Eqs.~22!
and ~23!.

• Let

J8←J, J←~F9 ,MF9!. ~26!

• If J8,J, then letJ←J8. Else, compute the nine
eigenvaluesl1>...>l9 of the tensor

M̂5M2cN ~27!

and the corresponding orthonormal set$F1 , . . . ,F9%
of eigenmatrices of unit norm.

5. Repeat step 4 untilJ8<J or ul9u'0.
~This guarantees convergence.!

6. Let F take the valueF9 , this being our estimate o
the flow fundamental matrix.

The above procedure is based on the fact that, in
absence of noise,F̄ is the eigenmatrix of the moment tens
M defined by Eq.~22! with eigenvalue 0. It can be show
that, in the presence of noise, the moment tensorM is
statistically biased from its true value, to a first-order a
Journal of Electronic Imaging / April 2000 / Vol. 9(2) / 197
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Kanatani et al.
proximation, by a constant times the tensorN defined by
Eq. ~23!. So, using Eq.~27!, we iteratively remove the bia
in M in such a way that the smallest eigenvalue ofM
converges to zero.

5.2 Optimal Correction

We now apply a correction toF, aiming to shift it, via an
iterative scheme, to the ‘‘nearest’’ value that satisfies
decomposability condition. Our procedure will require
inputs the eigenvalues and eigenmatrices emerging f
the previous scheme. The steps of the method are as
lows:

1. Estimate the squared noise levelê2 as follows:

ê25
~F,MF!

128/N
. ~28!

2. Compute the normalized covariance tensor ofF
given by

V0@F#5
1

N (
i 51

8 Fi ^ Fi

l i
. ~29!

3. Set

D~F!5 (
i , j ,k,l ,m,n51

3

« ikl« jmnFi j FklFmn . ~30!

4. Repeat the following computation untilD(F)'0.
• Compute the matrixK5(Ki j ) defined by

Ki j 5 (
k,l ,m,n51

3

~« ikl« jmnFkl1« i jk« lmn~Fkl1Flk!!Fmn .~31!

• UpdateF as follows:

F←NFF2
D~F!V0@F#K

~K ,V0@F#K ! G , ~32!

where N@•# denotes the normalization operat
given byN@F#5F/iFi .

• Compute the projection tensorP5(Pi jkl ) such
that

Pi jkl 5d ikd j l 2Fi j Fkl . ~33!

• Update the normalized covariance tensorV0@F#
as follows:

V0@F# i jkl ← (
m,n,p,q51

3

Pi jmnPklpqV0@F#mnpq.

~34!

~Since errors inF should be orthogonal toF,
their domain should be altered asF is updated.!

Note that if we define the functionD(F) by Eq.~30!, the
decomposability condition~7! is written asD(F)50. It can
be shown3 that the estimateF resulting from the renormal
ization procedure has the normalized covariance ten
given in Eq. ~29!. The above procedure enforces the d
composability conditionD(F)50 on F by iteratively up-
datingF along the shortest path in the sense of theMahal-
198 / Journal of Electronic Imaging / April 2000 / Vol. 9(2)
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r

anobis distanceassociated with the normalized covarian
tensorV0@ F̂#. It can be shown that renormalization couple
with this type of correction produces a solution that atta
the theoretical accuracy bound in the first order.3

6 Epipoles and Epipolars

In this section, we give a theoretical bound on the accur
of computing epipoles and epipolars. Theepipole of the
flow is defined to be the point represented by the vectow
given by Eq.~3!:

xe5Z@w#. ~35!

HereZ@•# denotes normalization to make the third comp
nent 1. This epipole is the position in the image pointed
by the camera translation velocity, but its physical orien
tion cannot be determined unless the internal camera
rameters are given. Theepipolarsare defined to be the line
of the form

~na ,x!50, na5N@xa3xe#. ~36!

By definition, all the epipolars meet at the epipolexe . If the
camera does not rotate, the flow vectors diverge or c
verge along the epipolars. If the camera rotates, the fl
has a spiral pattern.

Since we know the lower bound on the covariance t
sor V @F#, we have the lower bound on the covarian
tensor ofW (5A@F#). Recalling the definition ofw given
in Eq. ~3!, we see that the lower bound on the covarian
matrix V@w# is given by

V @w# i j 5
1

4 (
k,l ,m,n51

3

« ikl« jmnV @F#klmn . ~37!

Hence, the lower bound on the covariance matrix of
epipolexe is given by

V@xe#5
Qx̄e

V@w#Qx̄e

T

~k,w̄!2
, ~38!

where the bars denote the true values and the projec
matrix Q is defined by

Qx5I2xkT. ~39!

Here k5(0,0,1)T is a unit vector in the direction of the
optical axis of the camera.

7 Simulated Image Examples

We now present results of simulations to demonstrate
our algorithm indeed delivers a solution in the vicinity
the theoretical accuracy bound.

Figure 1 shows two synthetic images (5123512 pixels!
of a 3D environment made up of grid patterns. These
ages are supposedly captured by a moving camera wi
varying focal length. The figure also shows the induc
optical flow vectors that pass through the midpoints of
corresponding points. Some of the epipolars are supe
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Fig. 1 Simulated images of a 3D scene and their flow and epipolars.
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posed. Random Gaussian noise of mean 0 and stan
deviations ~pixels! was added to thex and y coordinates
of each grid point independently, and the flow fundamen
matrix was computed by using the default noise mode
Eq. ~10!. The renormalization process converged after th
or four iterations. Figure 2~a! shows a plot of the root-

mean-squares errorASa51
100 iP(F̂a2F̄)i2/100 over 100 tri-

als for eachs using different noise each time, whereF̂a is

theath estimate,F̄ is the true value, andP is the projection
tensor defined in Eq.~33!. The symbolh denotes solutions
obtained via the method presented in this article, and
dotted line indicates the theoretical lower bound deriv
from Eq. ~20!. The symbold denotes renormalization so
lutions without applying the optimal correction of Sec. 5
The symbolD denotes solutions computed by the lea
squares method~algebraic distance minimization! that
minimizes the expression

1

N (
a51

N

~~xa ,Wẋa!1~xa ,Cxa!!2, ~40!

obtained directly from the epipolar equation~2!. Applying
this method, rather than our own, amounts to removing
iterations of step 4 in the renormalization procedure of S
5.1.

As we can see from Fig. 2~a!, the errors in our estimate
practically fall on the theoretical lower bound. Figure 2~b!
shows the average computation time on a Sun Ultra
rd

l

e

.

workstation~SunOS 5.6!. Naturally, the method takes mor
time than the least-squares method, but the theoretica
curacy bound is attained only at this higher computatio
cost.

Figure 3~a! shows an enlargement near the epipole~out-
side the image frame!, in which we plot the epipoles com
puted 100 times using different noise each time fors
50.5 ~pixels!. The ellipse depicts the lower bound on th
standard deviation in each orientation. It is computed fr
the covariance matrixV@xe# given in Eq.~38! and is cen-
tered on the true epipolex̄e . Again, the indications are tha
the errors in our estimates conform to the theoretical low
bound. Figure 3~b! shows the corresponding result for th
least-squares solutions; it is evident that the distribution
a large statistical bias.

The optimality of our algorithm implies that we ca
evaluate the reliability of our solution by simply computin
the right-hand side of Eq.~15!. Since it is expressed in
terms of the true values$x̄̇a , x̄a%, W̄, C̄, ande2, we replace

them with the data$ẋa , xa% and the computed estimatesŴ
andĈ. The square noise levele2 is estimated by Eq.~28!.

8 Real Image Examples

Here, we show two real image examples of contrasting
tures. One uses large displacements of salient fea
points; the other uses optical flow detected by the conv
tional method based on the gradient constraint.
Fig. 2 Accuracy and efficiency of computation: our solutions (h), solutions without the optimal cor-
rection (d), and least-squares solutions (n). (a) Root-means-squares error. The dotted line indicates
the theoretical lower bound. (b) Average computation time (in seconds).
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Kanatani et al.
Figure 4 shows two images (7683512 pixels! of an in-
door scene taken by a moving camera with varying zoo
Feature points were located manually, and the flow fun
mental matrix was computed by using the default no
model of Eq.~10!. The computed epipoles and epipola
are superimposed over the extracted flow. The inheren
liability of the epipole is 12.8 pixels, which is obtained b
computing AtrV@xe# after substituting the data and th
computed solution into Eqs.~38!.

As mentioned earlier, optical flow computed by the co
ventional gradient constraint method is unlikely to be s
ficiently accurate for 3D reconstruction if the interfram
difference is very small or the scene consists of patche
almost uniform gray levels. Nevertheless, our techniq
can be applied to flow of this kind if more readily obtaine
information, such as the locations of epipoles, is to be
tracted.

Figure 5~a! shows optical flow computed from two con
secutive images (3003220 pixels! of a road scene viewed
from a vehicle moving forward. The flow was detected u
ing the standard method based on the gradient constrai24

the flow components are displayed every 5 pixels. The
variance matrix of each flow component was evalua
from the residual of fitting the gradient constraint to t
gray levels.19,24 The flow fundamental matrix was com
puted from this flow by using the covariance matrices th
evaluated. Figure 5~b! shows the computed epipole and
uncertainty ellipse superimposed in the original image.

The detected flow is very small and not very accur
because a large portion of the scene, including the r
surface, is of almost uniform gray levels. Hence, the co
puted epipole has a relatively large uncertainty as compa
with that in Fig. 4, which was determined by large displac
ments of salient feature points. The important factor
however, that our method enables us to evaluate the un
tainty of our computation in quantitative terms: the ellip
in Fig. 5~a! indicates the theoretical lower bound on t

Fig. 3 Reliability of the epipole. The ellipses indicate the theoretical
lower bound on the standard deviation in each orientation. (a) Our
solutions. (b) Least-squares solutions.
200 / Journal of Electronic Imaging / April 2000 / Vol. 9(2)
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covariance, so the epipole estimation cannot be impro
any further for this particular flow. This type of evaluatio
is crucial in practical applications involving optical flow
because the accuracy of optical flow varies dramatica
from situation to situation.

9 Program Package

The algorithm described in this article is implemented
C11 and is placed on our Web pag
~http://www.ail.cs.gunma-u.ac.jp/~kanatani/e! as a public-
domain program. It outputs a solutionF̂ along with itsstan-
dard deviation pair$F(1),F(2)%. These two matrices are

the values in the parameter space that are separated froF̂
by the standard deviation in the two directions along wh
errors are most likely to occur. Letlmax be the maximum
eigenvalue of the tensor on the right-hand side of Eq.~15!

computed after substituting the data and the estimateF̂ for
their true values, and letUmax be the corresponding eigen
matrix of unit norm. The primary deviation pair is define
by

F(1)5N@ F̂1AlmaxUmax#, F(2)5N@ F̂2AlmaxUmax#.
~41!

If F(1) andF(2) coincide up to, say, three significant digit

the solutionF̂ is likely to have accuracy up to approx
mately three significant digits. Thus, the reliability of th
computed solution is evaluated in quantitative terms.

The flow fundamental matrix cannot be defined uniqu
if the feature points are in a degenerate configuration. T
occurs, for example, when the camera translation is zer
all the feature points are on a special quadric called acriti-
cal surface, a typical instance of which is a planar surface9

If lmax in Eq. ~41! is predicted to be approximately 1 in th
course of computation, the program judges that degene
has occurred and stops the computation after issuin
warning message.

10 Concluding Remarks

An algorithm is presented for computing the flow fund
mental matrix from a set of corresponding points over t
images in the presence of independent Gaussian noise
may be anisotropic and inhomogeneous. The problem
mulation is stated optimally relative to the assumed no
model. The computation is divided into two stages: estim
tion of the flow fundamental matrixF by renormalization
without considering the decomposability condition and c
rection ofF in order to impose the condition. Experimen
indicate that the obtained estimates are in the vicinity of
Fig. 4 Real images of an indoor scene, and the epipoles and epipolars.



Fundamental matrix from optical flow
Fig. 5 (a) Optical flow computed from two consecutive images of a road scene. (b) The estimated
epipole and its uncertainty ellipse.
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theoretical accuracy bound. Also, the reliability of the co
puted solution is evaluated in quantitative terms. T
evaluation process is illustrated by computing the epipo
and epipolars from simulated and real images. Our al
rithm is implemented as a public-domain program in C11.
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6. T. Viéville and O. D. Faugeras, ‘‘The first order expansion of moti
equations in the uncalibrated case,’’Comput. Vis. Image Underst
64~1!, 128–146~1996!.

7. R. I. Hartley, ‘‘Estimation of relative camera position for uncalibrat
cameras,’’ inProceedings of the 2nd European Conference Compu
Vision, May 1992, Santa Margherita Ligure, Italy, Lecture Notes in
Computer Science, Springer, Berlin~1992!, Vol. 588, pp. 579–587.

8. Q.-T. Luong and O. D. Faugeras, ‘‘Self-calibration of a moving ca
era from point correspondences and fundamental matrices,’’Int. J.
Comput. Vis.23~3!, 261–289~1997!.

9. G. N. Newsam, D. Q. Huynh, M. J. Brooks, and H.-P. Pan, ‘‘Rec
ering unknown focal lengths in self-calibration: An essentially line
algorithm and degenerate configurations,’’Int. Arch. Photogram. Re-
mote Sensing,31-B3-III , 575–580~1996!.

10. A. Bab-Hadiashar and D. Suter, ‘‘Robust optic flow computation
Int. J. Comput. Vis.29~1!, 59–77~1998!.

11. J. L. Barron, D. J. Fleet, and S. S. Beachemin, ‘‘Performance
optical flow techniques,’’Int. J. Comput. Vis.12~1!, 43–77~1994!.

12. M. J. Black and A. D. Jepson, ‘‘Estimating optical flow in segmen
images using variable-order parametric models with local defor
tions,’’ IEEE Trans. Pattern Anal. Mach. Intell.18~10!, 972–986
~1996!.

13. J. W. Brandt, ‘‘Improved accuracy in gradient-based optical flow
timation,’’ Int. J. Comput. Vis.25~1!, 1–22~1997!.

14. S.-H. Lai and B. C. Vemuri, ‘‘Reliable and efficient computation
optical flow,’’ Int. J. Comput. Vis.29~2!, 87–105~1998!.

15. A. Mitiche and P. Bouthemy, ‘‘Computation and analysis of ima
-

n

motion: A synopsis of current problems and methods,’’Int. J. Com-
put. Vis.19~1!, 29–55~1996!.

16. N. Ohta, ‘‘Optical flow detection using a general noise mode
IEICE Trans. Inf. & Syst.E79-D~7!, 951–957~1996!.

17. N. Ohta, ‘‘Uncertainty models of the gradient constraint for optic
flow computation,’’ IEICE Trans. Inf. & Syst.E79-D~7!, 958–964
~1996!.

18. L. Zhang, T. Sakurai, and H. Miike, ‘‘Detection of motion field
under spatio-temporal non-uniform illumination,’’Image Vis. Com-
put. 17~3/4!, 309–320~1999!.

19. N. Ohta and K. Kanatani, ‘‘Optimal structure-from-motion algorith
for optical flow,’’ IEICE Trans. Inf. & Syst.E78-D~12!, 1559–1566
~1995!.

20. W. Förstner, ‘‘Reliability analysis of parameter estimation in line
models with applications to mensuration problems in computer
sion,’’ Comput. Vis. Graph. Image Process.40, 273–310~1987!.

21. D. D. Morris and T. Kanade, ‘‘A unified factorization algorithm fo
points, line segments and planes with uncertainty models,’’ inPro-
ceedings of the International Conf. Comput. Vision, January 19
Bombay, India, Narosa Publishing House, New Delhi~1998!, pp.
696–702.

22. J. Shi and C. Tomasi, ‘‘Good features to track,’’ inProc. IEEE Conf.
Comput. Vision Patt. Recogn., June 1994, Seattle, WA, IEEE Com-
puter Society Press, Los Alamitos, CA~1994!, pp. 593–600.

23. A. Singh, ‘‘An estimation-theoretic framework for image-flow com
putation,’’ in Proc. 3rd Int. Conf. Comput. Vision, December, 199
Osaka, Japan, IEEE Catalog No. 90CH3934-8, pp. 168–177.

24. N. Ohta, ‘‘Image movement detection with reliability indices,’’IEICE
Trans.E79~10!, 3379–3388~1991!.

Kenichi Kanatani received his PhD in ap-
plied mathematics from the University of
Tokyo, Japan, in 1979. He is currently a
professor of computer science at Gunma
University, Japan. He is the author of
Group-Theoretical Methods in Image Un-
derstanding (Springer, 1990), Geometric
Computation for Machine Vision (Oxford,
1993) and Statistical Optimization for Geo-
metric Computation: Theory and Practice
(Elsevier, 1996).

Yoshiyuki Shimizu received his MSc in
computer science from Gunma University,
Japan, in 2000. He engages in research
and development at Sharp, Ltd.
Journal of Electronic Imaging / April 2000 / Vol. 9(2) / 201



Kanatani et al.
Naoya Ohta received his PhD degree from
the University of Tokyo, Japan, in 1998. He
was with the Pattern Recognition Research
Laboratories of NEC and engaged in re-
search and development of image process-
ing systems. He is currently an associate
professor of computer science at Gunma
University, Japan. He was a research affili-
ate of the Media Laboratory in MIT, from
1991 to 1992.

Mike Brooks received his PhD from the
University of Essex in 1983, and presently
holds the Chair in Artificial Intelligence at
the University of Adelaide. He is a program
leader within the Cooperative Research
Center for Sensor Signal and Information
Processing, and a member of the Austra-
lian Research Council’s Information Tech-
nology and Electrical Engineering Large
Grants Panel.
202 / Journal of Electronic Imaging / April 2000 / Vol. 9(2)
Wojciech Chojnacki is a professor of
mathematics in the Institute of Applied
Mathematics and Mechanics at the Univer-
sity of Warsaw. He is concurrently a senior
research fellow in the Department of Com-
puter Science at the University of Adelaide,
working on a range of problems in com-
puter vision. His research interests include
differential equations, mathematical foun-
dations of computer vision, functional
analysis, and harmonic analysis.

Anton van den Hengel received his MSc
in computer science from the University of
Adelaide in 1994. He is currently a lecturer
in the Department of Computer Science
within the same university and in the pro-
cess of submitting a PhD thesis.


