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Abstract. The optical flow observed by a moving camera satisfies,
in the absence of noise, a special equation analogous to the epipo-
lar constraint arising in stereo vision. Computing the “flow funda-
mental matrix” of this equation is an essential prerequisite to under-
taking three-dimensional analysis of the flow. This article presents
an optimal formulation of the problem of estimating this matrix under
an assumed noise model. This model admits independent Gaussian
noise that is not necessarily isotropic or homogeneous. A theoretical
bound is derived for the accuracy of the estimate. An algorithm is
then devised that employs a technique called renormalization to de-
liver an estimate and then corrects the estimate so as to satisfy a
particular decomposability condition. The algorithm also provides an
evaluation of the reliability of the estimate. Epipoles and their asso-
ciated reliabilities are computed in both simulated and real-image
experiments. Experiments indicate that the algorithm delivers re-
sults in the vicinity of the theoretical accuracy bound. © 2000 SPIE
and IS&T. [S1017-9909(00)01202-2]

1 Introduction

Two distinct approaches are available for extracting three-
dimensional(3D) information from motion images. One
utilizes data in the form apoint correspondences*while

the other exploits data in the form optical flow; which is
theoretically an instantaneous velocity field over the image

3D structure of the scene, in an analytically closed form by
regarding the image motion as infinitesim&lA similar
analysis can be carried out using the fundamental métfix,
but it requires many stages of complicated analysis and
computation.

Optical flow analysis relies heavily upon the accuracy of
the optical flow estimation. Usually, optical flow is deter-
mined by applying a differential equation called tedi-
ent constrainto the gray levels of the imagé%:*8This has
the advantage that the flow can be detected over the image
frame via a single operation. However, this process in-
volves many stages of approximation such as replacing dif-
ferentials by finite differences, imposing smoothness con-
straints, and applying regularization methods. As a result,
the accuracy of the detected flow is not high enough for 3D
reconstruction of the scene. In order to obtain accurate
flow, we need to trace individual feature points directly by
the same means as those used for finite motion, such as
template matching and spatio-temporal analysis. In this ar-
ticle, we assume that optical flow has been obtained with
high accuracy for a limited number of salient feature points.

If the images are captured by a camera moving through

frame. Under this latter approach, we can compute the 3D2 stationary scene, the associated optical flow satisfies, in
motion of the camera and the focal length, and hence thefh® absence of noise, a motion equation of special form.
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This equation is analogous to the epipolar equation arising
in stereo vision. The coefficients of the motion equation can
be expressed in terms of a matrix, which plays the same
role as the fundamental matrix in stereo analysis. For this
reason, we call it thélow fundamental matrixThe main



Fundamental matrix from optical flow

purpose of this article is to compute the matrix as accu-(x,,Wx,)+(x,,Cx,)=0, 2)
rately as possible from noisy data.

Ouir first step is to study the behavior of the noise, which where W=(W,) is an antisymmetric matrix andC
is the cause of deterioration in accuracy. Having presented:(c__) is a sy%metric matrix. Throughout this article, we
a mathematical model of noise, we can work towards an "': by &.b) the i d. t of th t db '
optimal solution under that model by employing statistical enote by a’. ) the inner product o [ne vectoesandp.
analysis. If a specific statistical model of noise is assumed, 1he matricesW and C are not independent of each
an optimal computational method for that model can be other. If the nondiagonal elements of the mati are
derived; if another model is assumed, another methodrearranged in the form
should be derived. The assumed model should be clearly
stated from the outset, and the computational method W3,
should be derived with respect to the model. It is in follow- w=| Wi3], (3
ing this methodology that our approach goes beyond the W,,
original works in this domaii® A further advance is
achieved in that our performance evaluation takes into ac-the following relationship holds:
count a newly derivedheoretical accuracy boundf the
method does not attain that bound, there is room for im- (W,CwW)=0 4)
provement; if the bound is attained, no further improve- * '

ment is possible. We call this thedecomposability conditian

In this article, we describe a procedure for computing The epipolar equatiof?) and the decomposability con-
the flow fundamental matrix under the model that noise is ... PP quatiot P Hy
small, independent, and Gaussian but not necessarily isoXition (4) together constitute a necessary and sufficient con-
tropic or homogeneous: the noise behavior may be differentdition for the flow to be induced on the image plane by an
from point to point and dependent on orientation. We de- |nf|nr|rt1e'r5|r|n<';1ilv mtotlon tOfti an nrwovmg%é:%rﬂeranwgth \aara/vl:g
rive a theoretical accuracy bound under the assumed mode,?ﬁa(l)t if V\;eeakngw (,[)h: r?qaatri?:e%/yasn%ec tb witﬁ?n a (?orsnngon
and demonstrate by experiments that our algorithm deIiversscale factor. we can comoute the 3D motion of the camera
results in the vicinity of the bound. In this sense, the algo- ’ P

rithm is optimal. and the focus, hence the 3D structure of the scene, in an
The algorithm has the added advantage that it can evalu-anaw'calx hcloster? forn, ?_ur main gonf[:(ka)rn hte_re ,:S dtheth
ate the reliability of the solution automatically. This implies ?ues ||on orhow these matrices may best be estimated in the
that if we carry out 3D reconstruction based on the com- Irst place. . . . .
puted flow fundamental matrix, we can also evaluate the _=Stimating the matrice®/ and C is equivalent to esti-
reliability of the recovered 3D structure. mating their sum
If the camera is calibrated and the imaging geometry can
be modeled as perspective projection with a known focal F=W+C, 5
length, extra constraints are imposed on the flow funda-
mental matrix A statistically optimal algorithm for com- ~ sinceW andC are given by
puting the flow fundamental matrix in this case has already
been proposed, and the reliability of the resulting 3D recon-W=A[F], C=9YF], (6)
struction was evaluated in quantitative terid$ The algo-
rithm presen.t(.-:‘d hel’e. i.S obtained from it by I’elaxing the WhereA[.] andS[.] denote, respective|y, the antisymme_
decomposability condition. trization and symmetrization operations defined AjyA]
=(A—A?/2 andFA]=(A+AT/2.
2 Elow Eundamental Matrix The matr_ix_F play_s a _similar role to the funda_mental
. : _ _ o _ ~ matrix for finite motion image&™* In fact, the epipolar
In this section, we give basic definitions and terminologies equation(2) can be derived from the epipolar equation for
used throughout this article. finite motion images in the limit of infinitesimal motioh.
Let {(X,.Yo)} and{(x..y.)}, a=1,... N, be image  For this reason, we calf theflow fundamental matrixThe
coordinateqin pixels) of two sets ofN points on two dif- decomposability condition(4) corresponds to the well
ferent images. Here, separate rectangular coordinate sysknown constraint on the finite motion fundamental matrix
tems are assumed for each camera. We define the “flow” that it should have rank 2.

and the “midpoint” of theath point as From the epipolar equatiof2), we observe that the ma-
trices W and C have scale indeterminacy and hence the
(X" —x,)/fo (x,+X.,)12f, scale ofF is also indeterminate. So, we adopt the normal-
o (y?_ya)/f - (y“+yf')/2f o ization ||F||=1, where the norm of a matrid = (A;;) is
“ “ Oa 0] e 7 o defined by||A]|=VX7,_,A%. In terms of the flow funda-

mental matrixF= (Fj;), the decomposability conditio#)

wheref is a scale facto(for example, we can take this to Is expressed in the following form:

be the size of the image framehosen so thak,/f, 3
Yolfo, X, /o, andy./fy have order 1. The two sets of e FFuE. =0 7
points satisfy the followingepipolar equation®>®1° ik nz1 CKEImAT T mn @)
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Here,sjj, is the Eddington epsilon, taking values 1 and whereE[ -] denotes expectation. The operatordenotes
if (ijk) is an even and odd permutation @f23), respec-  the tensor product: for matricés=(A;;) andB=(B;;), the
tively, and O otherwise. (ijkl) element ofA® B is A;;By . For tensorsP= (P”k,)
and7=(Tjjq), the matrix producP7TP7is a tensor whose
(ijkl) element |52mn 0.0 1P,JmnPk,qumnpq The (jkl)
leement of the tensgP= (Pj;y) in Eq. (11) is given by

3 Statistical Model of Noise

In this section, we state our assumptions about the nature o
the image noise, on which the subsequent statistical analy-
sis is based.
_ Letx, andX, be the true values of, andx,, respec-  pere & is the Kronecker delta, taking 1 for=j and 0
tively, in the absence of noise. We write

otherwise. Define thenoment tensoi = (M,Jk|) by

Pijki = ik Sj1 — EijEkI- (12

Xo=XotAX,, X=X, +AX, (8) B 1N E(i)x_a(')—Y Ry —
. . _ Mig=— > W D _ZalDZal) 45
and regard\x,, andAx, as independent Gaussian random KT N & @ 2 a(D)a()
variables of mea® but not necessarily isotropic or homo-
geneous. LeV[x,] andV[x,] be the covariance matrices
of vectorsx,, andx,, respectively. In practice, we need not
know their absolute values; it suffices to know themto a

common scale factoSo, we write whereX ;) andX,; are theith components ok, andx,,
9) respectively. The scalal, is defined by

Xa@yXa() ™ Xa()Xa(k)

x > +7a(k)7a(|)) ; 13

V[ Xa] = 62VO[ Xa] ’ V[Xa] = EZVO[ Xa] ’

and assume tha¥o[x,] and Vg[X,], which we call the _ 1

normalized covariance matricesire known but the con- © WK, Vo[ X, JWX,) + [WX,+ 2CX,, Vo[ X, ](Wx, +2Cx,)] (14)
stante, which we call thenoise levelis unknown. Since the . .

third components ok, andx, are constants, the matrices whereW andC are the true values of the matricés and
Vo[%,] and Vq[x,] are singular with third columns and C. According to the general theory of Kanatahthe lower

third rows filled with zeros. bound on the covariance tenspfF] is given by
The normalized covariance matrices can be estimated
from the residual of template matching or optical flow &2

detectior?®2%If the noise can be assumed to have the sameV[F]>—(PSMPST); (15

isotropic distribution for all %,,y,) and &..y.), «

=1,...,N, we have where7> S for tensors7 andS means thaf— S is a posi-
) ) . tive semidefinite tensor, and the operatiof, ( denotes the
VolX,]=2diag1,1,0), Vo[x,]= zdiag1,1,0), (10 (Moore—Penrosegeneralized inverse of rank (discussed

: o . . later. The (ijkl) element of the tensdPSZ(PﬁH) in Eq.
where diag(...) signifies the usual diagonal matrix. We use(ls) is given as follows:

these as the default values when no information is available
about the noise behavior. _

Our goal is to estimate the flow fundamental maffix PS _5 s Kij Ky (16)
that satisfies the epipolar equation for the true valties ikt ARG e
X,} from their noisy observation$x,, , X,}.

N

HereK = (Ej) is defined by

4 Theoretical Accuracy Bound 3

In this section, we present a theoretical bound on the accuy.. = = > [Sik|8jmnEk|+8ijk8|mn(Ek|+E|k)]Emn-
racy with which the flow fundamental matrik may be kJ,mn=1
estimated, under the statistical model of image noise de- a7

scribed in the preceding section.

Let F be an estimate of the flow fundamental matrix.
Regarded as a function of the random varialdgandx,, ,

For a tensof7=(Tj), @ matrixA=(A;;), and a scalax,
we say thatA is aneigenmatrixof 7 with eigenvaluex if
i . } TA=\A, where the productZA is a matrix whose if)
the estimaté- is also a random variable based on the same o ant iszi,l:lTijklAkl- The eigenmatrices and eigenval-

probability space as that upon whigh andx, are based. o4 of 5 tensor can be computed by identifying a tensor and
Let F be the true value of the flow fundamental matrix. The a matrix with a 99 matrix and a 9-\/90'[0?}'_

uncertainty of the estimate is measured by itsovariance A tensor 7=(Tjj) is said to besymmetricif T

tensor =Ty;ij - A symmetric 33X 3X 3 tensor has nine real ei-
genvalueq\;}. The corresponding eigenmatricfd;} can

V[FI=E[P(F-F)®(F-F))P7], (11 be chosen to be an orthogonal system of matrices of unit
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norm, where the inner product of matricés=(A;;) and
B=(B;;) is defined by A;B)=Eﬁj:1AijBij . A symmetric
tensor ispositive semidefinité its eigenvalues are all non-
negative.

Let A;=...=\q (=0) be the eigenvalues of a positive
semidefinite symmetric tensdf, and let{U,, ... ,Ug} be
the corresponding orthonormal set of eigenmatrices of unit
norm. If \,>0, the (Moore-Penrosg generalized inverse
of 7 of rankr is computed as follows:

U®U,
N

(18

r
i=1

T =2

The root-mean-squargrms) error of an estimateF is
defined by

rms(F) = VE[ | P(F—F)|?].

(19

SinceP is a projection, it follows that & rms(F)<1. From
Eq. (15), we may infer the lower bound

rms(le)z \ir V[IE],

where thetrace tr7 of a tensor7=(T;;y) is defined by

(20

3

tr7= kél Tklkl . (21)

5 Algorithm

In this section, we describe our algorithm for computing the
flow fundamental matrix. The algorithm has two stages.
First, we compute the matri¥ without considering the
decomposabilig condition by applying a technique called
renormalizatiorr In the second stage, we impose the de-
composability condition on the resultifgin a statistically
optimal manner.

5.1 Renormalization

The renormalization computation algorithm proceeds as
follows:

1. Letc=0,W,=1,a=1,... N, andJ=o,
(In real computation, the symbeb means a very
large number, e.g., 18)

2. Compute the tensorst=(M;j) and/N=(N;jy ) de-
fined by
1 [Ratal) = Xeti¥et)
_ a(i)a(] a(j) i
Mija = azl Wa(f +Xa(i)xa(j>)
Xakxa| _Xalxak
X( ® ()2 0 ()+Xa(k)xa(|)), 22

18 N
Nij =7 azl Wa| 7 Vol XalikXagjyXaq)

= Vol XaliXa(j)Xak) — Vol XaljXa(i)Xa()

+ Vol Xalji Xa(iyXagk) + 3 (Vo[ XalikXa()Xa())
+ Vol XeliXaXa() =~ Vol XaljXa()Xa(i)

= Vol XeljiXaXa(i) T Vol XalikXa(j)Xa()

= Vol XoJiXa(jyXa(o T Vol XaljikiXagi)Xa()

= Vol XaljiXa(iyXag) + 7 (Vo[ Xalji Xa(iyXack)
= Vol XeljkXaiyXa() = Vol XaliXa())Xa(k)

+ Vol XelikXa(j)Xa()) T Vol XalikXa()Xa()

+ Vol XeliXa(j)Xak) T Vol XaljiXa(iyXa()

+ Vol XeljiXaiyXa@) | » (23

where X,y and X, are theith components ok,
andx,, respectively, and/q[ X, ]i; andVq[x,];; are
the (ij) elements ofVy[x,] and Vy[X,], respec-
tively.

3. Compute the nine eigenvalués=...=\q of the
tensor M and the corresponding orthonormal set
{F1, ... Fg} of eigenmatrices of unit norm.

4. Perform the following computation:

e Updatec as follows:

Lt (24)
C—CH——r.
(Fo, NFg)
e ComputeW,,, a=1,... N, such that
_ 1
We= (W, Vo[ X JWx ) + [ W, +2Cx, , Vo[ X] (WX, +2Cx,)] 25)

» Compute the tensors1 and NV given in Eqs.(22)
and(23).

e Let
J'—J, J—(Fg,MFy). (26)

o If J’<J, then letJ«<J'. Else, compute the nine
eigenvalues\;=...=\4 of the tensor
M=M-cN (27)

and the corresponding orthonormal $Bt, . . . ,Fg}

of eigenmatrices of unit norm.

5. Repeat step 4 until’<J or |\g|~0.

(This guarantees convergence.

6. LetF take the valud=, this being our estimate of

the flow fundamental matrix.

The above procedure is based on the fact that, in the
absence of noisé; is the eigenmatrix of the moment tensor
M defined by Eq(22) with eigenvalue 0. It can be shown
that, in the presence of noise, the moment tenkoris
statistically biased from its true value, to a first-order ap-
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proximation, by a constant times the tengdrdefined by  anobis distancessociated with the normalized covariance
Eqg. (23). So, using Eq(27), we iteratively remove the bias  tensory,[ F]. It can be shown that renormalization coupled
in M in such a way that the smallest eigenvalue/ef  \yith this type of correction produces a solution that attains
converges to zero. the theoretical accuracy bound in the first ordler.

5.2 Optimal Correction

We now apply a correction tB, aiming to shift it, via an
iterative scheme, to the “nearest” value that satisfies the : ; . .
of computing epipoles and epipolars. Tepipole of the

decomposability condition. Our procedure will require as . : .
inputs the eigenvalues and eigenmatrices emerging fromfIOW is defined to be the point represented by the veator

the previous scheme. The steps of the method are as folgiven by Eq.(3):

6 Epipoles and Epipolars
In this section, we give a theoretical bound on the accuracy

I :
ows Xe=Z[W]. (39
1. Estimate the squared noise le¢élas follows: o .
(F, MF) q HereZ[ - ] denotes normalization to make the third compo-
2" (28) nent 1. This epipole is the position in the image pointed to
1-8/N by the camera translation velocity, but its physical orienta-
2. Compute the normalized covariance tensor Fof  tion cannot be determined unless the internal camera pa-
given by rameters are given. Thepipolarsare defined to be the lines
8 of the form
VIF)= £ 3, o 29
NE N (Ng,X)=0, N =N[X,XXe]. (36)
3. Set _— . .
3 By definition, all the epipolars meet at the epiprje If the
DF)= > et imnFi FiF (30) camera does not rotate, the flow vectors diverge or con-
i jmn™ij mn-

iikfmn=1 verge along the epipolars. If the camera rotates, the flow
has a spiral pattern.

4. Repeat the following computation unbi(F)~0. Since we know the lower bound on the covariance ten-

* Compute the matriX = (Kj;) defined by sor V[F], we have the lower bound on the covariance
3 tensor ofW (=A[F]). Recalling the definition ofv given
Kij:k|%:l (eikejmnF it gijkeimn(Fit Fik)) Fmn-(31) 'r?]afr?).((\:/?{,v\ﬁ\lfssgeiset:iagythe lower bound on the covariance
e UpdateF as follows: 1 2
N D(F)V,[FIK @ V[W]”:Zk,h%: ik1&jmn Y[ Flkimn- 37
(K Vol FIK) |

Hence, the lower bound on the covariance matrix of the
where N[ -] denotes the normalization operator epipolex, is given by
given by N[F]=F/|F|.

- Compute the projection tens@=(P;;,) such %V[W]Qi
that V[Xe]= ———, (38)
(k,w)?
Pijki = Sik 61 — FijFi - (33 L
where the bars denote the true values and the projection
« Update the normalized covariance ten3gfF] matrix Q is defined by
as follows:
Q.=1—xk”. (39
3
Vol Flijui— 2 PiimnPxipgVol Flmnpa- Here k=(0,0,1) is a unit vector in the direction of the
m.n.p,g=1 optical axis of the camera.

(39

(Since errors inF should be orthogonal t&,  / Simulated Image Examples
their domain should be altered Bsis updated. We now present results of simulations to demonstrate that
our algorithm indeed delivers a solution in the vicinity of
Note that if we define the functiod (F) by Eq.(30), the the theoretical accuracy bound.

decomposability conditioli7) is written asD (F) =0. It can Figure 1 shows two synthetic images (54212 pixels
be shown that the estimat& resulting from the renormal-  of a 3D environment made up of grid patterns. These im-
ization procedure has the normalized covariance tensorages are supposedly captured by a moving camera with a
given in Eq.(29). The above procedure enforces the de- varying focal length. The figure also shows the induced
composability conditiorD(F)=0 on F by iteratively up- optical flow vectors that pass through the midpoints of the
datingF along the shortest path in the sense of Mehal- corresponding points. Some of the epipolars are superim-
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Fig. 1 Simulated images of a 3D scene and their flow and epipolars.

posed. Random Gaussian noise of mean 0 and standardiorkstation(SunOS 5.6 Naturally, the method takes more
deviationo (pixels) was added to th& andy coordinates  time than the least-squares method, but the theoretical ac-
of each grid point independently, and the flow fundamental curacy bound is attained only at this higher computational
matrix was computed by using the default noise model of cost.
Eg. (10). The renormalization process converged after three  Figure 3a) shows an enlargement near the epipolet-
or four iterations. Figure () shows a plot of the root- side the image framein which we plot the epipoles com-
mean-squares errov/Ei(iol\\P(lia—E)l\zlloo over 100 tri- puted 1_00 times usi_ng differ_ent noise each time éor

i ] ) i A =0.5 (pixels). The ellipse depicts the lower bound on the
als for eacho using different noise each time, whefis  gandard deviation in each orientation. It is computed from
theath estimateF is the true value, an® is the projection  the covariance matri¥/[x.] given in Eq.(38) and is cen-
tensor defined in E¢33). The symbol]l denotes solutions  tered on the true epipole . Again, the indications are that
obtained via the method presented in this article, and thethe errors in our estimates conform to the theoretical lower
dotted line indicates the theoretical lower bound derived bound. Figure @) shows the corresponding result for the
from Eq. (20). The symbol® denotes renormalization so- least-squares solutions; it is evident that the distribution has
lutions without applying the optimal correction of Sec. 5.2. a large statistical bias.
The symbolA denotes solutions computed by the least- The optimality of our algorithm implies that we can
squares methodalgebraic distance minimizationthat evaluate the reliability of our solution by simply computing

minimizes the expression the right-hand side of Eq(l5). Since it is expressed in

N terms of the true valuei,, , X,}, W, C, ande?, we replace
1 > (%, ,Wx,)+(x,,Cx,))> (40) them with the datdx,, , x,} and the computed estimatés
N = @ o a o 1

andC. The square noise levef is estimated by Eq(29).

obtained directly from the epipolar equati@®). Applying

this method, rather than our own, amounts to removing the

iterations of step 4 in the renormalization procedure of Sec.8 Reéal Image Examples

5.1. Here, we show two real image examples of contrasting na-
As we can see from Fig.(@), the errors in our estimates tures. One uses large displacements of salient feature

practically fall on the theoretical lower bound. Figuré@ points; the other uses optical flow detected by the conven-

shows the average computation time on a Sun Ultra-30tional method based on the gradient constraint.

0.8 —
0.12 o
7 0.7 I
& o ]
0.1 ”l-‘f' 0.6 e ” 4}/_.'\.
A o P and
" 0.5 a7 g™
0.08 / : A
04 | pro—o—a= e
0.06 s L o
[
y 0.3
0.04 &
A 02
L B
0.02 - P = o
Md—’—ﬁif" et o
0 0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
c o

(a) (b)

Fig. 2 Accuracy and efficiency of computation: our solutions ([J), solutions without the optimal cor-
rection (@), and least-squares solutions (A). (a) Root-means-squares error. The dotted line indicates
the theoretical lower bound. (b) Average computation time (in seconds).
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covariance, so the epipole estimation cannot be improved
any further for this particular flow. This type of evaluation
is crucial in practical applications involving optical flow

L N g because the accuracy of optical flow varies dramatically
o R from situation to situation.

9 Program Package
The algorithm described in this article is implemented in

@ ®) C++ and is placed on our Web page
Fig. 3 Reliability of the epipole. The ellipses indicate the theoretical (http:/www.ail.cs.gunma-u.ac.jiKanatani/¢ as a public-
lower bound on the standard deviation in each orientation. (a) Our domain program. It outputs a squti@nanng with itsstan-

solutions. (b) Least-squares solutions. dard deviation pair{F{*),F(-)}, These two matrices are

the values in the parameter space that are separated=from
Figure 4 shows two images (78%12 pixels of an in- by the standard deviation in the two directions along which
door scene taken by a moving camera with varying zoom.errors are most likely to occur. Let,, be the maximum
Feature points were located manually, and the flow funda-eigenvalue of the tensor on the right-hand side of @#§)

mental matrix was computed by using the default noise computed after substituting the data and the estirfafter
model of Eq.(10). The computed epipoles and epipolars their trye values, and Idfi,., be the corresponding eigen-
are superimposed over the extracted flow. The inherent re{atrix of unit norm. The primary deviation pair is defined
liability of the epipole is 12.8 pixels, which is obtained by

computing VJtrV[x.] after substituting the data and the

computed solution into Eq$38). (F)— NTEL () NTE—

As mentioned earlier, optical flow computed by the con- F NIFH Amolmad,  F NLF )\mapmax]-(41)
ventional gradient constraint method is unlikely to be suf-
ficiently accurate for 3D reconstruction if the interframe |t F(+) andF(~) coincide up to, say, three significant digits,
difference is very small or the scene consists of patches ofth lutionE is likelv to h i .
almost uniform gray levels. Nevertheless, our technique € solutiont IS 1ik€ly to have accuracy up 1o approxi-
can be applied to flow of this kind if more readily obtained mately three significant digits. Thus, the reliability of the

information, such as the locations of epipoles, is to be ex- 0MPuted solution is evaluated in quantitative terms.
tracted. The flow fundamental matrix cannot be defined uniquely

Figure Sa) shows optical flow computed from two con- if the feature points are in a degenerate configuration. This

secutive images (300220 pixels of a road scene viewed occurs, for example, when the camera translation is zero or
. . all the feature points are on a special quadric calledta

from a vehicle moving forward. The flow was detected us- S e

ing the standard metﬁod based on the gradient constfaint: cal surface a typical instance of which is a planar surfdce.

the flow components are displayed every 5 pixels. The co-If A maxin Eq. (41) is_predicted to be approximately 1in the
variance matrix of each flow component was evaluated COUrSe Of computation, the program judges that degeneracy

from the residual of fitting the gradient constraint to the "@S occurred and stops the computation after issuing a

gray levels'®?* The flow fundamental matrix was com- Warning message.
puted from this flow by using the covariance matrices thus .
evaluated. Figure (6) shows the computed epipole and its 10 Concluding Remarks
uncertainty ellipse superimposed in the original image. An algorithm is presented for computing the flow funda-
The detected flow is very small and not very accurate mental matrix from a set of corresponding points over two
because a large portion of the scene, including the roadimages in the presence of independent Gaussian noise that
surface, is of almost uniform gray levels. Hence, the com- may be anisotropic and inhomogeneous. The problem for-
puted epipole has a relatively large uncertainty as comparednulation is stated optimally relative to the assumed noise
with that in Fig. 4, which was determined by large displace- model. The computation is divided into two stages: estima-
ments of salient feature points. The important factor is, tion of the flow fundamental matri¥ by renormalization
however, that our method enables us to evaluate the uncerwithout considering the decomposability condition and cor-
tainty of our computation in quantitative terms: the ellipse rection ofF in order to impose the condition. Experiments
in Fig. 5@ indicates the theoretical lower bound on the indicate that the obtained estimates are in the vicinity of the

Fig. 4 Real images of an indoor scene, and the epipoles and epipolars.
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Fundamental matrix from optical flow

Fig. 5 (a) Optical flow computed from two consecutive
epipole and its uncertainty ellipse.

theoretical accuracy bound. Also, the reliability of the com-
puted solution is evaluated in quantitative terms. This
evaluation process is illustrated by computing the epipoles

and epipolars from simulated and real images. Our algo-17.

rithm is implemented as a public-domain program ih €.
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