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tection. The latter has been closely associated with human

Abstract. We present two linear algorithms for 3-D reconstruction: perc epti on psych olo gVS ee Refs. 7 and)8

one is for finite motion; the other is for optical flow. We compare their This divisi . ial h if ical fl .
performance by simulation and real-image experiments, using the IS division 'S_ not crucial, however, It optical flow 'S.
same data. The two algorithms are both theoretically optimal, ex- regarded as point correspondences over consecutive
tracting maximum information from the input. We observe that the frames; one can run a finite motion a|gorithm or an optical
3-D reconstruction by the finite motion algorithm is generally more flow algorithm for 3-D reconstruction. While the optical
accurate than by the optical flow algorithm if point correspondences . . . .

are identified with optical flow. © 2003 SPIE and IS&T. flow approach is for only a sma_ll motion, the finite motion
[DOI: 10.1117/1.1579018] approach can apply to any.m0t|0n, large or small. Then, is
there any benefit to the optical flow approach as far as 3-D
reconstruction is concerned? This question has not been

1 Introduction fully answered yet, mainly because of the difficulty of com-

Computing the 3-D structure and motion from an image paring the two approaches on a common ground.

sequence is one of the most important of computer vision, _Matching feature points for finite motion, whether by
Fmplate matching or feature tracking, is always a difficult

tasks and also one of the research areas that are makin K Althouah traint h th ol d
rapid progress. A vast literature has already appeared o SK. ough many constraints, such as the epipoiar an
rifocal constraints, can be imposed to remove wrong

this subject(see, e.g., Refs. 1 and 2 for the latest develop- . X
ments. There have been two approaches to this problemmatCheS' there is no guarantee that the resulting matches
. re correct. Even if they are correct, their accuracy is usu-

since 1970s when 3-D reconstruction from images began toa“ imited 1 pixel. Optical fl h her- hand
attract interest: that based on point correspondences ovefty limited to 1 pixel. Optical flow, on the other hand,
different views, which we call the finite motion approach; could be obtained with subpixel accuracy by spatiotempo-

and that based on instantaneous image motion, which we@l filtéring of a long image sequence. One can also esti-
call the optical flow approach. Early literature includes mate the true instantaneous yelqcﬂy rather than point cor-
Refs. 3-5 for the former and Refs. 6-8 for the latter. This "€SPONdences over consecutive images.

division has lasted to date because of different mathemati- Evidently, one cannot compare different algorithms if
cal and technical disciplines involved. their input is different. This has been the main difficulty for

Mathematically, the finite motion approach is based on comparing the two approaches. In this paper, we identify
vector calculus of triangulatiofor epipolar geometiythe ~ ©Ptical flow as point correspondence over two images, al-
optical flow approach is based on differential caiculus of though this may somewnhat impair the advantage of optical
the gray levelgor the gradient constraintTechnically, the ~ flow. On the other hand, various multi-image algorithms are
former uses template matching for feature correspondenceknown for finite motion over many imagés,but here we

the latter uses spatiotemporal filtering for optical flow de- focus on only two-view analysis. This simplification is for
concentrating on only 3-D reconstruction, disregarding the

quality of input data. Our comparison is restricted in this

: , . A sense.
gjgj,;tgg'fg}giilgggggneg;?"1-7112'0200391' revised manuscript received Dec. 30, 2002 1 comparing 3-D reconstruction algorithms based on
1017-9909/2003/$15.00 © 2003 SPIE and IS&T. different principles, one cannot make a fair comparison un-
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less both are optimally built on their principles. Thus, we image plane are called the optical flow. Substituting @4.
first present an optimal algorithm for finite motion and an into Eq.(2) and taking a first approximation, we obtain the
optimal algorithm for optical flow. They are based on a following flow epipolar equatiotf 14

statistical model of uncertainty of feature locations. The

optimization technique we use is already known but has(x,,Wx,)+(X,,Cx,)=0. (4)
been published only in fragmenitst! Here, we give a self-

consistent description of our algorithm for finite motion. Here, W=(W;;) is an antisymmetric matrix, andC
For optical flow, the major part was presented in our pre- =(C;;) is a symmetric matrix. If we define

viously published papef, with which the present paper

should be combined for consistent description. Ws,

Section 2 introduces the fundamental matrices, which  _ Wis (5)
are the basis of 3-D reconstruction for both finite motion '
and optical flow. Section 3 defines a statistical model of
fea_ture_uncertainty and gi_ves a theoretical bound on thethe following decomposability condition hofds*4
estimation accuracy. Section 4 presents an optimal algo-
rithm for computing the fundamental matrix for finite mo- (W,Cw)=0 ©6)
tion. It is also confirmed that the solution indeed falls in the * ™’ '
vicinity of the theoretical bound. Section 5 describes the
3-D reconstruction procedure for both finite motion and
optical flow, and Sec. 6 compares their results. Section 7
presents our conclusions.

This constraint results from the rank constraintftetO for
finite motion. The matrice®V and C are called the flow
fundamental matrice’?

2.2 Computation

o Computation of the fundamental matiixhas been studied
2.1 Definition by many researchefs->> Common approaches are the

I ; bundle-adjustment and the linear algorithm.
Let{(X,,Y.)} and{(x,.y,)}, @=1,... N, be image co- J \ . 9 .
ordinates of two sets dfl points on two different images; The bundie-adjustment is known to be optimal under

the image coordinate system is defined arbitrarily for eachG‘ijUSSIan noise, satisfying the Cramgr-Rao Iqwer .bound
camera. Define vectors (CRLB). However, a parameter space in very high dimen-

sions must be searched, and a good initial guess is required
so that the search is not trapped into local minftha.

2 Fundamental Matrices

Xalfo Xa Ifo The linear algorithm is based on the observation that the
X.=| Yalfo|, x.=|Yalfo], (1) epipolar constraint of Eq(2) is linear inF. This enables
1 1 us to compute the solution by simply solving an eigen-

value problem, provided the rank constraint EetO
where f,, is an appropriate scale factochosen so that IS ignored?""le’.However, this efficiency sacrifices the
Xo/fo, Yalfo, X, Ifo, andy, /fo have an order 1. For —accuracy, causing a large statistical bias.

brevity, we call the point having coordinates,(y,,) sim- In'this paper, we present a modification to Fhe linear
ply “point x,,." algorithm such that the resulting performance is compa-

it dx’ acti fth int in th rable to the bur_ldle_-adjustment: we first apply a technique
X, andx, are projections of th€ same point in € 4164 renormalizatiot® which iteratively removes the sta-
scene, they must satisfy the constraint tistical bias inherent to the linear algorithm; we then im-
pose the rank constraint in a statistically optimal manner.
(Xa,FX4)=0, (2)  We also give anon-CRLB typé theoretical bound on the
accuracy ofF by generalizing the uncertainty analysis of
known as the epipolar equatioh.Here, F is a matrix of ~ Csurkaet al?® We demonstrate that the resulting solution
determinant 0, called the fundamental matrixThrough-  indeed falls in the vicinity of the accuracy bound. The same
out this paper, we denote i, b) the inner product of  strategy can also be applied to the computation of the flow
vectorsa and b. Since the absolute scale Bfis uncon-  fundamental matrice®/ andC. An optimal algorithm that
strained, we normalize it t§F||=1, where the norm of a  delivers results in the vicinity of the theoretical accuracy
matrix A= (A;;) is defined b)4|A||=(zﬁj=lAizj)1’2_ bound is described in our companion paffer.
If the motion is small, we can write

X, =X, + X AL, 3) 3 Uncertainty Model and Accuracy Bound

) o ) ) ) 3.1 Statistical Model of Uncertainty
to a first approximation, wherat is the interframe time

. , .
lapse’ The vectors{x,} describing the velocities on the We view{x,} andix,} as perturbed from their true loca-

tions {x,} and{x,} that satisfy the epipolar constraint of
Eq. (2). We write

*For example, we can take it to be the size of the image frame. = Iy’ ’
*In practice, the interframe laps is taken to be unit time for convenience. Xa=Xa T AXa, X, =X, TAX, (7)
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and regard\x, andAx, as independent Gaussian random where §;; is the Kronecker delta, taking 1 for=j and 0
variables of mea® but not necessarily isotropic or homo- otherwise.

geneous. We call V[x,]=E[Ax,Ax'] and V[x,/] Invoking the general theory of statistical optimizatidn,
—E[Ax,Ax,T] the covariance matrices &f, andx,, re- we can derive e(ngn-CRLB type lower bound on the co-
spectively, wheré[ - ] denotes expectation. In practice, we Variance tensoV’[F]: If we define the moment tensovt

need not know the absolute covariance values; it suffices to=(M;j,) by
know them up to scale. So, we write

N
1 _
V[Xa] = é-ZVOI:Xa:lv V[Xa’ ] = GZVO[Xa’ ]1 (8) M = N E WaYa@Ya’ ®7a®7a, ’ (13)
a=1
and assume tha¥o[x,] and Vo[x,], which we call the
normalized covariance matrices, are known but the constant_— 1
€, which we call the noise level, is unknown. The normal- We= : (14

ized covariance matrices can be estimated from the Hessian (X4 +F Vo[ XoJFX;) + (Xa , FVo[ X, IFX,)

of the residual surface of template matchffigSince the

third components of,, andx, are identically 1, the matri- ~the accuracy bound is given in the form

cesVy[X,] andVq[x, ] are singular with third columns and 2

third rows filled with zeros. £ SAfpPST—

If the noise has the same isotropic distribution every- VIFI> N (PEMP™)7, (15)

where, we have
where7> S for tensors7 andS means tha?— S is a posi-

Vol Xa]= Vol X, ]=diag 1,1,0), (9 tive semidefinite tensor, and the operatiod, ( denotes the
(Moore-Penrosegeneralized inverse of rank (discussed

where diag {--) denotes the diagonal matrix with diagonal laten. The (ijkl) element of the tensoPsz(Pfskl) in Eq.
elements--. We use Eq(9) as the default value when no (15) is given by 4
information is available about the noise behavior. It has

been experimentally confirm&ithat Eq.(9) is a good ap- — =

proximation if feature points are extracted using a corner PS _5 5 FiiFik (16)
detector(see Refs. 27-31 for existing techniques by ijkl — “ik ] IFT2

hand, because corner detectors are so designed and humans
are so inclined as to find those points that are distinct from = . =
the surroundings in all directions, which means they haveWhereF' is the cofactor matrix of.
covariance matrices more or less in the form of E9). For a tensof7= (Tjjy ), a matrixA=(A;;), and a scalar

If a corresponding pair ok, andx_ is identified with A We say thal is an eigenmatrix of with eigenvaluex if
“optical flow” %,=x/—x, at the ‘midpoint’ (x, TA=MA, w;ere the producA is a matrix who;e(u)
+x,)/2, the flowx, and the locatiorx, are uncorrelated element is¥j;; _; Tiji A - The eigenmatrices and eigenval-
and have their normalized covariance matridégx,] ues of a tensor can be computed by identifying a tensor and

. a matrix with a 9<9 matrix and a 9-D vectdf
+Vo[x, ] and Vo[ X,]+VolX, 1)/4, respectively. It follows

that th dina default noi del for th tical A tensor 7=(Tjj) is said to be symmetric ifTjj
at the corresponding defau nq|se model for the optica =Tyi; - A symmetric 3X3X3X 3 tensor has nine real ei-
flow approach is given as follow: !

genvalueg\;}. The corresponding eigenmatricgld;} can
be chosen to be an orthogonal system of matrices of unit
norm, where the inner product of matricés=(A;;) and
B=(By;) is defined by A;B)=Eﬁj:1AijBij . A symmetric
3.2 Theoretical Accuracy Bound tensor is positive semidefinite if its eigenvalues are all non-

. i = negative.
Let F be an estimate of the fundamental matrix, &ds Let A,=---=Ao(=0) be the eigenvalues of a positive

true value. The uncertainty of the estimétés measured by  semidefinite symmetric tensaf and let{U, ,...,Ug} be the

Vo[X,]=2diag(1,1,0), Vg[x,]= diag(1,1,0. (10

its covariance tensor corresponding orthonormal set of eigenmatrices of unit
A= = o norm. If A, >0, the(Moore-Penrosegeneralized inverse of
V[FI=E[P (F-F)&(F=F)P'], (1) 7of rankr is computed as follows:

where the operato® denotes tensor product: for matrices T UeU
A=(A;;) andB=(B;;), the (ijkl) element of their tensor (7—);:2 g

product isA;;By,. For tensorsP=(Pjj) and 7= (Tjjq), =1 A

the productP7P' is a tensor whosdijkl) element is

E3myn‘p'q=1PijmnPk|qumnpq. The (ijkl) element of the ten-  The root-mean-squar@gms) error of an estimaté is de-
sor P=(Pjj) in Eq. (11) is given by fined by

. (17)

Pijk|:5ik5j|_EijEk|1 (12 rmq F1=(E(| P(F—F)||?])Y2 (18
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SinceF andF are both normalized to unit norm, we have ¢ Compute the tensorst and\ by Egs.(21) and(22),

o<rmgF]<1. From Eq.(15), we have and let
e F1= — [tr(PEMPST); V2 (19
JN o 7. 1f J'<J, let J—J'. (The variableJ stores the mini-
mum residua). Else, compute the nine eigenvalues
where the trace t7 of a tensor7=(T;j) is defined by N1=...=\g of the tensor
3 M=M-cN, (26)

tr 7= 2 Tyw- (20 .

k=1 and the corresponding orthonormal §Ef, . .. Fq}

- ) of eigenmatrices of unit norm.
A similar accuracy bound can also be obtained for the flow

fundamental matricéd/ andC. The details are described in 8. Repeat steps 4—7 unfll <J or |\g|~0. This guar-

the companion papéf. antees the iterations will converge.
9. Let F take the value~y, this being our estimate of
4 Optimal Algorithm for the Fundamental Matrix the fundamental matrix.
Our algorithm first computes the fundamental makipp- The preceding procedure is based on the observation

timally by a technique called renormalizatiSnwithout  that, in the absence of noise, the fundamental maris
considering the rank constraint det 0 and then imposes  the eigenmatrix of the moment tensarl defined in Eq.
the rank constraint dét=0 in a statistically optimal man-  (21) with eigenvalue 0. It can be shown that, in the pres-
ner. We show that accuracy is not lost by this two-stage ence of noise M is statistically biased from its true value
cascading. to a first approximation by a constant times the tensor
defined in Eq(22). By Eq. (26), we iteratively remove the
bias in M in such a way that the smallest eigenvalue\df

4.1 Renormalization converges to zero.
The renormalization algorithm proceeds as follows: Recently, there has been considerable progress in this
type of statistical optimization, and rigorous mathematical
1. Letc=0,W,=1,a=1,... N, andJ=x, where the analyses and |mEroved techniques have been presented in
symbole means a very large number, e.g.190 various forms>?~**The corresponding renormalization pro-

2 C te the t —(M.. dAN=(N.. cedure can also be obtained for the flow fundamental ma-
ompute the tensors1=(Mijq) and = (Njq) as tricesW andC. The details are described in the companion

paper*?

4.2 Optimal Correction

We next apply a correction 16, shifting it iteratively to the
nearest value that satisfies the rank constraint-e.
2 W, (Vo[ X, JiX | x This shift is deter_mined optimally with respect to t_he cova-
Nij = ol XalikXa(j X riance tensor, which can be evaluated using the eigenvalues
and eigenmatrices resulting from the preceding renormal-
+ Vol Xy 1jiXagi)Xa(k)» (22 ization procedure. The correction steps go as follows.
First, compute the normalized covariance tensdk bi:

follows:
1 N
Mij = ;l Waxa(i)xc:(j) Xa(k) x;“) , (21

N

wherex, ) andx,;, are thei-th components ok,

andx, , respectively, and/q[x,Ji; andVq[x,, ];; are 18 F, ®|:
the (ij) elements o[, ];; and Vo[x, 1, respec-  VolFl= NZ (27)
tively.

3. Compute the nine eigenvalues=...>\, of the Then, repeat the following computation until det0.

tensor M and the corresponding orthonormal set 1 UpdateF as follows:

{Fi, ... ,Fo} of eigenmatrices of unit norm. .
4. Updatec by: Fo Nl F— (detF)Vo[FIF o8
TETTVTITEIET I
A (FT Vo[ FIF™) 29
9
C—C+ (Fo:NFg)’ (23 The operatoN[ - ] denotes normalization of the norm
to 1: N[F]=F/|F|.
5. ComputeW,,, =1,... N, by: 2. Compute the projection tensBr= (P;;y) as follows:
W= 1 Pijii = o —FijFu - (29
(X \FoVolXalFeX, )+ (Xa  FoVol X, IFeXe)
(24) 3. Update the normalized covariance ten3@fF] as
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follows:

3
VolFlii— 2 PijmnPxipgVol Flmnpa- (30
m,n,p,q=1

This operation projects the error distribution onto the [

space orthogonal tB.
It can be showt? that the renormalization solutidhhas
the normalized covariance tensgg F] given in Eq.(27).
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The preceding procedure enforces the rank constraint

detF=0 by iteratively updating- along the shortest path in

Fig. 1 Simulated images of a 3-D scene and epipolars.

the sense of the Mahalanobis distance defined by the nor-

malized covariance tensor,[F]. It can be proved that
renormalization coupled with this type of correction pro-
duces a solution that attains the theoretical accuracy boun
in the first ordett® The corresponding optimal correction

procedure is also applied to the flow fundamental matrices

W and C. The details are described in the companion
paper*?

4.3 Program Package
The algorithm described in the preceding is implemented in

C++ and placed on our Web padét outputs a solutiort
along with its standard deviation pgiF(*),F(-)}. These

f Amax IN EQs. (32) is predicted to be approximately 1 in
he course of computation, our program judges that degen-
eracy has occurred and stops the computation after issuing
a warning message. The corresponding program package
for computing the flow fundamental matricé¥¢ and C is

also available at the same site.

4.4 Simulated Experiments

Figure 1 shows simulated 5%X512-pixel images of a 3-D
grid environment. They are supposedly captured by a mov-

are the values in the parameter space that are separatdfdd camera with different focal lengths. Some of the epipo-

from E by the standard deviation in the two directions
along which errors implied by Eq15) are the most likely
to occur.

We evaluate the right-hand side of E@5) by substitut-

ing the data and the estimakefor their true values. The
square noise leved? in the expression can be estimated by

2 31
€ 1-8N’ @
using the valuel returned by the renormalization proce-
dure. This type of estimation is known to give a good ap-
proximation to the true valu¥.

Let A 2 be the maximum eigenvalue of the thus evalu-
ated tensor on the right-hand side of E§5), and letU, .
be the corresponding eigenmatrix of unit norm. The stan-
dard deviation pair is defined by

FEO=NIF+ (e " Umad,

F(i)zN[li_()\max)llzumax]- (32

If F(*) andF(™) coincide up to, say, three significant digits,

the solutionF is likely to have accuracy up to approxi-
mately three significant digits.
The fundamental matrix cannot be defined uniquely if

the feature points are in a degenerate configuration. This,
occurs, for example, when the camera translation is zero o

all the feature points are on a special quadric called a criti-
cal surface, a typical instance of which is a planar surface.

Shttp://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html

482 / Journal of Electronic Imaging / July 2003/ Vol. 12(3)

lars (the images of the lines of sight starting from the pro-
jection center of the other camegrare superimposed.
Random Gaussian noise of mean 0 and standard deviation
o (pixels) was added to the andy coordinates of each grid
point independently, and the fundamental matfixwas
computed by using the default noise model of E). The
renormalization converged after three or four iterations.

Figure Za) shows a plot of the rms erro£% | P(F?
—F)||?/100)*2 over 100 trials for eachr using different

noise each time, wheifé® is thea-th estimateF is the true
value, andP is the projection tensor defined in E{.2).

The symbol] denotes solutions obtained via the method
presented in this paper, and the dotted line indicates the
theoretical lower bound derived from E@.5). The symbol

@ denotes renormalization solutions without applying the
optimal correction of Sec. 4.2. The symbol denotes so-
lutions computed by the widely used linear algorithm, often
referred to as the least-squares method or the algebraic dis-
tance minimizatiort®” it directly minimizes the sum of
the squares of the epipolar constraint of E2).in the form

N

(Xq ,FX.)2—min,
a=1

1
N (33
after the data are normalized as recommended by Haftley.
As we can see from Fig.(8), the errors in our estimates
practically fall on the theoretical lower bound, which is
nown to be attained by the bundle adjustment. This con-
rms that our linear algorithm indeed achieves the accuracy
of the bundle adjustment. Figurgl? shows the average
computation time on a Sun Ultra-30 workstati@®un OS
5.6). Naturally, our method takes more time than the naive
least-squares method, but the theoretical accuracy bound is
attained only at this much computation. Similar experi-
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Fig. 2 Accuracy and efficiency of computation: least-squares solutions (<), solutions without the
optimal correction (@), and our solutions (CJ) for (a) rms error, where the dotted line indicates the
theoretical lower bound; and (b) average computation time (in seconds).

ments for confirming the optimality of the flow fundamen- vectort and a rotation matriR, but the absolute scale of
tal matricesW and C are described in the companion the translation is indeterminate and a 3-D rotation has three

paper‘? degrees of freedom. So, the motion parameferR} have
five degrees of freedom. It follows that only two camera
5 3-D Reconstruction from Two Views parameters can be recovered.
We now describe the 3-D reconstruction procedure for both A practical choice for them is the focal lengthandf’
finite motion and optical flow. of the two cameras, since other parameters can be precali-
brated and fixed while zooming changes can occur as the
5.1 Finite Motion Approach camera move¥® Hartley*’ presented an analytic procedure

for computing the focal lengthBand f’ from the funda-

After the fundamental matri¥ is computed, the image . 2N X .
locati dx’ of h feat int ted mental matrixF. The solution is obtained by applying the
ocationsx,, andx, of €ach teature point aré CoIrected SO gingar value decompositiofSVD) and solving linear

as to satisfy the epipolar equatié®) exactly in a statisti- equations in four unknowns. Paet al®®% reduced this
cally optimal way™ problem to solving cubic equations. Newsarnal*® re-
fined these algorithms into a combination of SVD and lin-

o ElxaX] ) ear equations in three unknowns. Kanatani and
Xo= Xy ’ VO[Xa] Fx ’ . .
V[X, X, ] @ Matsunagd' reduced the problem to solving a quadratic
equation in one variable. Bougndtbpresented an explicit
E[X, X, ] formula forf in F. The degeneracy condition for the solu-
R/ =x = Vo[ x/IFx, . (34) tion to be indeterminate has also been analy2é8.
V[Xa 1 Xq ] Among many mathematically equivalent alternatives,
, the most convenient may be the following modification of
Here, we have defined the Bougnoux formufd given by Kanatani and
) , Matsunaga?!
E[X..X, =Xy, FX,),
2 T , 2 12
V[ Xe X, 1= (X, FTVO[ X0 JFX,)) + (X . FVo[ X, TFTX,). f=fo/ {1 IFK||2— (k,FFTFK)[e’ K| /(k,Fk)}
(35) lle”xK[I%IF k|l *— (k,Fk)* ‘
ITetting Xc_d—f(a andx‘;_<—>?a:, vye/ rSpegt this_p_rocedure.un- IETK|2= (k, FETFK)| ex |2/ (k,Fk) |2
til the epipolar equatioE[X, ,X, ]=0 is sufficiently satis- ' =f 1+ 5 5 5
fied. The convergence has quadratic speed, so one iteration llexK[|?| Fk[*— (k,Fk)

is almost sufficient. This procedure is equivalent to the tri- (36)
angulation of Hartley and Sturffi,which requires solving a

sixth-degree polynomial, but the preceding form is far more Here, we puk=(0,0,1)". The symbols ande’ denote the
efficient, as pointed out by Torr and Zisseram&hn. unit eigenvectors oF T andF, respectively, for eigenvalue

In reconstructing the 3-D structure from point corre- . they represent the epipoles—the image of the projection
spondences over two images taken by two uncalibrated

cameras, all information is encodedin the fundamental

matrix F. SinceF is defined up to scale and constrained to e - \ing, the principal poifthe int don of the optical ax
_ H H rIctly speaking, the principal pol € Intersection O e optical axis

be QGF—O, it has seven degr_ees of fr.eedom' The relat_'ve with the image planemay slightly move as zooming changes, but re-

motion of the two cameras is specified by a translation garding it as a fixed point is known to be a good approximation.
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center of the second camera in the first image and the im-

age of that of the first camera in the second image,
respectively-?

After the focal lengthg and f’ have been obtained, we
recompute{X,} and{X/} by replacingf, in the vector
representation of Eq¢l) by the corresponding valuésind
f'. This can be done as follows:

fo f
XaHdiai 0 21lx,, xa@diai

frf
The motion parameterd,R} are analytically computed
by the following proceduréwhere the indeterminate scale
of the translatiort is normalized tq|t||=1.

fo fo

1 f/lf/l

1) Xo - (37

1. Compute the following essential matrix:

fo

T F diag (38

: fo
E=diag 1,1, 1157,

K X RX,,

5. 44
IR <R[ 49

n,=

Finally, we must adjust the signs of the depths because

the sign of the fundamental matrixis indeterminate. The
signs of{Z,} and{Z '} are inverted, if necessary, so that

N
2, (sgnlZ,]+sgn(Z,1)>0, (45

where sgf] is the signature function that takes 1, 0, and

—1 for x>0, x=0, andx<0, respectively. This operation is
necessary, because we may not select the correct solution if

we simply computee_,(Z,+2); a very large positive

depth may turn out to be close te~ due to noise.

5.2 Optical Flow Approach

The 3-D reconstruction from optical flow goes similarly.
After optimally computing the flow fundamental matii

This removes the dependence of the fundamental maq ¢ using the method described in the companion

trix on the focal length&?

paper*? the flow x,, and image locatio,, of each feature

2. Compute the unit eigenvectoof EET for the small- point are corrected so as to satisfy the flow epipolar equa-
est eigenvalue. The sign biis chosen in such a way tion (4) exactly in a statistically optimal wa)
that
E[X,,X, )
N a— Xa [ : ] VO[Xa]Wxa ’
> |t.%, ,Ex/|>0. (39) V[Xa 1 Xa]
a=1
i 1 1 E[Xa' ,Xa] .
This is the constraint that the depths of the feature g —x_ — ——*""_v/[x,](WX,+2CX,). (46)
points have the same sign before and after the camera VX4 X ]
motion? y have defined
3. Apply SVD to —tXE as follows: ere, we have detine
—tXE=VAU". 40)  ElXa Xa]= (X0, WXa) +(Xe,CXa),
For a vectora and a matrixA, we defineax A to be V[ X, X ]= (WX, , Vo[ X, JWX,)
th tri isti f col that th t . .
e matrix consisting of columns that are the vector (W, +2Cx, Vo[, J(WK,+2Cx.)). (47)

products ofa and the individual columns oA. Also
A is a diagonal matrix with diagonal elemer{tsn-
gular valuegin nonincreasing order, and andU are
orthogonal matrices.

4. Compute the rotatioR as follows:

R=Vdiag(1,1,detvUNU". (41)

This procedure produces a least-squares solutiort e}

even if the rank constraint dt=0 is not strictly satisfied.
The 3-D position of thexth point is given by

Po=ZoRe, P =Z.%), (42)

with respect to the first and the second camera coordinat

systems, respectively, where the depths and Za’ are
given as follows:

Z,=(tXRR/,n,), Z./=(tX&,,n,). (43
Here, we have defined
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Letting X, X, andx,«X,, we repeat this procedure until
the flow epipolar equatio&[ X, ,X,]=0 is sufficiently sat-
isfied. As in the finite motion approach, the convergence
has quadratic speed, so one iteration is almost sufficient.
In reconstructing the 3-D structure from optical flow
taken by an uncalibrated camera, all information is

encode?**in the flow fundamental matriced/ and C.

They are determined up to scale and constrained by the
decomposability condition of Eq6). SinceW and C are
antisymmetric and symmetric matrices, respectively, they
have seven degrees of freedom in total. The instantaneous
motion of the camera is specified by the translation velocity
v and the rotation velocity, but the absolute scale of the
translational motion is indeterminate. So, the motion pa-

PTameters{v,w} have five degrees of freedom. As in the case

of finite motion, only two camera parameters can be recov-
ered.

A practical choice for them is, as before, the focal length
f and its change rate. Brookset al® presented a compli-
cated procedure for computirigf, v, ande from the flow
fundamental matrice®V=(W;;) and C=(C;;). Here, we
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Fig. 3 Simulated images of a 3-D scene.

present an elegant group-theoretical procedure (fsirrg-

ducible representations of the group of 2-D rotations
S(O(2). Theindeterminate scale of the translation velocity

v is normalized td|v||=1.
Let w; be thei’'th component of the vectow defined in
Eq. (5), and do the following computation:

A=Cy1+Cy, B=(Cy;—Cyp)+2iCyy,
C=2(Cy3t+iCy3), D=Cgs, (48
_ B
W=w;+iw,, W==, o' =Ro'],
w
e A+ (W, o") 49)
wor=dlw |, wz3=— s
2 3 2W3
o D 1/2 ,.,_C—fIZWH),
T®an W
w3=R[], f'=—13¢] (50)
w=f'0'y, w,=fow, f=ff, f=ff,,
Wy
v=N W; (51)
(f/fo)ws

Here,i is the imaginary unit. The quantities with tildes are
complex numbersR[ -] andJ[ -] denote the real and imagi-
nary parts, respectively. We define the “inner product” of
complex numbersz=x+iy and z'=x'+iy’ by (z,z')
=xx'+yy’. The operatiorN[ - ] designates normalization
into a unit vectorN[a]=a/||al|. Note thatw is computed
in two ways by the fifth of Eqs(49) and the third of Egs.
(50). The decomposability condition of E¢p) requires that
the two values coincide.

The 3-D positions of the feature points are reconstructed

as follows. First, we recomput&,} and{%X,} by replacing

fo by its true valuef and incorporating its change rate
This is done as follows:

(b)

Fig. 4 Finite motion approach: (a) reconstructed shape (solid lines)
and the true shape (dotted lines); and (b) uncertainty ellipsoids of
the grid points.

fo fo

a<—T<5ta— fdlag(1,1,0)>‘<a>,
X, diag %,%,1))@. (52
The 3-D position of thex’th point is given by
Fou=ZoRe, (53
where the deptiz,, is given as follows*
Z,=— (Y’S“V) . (54)

C 0 (VSu(X Tt oXX,))
Here, we have defined
Sa=(1=xKN)T(1=x,k"), (55)

wherek=(0,0,1)". In view of the sign indeterminacy of

the flow fundamental matricé&/ andC, the signs of(Z,,}

are inverted, if necessary, so that the following condition is
satisfied for the same reason as in the finite motion ap-
proach:

N
> sgn[Z,]>0.

a=1

(56)

(b)
Fig. 5 Optical flow approach: (a) reconstructed shape (solid lines)

and the true shape (dotted lines); and (b) uncertainty ellipsoids of
the grid points.
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Fig. 6 Real images of an indoor scene.

6 Performance Comparison (@) (b)

We.nOW compare th.e performancg of the ﬁnite m_Otion al- Fig. 7 Uncertainty ellipsoids of points reconstructed (a) by the finite
gorithm and the optical flow algorithm by simulation and motion approach and (b) by the optical flow approach.
real-image experiments using the same data.

6.1 Simulation Experiments needles, showing that the uncertainty is very large along the
Figure 3 shows simulated 5%¥512-pixel images of a 3-D  depth orientation. Although the reconstructed shape itself
scene. We added independent random Gaussian noise ddoks natural for both Figs.(@ and 1b), we can clearly
mean 0 and standard deviation(@xels) to each of thex see that the optical flow solution has far larger uncertainty
andy coordinates of the grid points and reconstructed thethan the finite motion solution.

3-D shape using the default noise model of E9). Figure 8 shows real images (5%Z68 pixels) of a car.
Figure 4a) shows the 3-D shapésolid lines recon- We manually selected feature points as marked in the im-
structed by the finite motion algorithm superimposed on the ages and reconstructed the 3-D shape. Figure 9 shows some

true shape(dotted lineg rescaled tot|=1. Figure 4b) new views generated by creating a wireframe model from

shows uncertainty ellipsoids centered on the reconstructedhe reconstructed points and mapping the texture to it: the
vertices. We can evaluate the uncertainty of the computedupper row is obtained by the finite motion approach with
fundamental matri>E in the form of the covariance tensor the noise model of Eq9); the lower row is obtained by the
so that it can be propagated to the uncertainty of the 3-Doptical flow approach with the noise model of E¢E0).
reconstructionwe omit the details The ellipsoids in Fig. Although it is difficult to grasp the exact 3-D shape from
4(b) indicate three times the standard deviation in each ori-static views, we are given a fairly realistic impression of
entation. As we can observe, they are very thin needle-likethe 3-D shape by continuously changing the viewpoint. Af-
shapes with their major axes approximately in the depthter careful observations, however, we find that the 3-D
orientation. They are larger for points farther away from the shape is unnaturally deformed in the part far away from the
cameras! viewer as compared with the front part, which is fairy ac-
Figure 5 shows the corresponding 3-D shape recon-curate. We also find that the deformation is larger for the
structed by the optical flow algorithm using the default optical flow solution than the finite motion solution.
noise model of Eq910). Here, the random Gaussian noise
is reduced to standard deviation @gbxel), because adding 7 conclusions
more noise would deteriorate the results intolerably. From
this, we can observe the poor performance of the optical
flow approach even in this low noise level.

We have presented two linear algorithms for 3-D recon-
struction: one is for finite motion; and the other is for op-
tical flow. Both are theoretically optimal in the sense that
6.2 Real Image Experiments they extract maximum information _from the input. They

_ ) i i first compute the fundamental matrix and the flow funda-
Figure 6 shows a pair of real images (51268 pixels) of  mental matrices by renormalization followed by optimal
an indoor scene. We manually selected feature points agorrection. For each approach, experiments have shown
marked in the images and reconstructed the 3-D shape. Figthat the solution falls in the vicinity of the theoretical ac-
ure 7 shows the 3-D shape computed in two ways: R@. 7 curacy bound.
with the finite_ motion _approach .using the noise model of We then presented for each approach a 3-D reconstruc-
Eq. (9); and Fig. Tb) with the optical flow approach using tion procedure based on the computed fundamental matri-

the noise model of Eqs(10). Wireframes consisting of  ces. We compared the performance of the two algorithms
some of the reconstructed points are shown for visual aide.

On each reconstructed point is centered the uncertainty
ellipsoid that indicates the standard deviation in each ori-
entation (this time not magnified They are like thin

™The uncertainty shown here is relative to the first camera coordinate
system with the camera translation normalized to unit length, so it does
not have an absolute meaning since the first camera coordinate syste
and the camera translation also have their uncertainty. To extract an
absolute meaning, we require the gauge theory of uncertainty
descriptiorf® Fig. 8 Real images of a car.
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Fig. 9 Reconstructed and texture-mapped 3-D shape using the fi-
nite motion approach (above) and the optical flow approach (below).

procedure is of only theoretical nature based on idealizing
assumptions, and the accuracy was tested by only a limited
number of experiments. Thus, there is much room for im-

proving the performance for both approaches.
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data and observed that the finite motion solution is always
superior to the optical flow solution.

Since optical flow is a first-order approximation of finite
motion, the computation could be stabler for optical flow
when the disparity is very small. We tested this by simula-
tion. Evidently, the 3-D information cannot be obtained if
the disparity between the two images is too small whatever
method is used. Gradually reducing the disparity, we ran
the two algorithms for the same data and found that the
optical flow algorithm always collapsed first. In all the ex-
periments we performed, we were unable to find any ad-
vantage of the optical flow algorithm in accuracy, effi-
ciency, or stability as far as 3-D reconstruction is
concerned.

The reason why so many studies of 3-D reconstruction
from optical flow have been done in the past lies perhaps in
the ease of its computation and the rich information it con-

tains. Indeed, humans can easily perceive the 3-D structuré®

of the scene by simply looking at its motion. Thus, it is
natural that people have sought algorithms for 3-D recon-
struction from optical flow. In fact, many authors assert that
studying 3-D reconstruction algorithms from optical flow
can lead to understand the workings of the human bYin.
Optical flow is also useful for motion segmentation.

For 3-D reconstruction, however, one should use the fi-
nite motion algorithm; nothing is gained by using first-
order approximations. Of course, our comparison experi-
ments are limited in that point correspondence over two
images is identified with optical flow. Establishing corre-
spondence for finite motion by template matching is a dif-
ficult task, and its accuracy is limited, while optical flow
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