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Abstract. We present two linear algorithms for 3-D reconstruction:
one is for finite motion; the other is for optical flow. We compare their
performance by simulation and real-image experiments, using the
same data. The two algorithms are both theoretically optimal, ex-
tracting maximum information from the input. We observe that the
3-D reconstruction by the finite motion algorithm is generally more
accurate than by the optical flow algorithm if point correspondences
are identified with optical flow. © 2003 SPIE and IS&T.
[DOI: 10.1117/1.1579018]

1 Introduction

Computing the 3-D structure and motion from an ima
sequence is one of the most important of computer vis
tasks and also one of the research areas that are ma
rapid progress. A vast literature has already appeared
this subject~see, e.g., Refs. 1 and 2 for the latest devel
ments!. There have been two approaches to this prob
since 1970s when 3-D reconstruction from images bega
attract interest: that based on point correspondences
different views, which we call the finite motion approac
and that based on instantaneous image motion, which
call the optical flow approach. Early literature includ
Refs. 3–5 for the former and Refs. 6–8 for the latter. T
division has lasted to date because of different mathem
cal and technical disciplines involved.

Mathematically, the finite motion approach is based
vector calculus of triangulation~or epipolar geometry!; the
optical flow approach is based on differential calculus
the gray levels~or the gradient constraint!. Technically, the
former uses template matching for feature corresponde
the latter uses spatiotemporal filtering for optical flow d

Paper JEI 01059 received Sep. 11, 2001; revised manuscript received Dec. 30,
accepted for publication Jan. 17, 2003.
1017-9909/2003/$15.00 © 2003 SPIE and IS&T.
478 / Journal of Electronic Imaging / July 2003 / Vol. 12(3)
g
n

o
er

e

i-

;

tection. The latter has been closely associated with hum
perception psychology~see Refs. 7 and 8!.

This division is not crucial, however, if optical flow i
regarded as point correspondences over consecu
frames; one can run a finite motion algorithm or an opti
flow algorithm for 3-D reconstruction. While the optica
flow approach is for only a small motion, the finite motio
approach can apply to any motion, large or small. Then
there any benefit to the optical flow approach as far as
reconstruction is concerned? This question has not b
fully answered yet, mainly because of the difficulty of com
paring the two approaches on a common ground.

Matching feature points for finite motion, whether b
template matching or feature tracking, is always a diffic
task. Although many constraints, such as the epipolar
trifocal constraints, can be imposed to remove wro
matches, there is no guarantee that the resulting mat
are correct. Even if they are correct, their accuracy is u
ally limited to 1 pixel. Optical flow, on the other hand
could be obtained with subpixel accuracy by spatiotem
ral filtering of a long image sequence. One can also e
mate the true instantaneous velocity rather than point c
respondences over consecutive images.

Evidently, one cannot compare different algorithms
their input is different. This has been the main difficulty f
comparing the two approaches. In this paper, we iden
optical flow as point correspondence over two images,
though this may somewhat impair the advantage of opt
flow. On the other hand, various multi-image algorithms a
known for finite motion over many images,1,2 but here we
focus on only two-view analysis. This simplification is fo
concentrating on only 3-D reconstruction, disregarding
quality of input data. Our comparison is restricted in th
sense.

In comparing 3-D reconstruction algorithms based
different principles, one cannot make a fair comparison

2;



e
an
a

he
as

n.
re-
r

ich
on
of
the
lgo
-

he
the
nd
n 7

;
ach

t
r

e

e

e

e

er
und
n-
ired

the

n-

e

ar
pa-
ue
-
-

er.

of
n

me
ow

cy

-
f

ce

Comparing optimal three-dimensional reconstruction . . .
less both are optimally built on their principles. Thus, w
first present an optimal algorithm for finite motion and
optimal algorithm for optical flow. They are based on
statistical model of uncertainty of feature locations. T
optimization technique we use is already known but h
been published only in fragments.9–11 Here, we give a self-
consistent description of our algorithm for finite motio
For optical flow, the major part was presented in our p
viously published paper,12 with which the present pape
should be combined for consistent description.

Section 2 introduces the fundamental matrices, wh
are the basis of 3-D reconstruction for both finite moti
and optical flow. Section 3 defines a statistical model
feature uncertainty and gives a theoretical bound on
estimation accuracy. Section 4 presents an optimal a
rithm for computing the fundamental matrix for finite mo
tion. It is also confirmed that the solution indeed falls in t
vicinity of the theoretical bound. Section 5 describes
3-D reconstruction procedure for both finite motion a
optical flow, and Sec. 6 compares their results. Sectio
presents our conclusions.

2 Fundamental Matrices

2.1 Definition

Let $(xa ,ya)% and$(xa8 ,ya8)%, a51, . . . ,N, be image co-
ordinates of two sets ofN points on two different images
the image coordinate system is defined arbitrarily for e
camera. Define vectors

xa5S xa / f 0

ya / f 0

1
D , xa85S xa8 / f 0

ya8 / f 0

1
D , ~1!

where f 0 is an appropriate scale factor* chosen so tha
xa / f 0 , ya / f 0 , xa8 / f 0 , and ya8 / f 0 have an order 1. Fo
brevity, we call the point having coordinates (xa ,ya) sim-
ply ‘‘point xa . ’’

If xa and xa8 are projections of the same point in th
scene, they must satisfy the constraint

~xa ,Fxa8!50, ~2!

known as the epipolar equation.1,2 Here, F is a matrix of
determinant 0, called the fundamental matrix.1,2 Through-
out this paper, we denote by~a, b! the inner product of
vectorsa and b. Since the absolute scale ofF is uncon-
strained, we normalize it toiFi51, where the norm of a
matrix A5(Ai j ) is defined byiAi5(( i , j 51

3 Ai j
2 )1/2.

If the motion is small, we can write

xa85xa1 ẋaDt, ~3!

to a first approximation, whereDt is the interframe time
lapse.‡ The vectors$ẋa% describing the velocities on th

*For example, we can take it to be the size of the image frame.
‡In practice, the interframe laps is taken to be unit time for convenien
-

image plane are called the optical flow. Substituting Eq.~3!
into Eq. ~2! and taking a first approximation, we obtain th
following flow epipolar equation12–14:

~xa ,Wẋa!1~xa ,Cxa!50. ~4!

Here, W5(Wi j ) is an antisymmetric matrix, andC
5(Ci j ) is a symmetric matrix. If we define

w5S W32

W13

W21

D , ~5!

the following decomposability condition holds12–14:

~w,Cw!50. ~6!

This constraint results from the rank constraint detF50 for
finite motion. The matricesW and C are called the flow
fundamental matrices.12

2.2 Computation

Computation of the fundamental matrixF has been studied
by many researchers.15–23 Common approaches are th
bundle-adjustment and the linear algorithm.

The bundle-adjustment is known to be optimal und
Gaussian noise, satisfying the Cramer-Rao lower bo
~CRLB!. However, a parameter space in very high dime
sions must be searched, and a good initial guess is requ
so that the search is not trapped into local minima.24

The linear algorithm is based on the observation that
epipolar constraint of Eq.~2! is linear in F. This enables
us to compute the solution by simply solving an eige
value problem, provided the rank constraint detF50
is ignored.3,4,16 However, this efficiency sacrifices th
accuracy, causing a large statistical bias.10

In this paper, we present a modification to the line
algorithm such that the resulting performance is com
rable to the bundle-adjustment: we first apply a techniq
called renormalization,10 which iteratively removes the sta
tistical bias inherent to the linear algorithm; we then im
pose the rank constraint in a statistically optimal mann
We also give a~non-CRLB type! theoretical bound on the
accuracy ofF by generalizing the uncertainty analysis
Csurkaet al.25 We demonstrate that the resulting solutio
indeed falls in the vicinity of the accuracy bound. The sa
strategy can also be applied to the computation of the fl
fundamental matricesW andC. An optimal algorithm that
delivers results in the vicinity of the theoretical accura
bound is described in our companion paper.12

3 Uncertainty Model and Accuracy Bound

3.1 Statistical Model of Uncertainty

We view $xa% and $xa8% as perturbed from their true loca
tions $x̄a% and $x̄a8% that satisfy the epipolar constraint o
Eq. ~2!. We write

xa5 x̄a1Dxa , xa85xa81Dxa8 , ~7!.
Journal of Electronic Imaging / July 2003 / Vol. 12(3) / 479



m
-

e
s t

tan
al-
sia

d

ry-

al
o
as

ner

ma
om
ve

ica

s
r

,

l-
and

-

unit

on-

e

nit
f

Kanatani and Ohta
and regardDxa andDxa8 as independent Gaussian rando
variables of mean0 but not necessarily isotropic or homo
geneous. We call V@xa#5E@DxaDxa

T# and V@xa8#
5E@Dxa8Dxa8

T# the covariance matrices ofxa andxa8 , re-
spectively, whereE@•# denotes expectation. In practice, w
need not know the absolute covariance values; it suffice
know them up to scale. So, we write

V@xa#5e2V0@xa#, V@xa8#5e2V0@xa8#, ~8!

and assume thatV0@xa# and V0@xa8#, which we call the
normalized covariance matrices, are known but the cons
e, which we call the noise level, is unknown. The norm
ized covariance matrices can be estimated from the Hes
of the residual surface of template matching.26 Since the
third components ofxa andxa8 are identically 1, the matri-
cesV0@xa# andV0@xa8# are singular with third columns an
third rows filled with zeros.

If the noise has the same isotropic distribution eve
where, we have

V0@xa#5V0@xa8#5diag~1,1,0!, ~9!

where diag (̄ ) denotes the diagonal matrix with diagon
elements̄ . We use Eq.~9! as the default value when n
information is available about the noise behavior. It h
been experimentally confirmed26 that Eq.~9! is a good ap-
proximation if feature points are extracted using a cor
detector~see Refs. 27–31 for existing techniques! or by
hand, because corner detectors are so designed and hu
are so inclined as to find those points that are distinct fr
the surroundings in all directions, which means they ha
covariance matrices more or less in the form of Eq.~9!.

If a corresponding pair ofxa and xa8 is identified with
‘‘optical flow’’ ẋa5xa82xa at the ‘‘midpoint’’ (xa

1xa8)/2, the flow ẋa and the locationxa are uncorrelated
and have their normalized covariance matricesV0@xa#
1V0@xa8# and (V0@xa#1V0@xa8#)/4, respectively. It follows
that the corresponding default noise model for the opt
flow approach is given as follows:12

V0@ ẋa#52 diag~1,1,0!, V0@xa#5 1
2 diag ~1,1,0!. ~10!

3.2 Theoretical Accuracy Bound

Let F̂ be an estimate of the fundamental matrix, andF̄ its

true value. The uncertainty of the estimateF̂ is measured by
its covariance tensor

V @F#5E@P ~~ F̂2F̄! ^ ~ F̂2F̄!!PT#, ~11!

where the operator̂ denotes tensor product: for matrice
A5(Ai j ) and B5(Bi j ), the ~ijkl ! element of their tenso
product isAi j Bkl . For tensorsP5(Pi jkl ) and T5(Ti jkl ),
the productPT PT is a tensor whose~ijkl ! element is
(m,n,p,q51

3 Pi jmnPklpqTmnpq. The ~ijkl ! element of the ten-
sor P5(Pi jkl ) in Eq. ~11! is given by

Pi jkl 5d ikd j l 2F̄ i j F̄kl , ~12!
480 / Journal of Electronic Imaging / July 2003 / Vol. 12(3)
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whered i j is the Kronecker delta, taking 1 fori 5 j and 0
otherwise.

Invoking the general theory of statistical optimization10

we can derive a~non-CRLB type! lower bound on the co-
variance tensorV @ F̂#: If we define the moment tensorM
5(M̄ i jkl ) by

M̄5
1

N (
a51

N

W̄ax̄a ^ x̄a8^ x̄a ^ x̄a8 , ~13!

W̄a5
1

~ x̄a8 ,F̄TV0@xa#F̄x̄a8!1~ x̄a ,F̄V0@xa8#F̄Tx̄a!
, ~14!

the accuracy bound is given in the form

V @ F̂#s
e2

N
~P SM̄P ST!7

2 , ~15!

whereT sS for tensorsT andS means thatT2S is a posi-
tive semidefinite tensor, and the operation (•) r

2 denotes the
~Moore-Penrose! generalized inverse of rankr ~discussed
later!. The ~ijkl ! element of the tensorP S5(Pi jkl

S ) in Eq.
~15! is given by

Pi jkl
S 5d ikd j l 2

F̄ j i
† F̄ lk

†

iF̄†i2
, ~16!

whereF̄† is the cofactor matrix ofF̄.
For a tensorT5(Ti jkl ), a matrixA5(Ai j ), and a scalar

l, we say thatA is an eigenmatrix ofT with eigenvaluel if
T A5lA, where the productT A is a matrix whose~ij !
element is(k,l 51

3 Ti jkl Akl . The eigenmatrices and eigenva
ues of a tensor can be computed by identifying a tensor
a matrix with a 939 matrix and a 9-D vector.10

A tensor T5(Ti jkl ) is said to be symmetric ifTi jkl

5Tkli j . A symmetric 3333333 tensor has nine real ei
genvalues$l i%. The corresponding eigenmatrices$Ui% can
be chosen to be an orthogonal system of matrices of
norm, where the inner product of matricesA5(Ai j ) and
B5(Bi j ) is defined by (A;B)5( i , j 51

3 Ai j Bi j . A symmetric
tensor is positive semidefinite if its eigenvalues are all n
negative.

Let l1>¯>l9(>0) be the eigenvalues of a positiv
semidefinite symmetric tensorT, and let$U1 ,...,U9% be the
corresponding orthonormal set of eigenmatrices of u
norm. If l r.0, the~Moore-Penrose! generalized inverse o
T of rank r is computed as follows:

~T !r
25(

i 51

r Ui ^ Ui

l i
. ~17!

The root-mean-square~rms! error of an estimateF̂ is de-
fined by

rms@ F̂#5~E~ iP~ F̂2F̄!i2# !1/2. ~18!



e

ow
n

-
ge

et

s

f

tion

s-
e

this
cal
ed in
-
a-

on

a-
lues
al-
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SinceF̂ and F̄ are both normalized to unit norm, we hav

0<rms@ F̂#<1. From Eq.~15!, we have

rms@ F̂#>
e

AN
@ tr~P SM̄P ST!7

2#1/2, ~19!

where the trace trT of a tensorT5(Ti jkl ) is defined by

tr T5 (
k,l 51

3

Tklkl . ~20!

A similar accuracy bound can also be obtained for the fl
fundamental matricesW andC. The details are described i
the companion paper.12

4 Optimal Algorithm for the Fundamental Matrix

Our algorithm first computes the fundamental matrixF op-
timally by a technique called renormalization10 without
considering the rank constraint detF50 and then imposes
the rank constraint detF50 in a statistically optimal man
ner. We show that accuracy is not lost by this two-sta
cascading.

4.1 Renormalization

The renormalization algorithm proceeds as follows:

1. Letc50, Wa51, a51, . . . ,N, andJ5`, where the
symbol` means a very large number, e.g., 1010.

2. Compute the tensorsM5(Mi jkl ) andN5(Ni jkl ) as
follows:

Mijkl5
1

N (
a51

N

Waxa~i!xa~ j!8 xa~k! xa~l!8 , ~21!

Nijkl5
1

N (
a51

N

Wa ~V0@xa# ikxa~ j !8 xa~ l !8

1V0@xa8# j l xa~ i !xa~k!!, ~22!

wherexa( i ) and xa( i )8 are thei -th components ofxa

andxa8 , respectively, andV0@xa# i j andV0@xa8# i j are
the ~ij ! elements ofV0@xa# i j and V0@xa8# i j , respec-
tively.

3. Compute the nine eigenvaluesl1>...>l9 of the
tensor M and the corresponding orthonormal s
$F1 , . . . ,F9% of eigenmatrices of unit norm.

4. Updatec by:

c←c1
l9

~F9 ;N F9!
. ~23!

5. ComputeWa , a51, . . . ,N, by:

Wa5
1

~xa8 ,F9
TV0@xa#F9xa8!1~xa ,F9V0@xa8#F9

Txa!
.

~24!
6. Compute the tensorsM andN by Eqs.~21! and~22!,
and let

J8←J, J←~F9 ;MF9!. ~25!

7. If J8,J, let J←J8. ~The variableJ stores the mini-
mum residual.! Else, compute the nine eigenvalue
l1>...>l9 of the tensor

M̂5M2cN, ~26!

and the corresponding orthonormal set$F1 , . . . ,F9%
of eigenmatrices of unit norm.

8. Repeat steps 4–7 untilJ8<J or ul9u'0. This guar-
antees the iterations will converge.

9. Let F take the valueF9 , this being our estimate o
the fundamental matrix.

The preceding procedure is based on the observa
that, in the absence of noise, the fundamental matrixF is
the eigenmatrix of the moment tensorM defined in Eq.
~21! with eigenvalue 0. It can be shown that, in the pre
ence of noise,M is statistically biased from its true valu
to a first approximation by a constant times the tensorN
defined in Eq.~22!. By Eq. ~26!, we iteratively remove the
bias inM in such a way that the smallest eigenvalue ofM
converges to zero.

Recently, there has been considerable progress in
type of statistical optimization, and rigorous mathemati
analyses and improved techniques have been present
various forms.32–35The corresponding renormalization pro
cedure can also be obtained for the flow fundamental m
tricesW andC. The details are described in the compani
paper.12

4.2 Optimal Correction

We next apply a correction toF, shifting it iteratively to the
nearest value that satisfies the rank constraint detF50.
This shift is determined optimally with respect to the cov
riance tensor, which can be evaluated using the eigenva
and eigenmatrices resulting from the preceding renorm
ization procedure. The correction steps go as follows.

First, compute the normalized covariance tensor ofF by:

V0@F#5
1

N (
i 51

8 Fi ^ Fi

l i
. ~27!

Then, repeat the following computation until detF'0.

1. UpdateF as follows:

F←NFF2
~detF!V0@F#F†T

~F†T;V0@F#F†T! G . ~28!

The operatorN@•# denotes normalization of the norm
to 1: N@F#5F/iFi .

2. Compute the projection tensorP5(Pi jkl ) as follows:

Pijkl5dikdjl2FijFkl . ~29!

3. Update the normalized covariance tensorV0@F# as
Journal of Electronic Imaging / July 2003 / Vol. 12(3) / 481
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Kanatani and Ohta
follows:

V0@F# i jkl ← (
m,n,p,q51

3

Pi jmnPklpqV0@F#mnpq. ~30!

This operation projects the error distribution onto t
space orthogonal toF.

It can be shown10 that the renormalization solutionF has
the normalized covariance tensorV0@ F̂# given in Eq.~27!.
The preceding procedure enforces the rank constr
detF50 by iteratively updatingF along the shortest path i
the sense of the Mahalanobis distance defined by the
malized covariance tensorV0@ F̂#. It can be proved tha
renormalization coupled with this type of correction pr
duces a solution that attains the theoretical accuracy bo
in the first order.10 The corresponding optimal correctio
procedure is also applied to the flow fundamental matri
W and C. The details are described in the compani
paper.12

4.3 Program Package

The algorithm described in the preceding is implemented
C11 and placed on our Web page.§ It outputs a solutionF̂
along with its standard deviation pair$F(1),F(2)%. These
are the values in the parameter space that are sepa
from F̂ by the standard deviation in the two directio
along which errors implied by Eq.~15! are the most likely
to occur.

We evaluate the right-hand side of Eq.~15! by substitut-
ing the data and the estimateF̂ for their true values. The
square noise levele2 in the expression can be estimated

ê25
J

128/N
, ~31!

using the valueJ returned by the renormalization proc
dure. This type of estimation is known to give a good a
proximation to the true value.10

Let lmax be the maximum eigenvalue of the thus eva
ated tensor on the right-hand side of Eq.~15!, and letUmax
be the corresponding eigenmatrix of unit norm. The st
dard deviation pair is defined by

F~1 !5N@ F̂1~lmax!
1/2Umax#,

F~2 !5N@ F̂2~lmax!
1/2Umax#. ~32!

If F(1) andF(2) coincide up to, say, three significant digit

the solutionF̂ is likely to have accuracy up to approx
mately three significant digits.

The fundamental matrix cannot be defined uniquely
the feature points are in a degenerate configuration. T
occurs, for example, when the camera translation is zer
all the feature points are on a special quadric called a c
cal surface, a typical instance of which is a planar surfa9

§http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html
482 / Journal of Electronic Imaging / July 2003 / Vol. 12(3)
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If lmax in Eqs. ~32! is predicted to be approximately 1 i
the course of computation, our program judges that deg
eracy has occurred and stops the computation after iss
a warning message. The corresponding program pack
for computing the flow fundamental matricesW and C is
also available at the same site.

4.4 Simulated Experiments

Figure 1 shows simulated 5123512-pixel images of a 3-D
grid environment. They are supposedly captured by a m
ing camera with different focal lengths. Some of the epip
lars ~the images of the lines of sight starting from the pr
jection center of the other camera! are superimposed
Random Gaussian noise of mean 0 and standard devia
s ~pixels! was added to thex andy coordinates of each grid
point independently, and the fundamental matrixF was
computed by using the default noise model of Eq.~9!. The
renormalization converged after three or four iterations.

Figure 2~a! shows a plot of the rms error ((a51
100 iP(F̂a

2F̄)i2/100)1/2 over 100 trials for eachs using different

noise each time, whereF̂a is thea-th estimate,F̄ is the true
value, andP is the projection tensor defined in Eq.~12!.
The symbolh denotes solutions obtained via the meth
presented in this paper, and the dotted line indicates
theoretical lower bound derived from Eq.~15!. The symbol
d denotes renormalization solutions without applying t
optimal correction of Sec. 4.2. The symbolL denotes so-
lutions computed by the widely used linear algorithm, oft
referred to as the least-squares method or the algebraic
tance minimization;16,17 it directly minimizes the sum of
the squares of the epipolar constraint of Eq.~2! in the form

1

N (
a51

N

~xa ,Fxa8!2→min, ~33!

after the data are normalized as recommended by Hartle16

As we can see from Fig. 2~a!, the errors in our estimate
practically fall on the theoretical lower bound, which
known to be attained by the bundle adjustment. This c
firms that our linear algorithm indeed achieves the accur
of the bundle adjustment. Figure 2~b! shows the average
computation time on a Sun Ultra-30 workstation~Sun OS
5.6!. Naturally, our method takes more time than the na
least-squares method, but the theoretical accuracy boun
attained only at this much computation. Similar expe

Fig. 1 Simulated images of a 3-D scene and epipolars.



Comparing optimal three-dimensional reconstruction . . .
Fig. 2 Accuracy and efficiency of computation: least-squares solutions (L), solutions without the
optimal correction (d), and our solutions (h) for (a) rms error, where the dotted line indicates the
theoretical lower bound; and (b) average computation time (in seconds).
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ments for confirming the optimality of the flow fundame
tal matricesW and C are described in the companio
paper.12

5 3-D Reconstruction from Two Views

We now describe the 3-D reconstruction procedure for b
finite motion and optical flow.

5.1 Finite Motion Approach

After the fundamental matrixF is computed, the image
locationsxa andxa8 of each feature point are corrected
as to satisfy the epipolar equation~2! exactly in a statisti-
cally optimal way10:

x̂a5xa2
E@xa ,xa8#

V@xa ,xa8#
V0@xa#Fxa8 ,

x̂a85xa82
E@xa ,xa8#

V@xa ,xa8#
V0@xa8#FTxa . ~34!

Here, we have defined

E@xa ,xa8#5~xa ,Fxa8!,

V@xa ,xa8#5~xa8 ,FTV0@xa#Fxa8!1~xa ,FV0@xa8#FTxa!.

~35!

Letting xa← x̂a andxa8← x̂a8 , we repeat this procedure un
til the epipolar equationE@ x̂a ,x̂a8#50 is sufficiently satis-
fied. The convergence has quadratic speed, so one iter
is almost sufficient. This procedure is equivalent to the
angulation of Hartley and Sturm,36 which requires solving a
sixth-degree polynomial, but the preceding form is far mo
efficient, as pointed out by Torr and Zisseramann.20

In reconstructing the 3-D structure from point corr
spondences over two images taken by two uncalibra
cameras, all information is encoded1,2 in the fundamental
matrix F. SinceF is defined up to scale and constrained
be detF50, it has seven degrees of freedom. The relat
motion of the two cameras is specified by a translat
n

d

vector t and a rotation matrixR, but the absolute scale o
the translation is indeterminate and a 3-D rotation has th
degrees of freedom. So, the motion parameters$t, R% have
five degrees of freedom. It follows that only two came
parameters can be recovered.

A practical choice for them is the focal lengthsf and f 8
of the two cameras, since other parameters can be pre
brated and fixed while zooming changes can occur as
camera moves.** Hartley37 presented an analytic procedu
for computing the focal lengthsf and f 8 from the funda-
mental matrixF. The solution is obtained by applying th
singular value decomposition~SVD! and solving linear
equations in four unknowns. Panet al.38,39 reduced this
problem to solving cubic equations. Newsamet al.40 re-
fined these algorithms into a combination of SVD and l
ear equations in three unknowns. Kanatani a
Matsunaga11 reduced the problem to solving a quadra
equation in one variable. Bougnoux41 presented an explici
formula for f in F. The degeneracy condition for the solu
tion to be indeterminate has also been analyzed.11,40

Among many mathematically equivalent alternative
the most convenient may be the following modification
the Bougnoux formula41 given by Kanatani and
Matsunaga:11

f 5 f 0Y F11
iFki22~k,FFTFk!ie83ki2/~k,Fk!

ie83ki2iFTki22~k,Fk!2 G1/2

,

f 85 f 0Y F11
iFTki22~k,FFTFk!ie3ki2/~k,Fk!

ie3ki2iFki22~k,Fk!2 G1/2

.

~36!

Here, we putk5(0,0,1)T. The symbolse ande8 denote the
unit eigenvectors ofFT andF, respectively, for eigenvalue
0; they represent the epipoles—the image of the projec

** Strictly speaking, the principal point~the intersection of the optical axis
with the image plane! may slightly move as zooming changes, but r
garding it as a fixed point is known to be a good approximatio
Journal of Electronic Imaging / July 2003 / Vol. 12(3) / 483
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Kanatani and Ohta
center of the second camera in the first image and the
age of that of the first camera in the second ima
respectively.1,2

After the focal lengthsf and f 8 have been obtained, w
recompute$x̂a% and $x̂a8% by replacing f 0 in the vector
representation of Eqs.~1! by the corresponding valuesf and
f 8. This can be done as follows:

x̂a←diagS f 0

f
,

f 0

f
,1D x̂a , xa8←diagS f 0

f 8
,

f 0

f 8
,1D xa8 . ~37!

The motion parameters$t,R% are analytically computed
by the following procedure,9 where the indeterminate sca
of the translationt is normalized toi ti51.

1. Compute the following essential matrix:

E5diagS1,1,
f 0

f DF diagS1,1,
f 0

f 8D . ~38!

This removes the dependence of the fundamental
trix on the focal lengths.11

2. Compute the unit eigenvectort of EET for the small-
est eigenvalue. The sign oft is chosen in such a wa
that

(
a51

N

ut,x̂a ,Exa8u.0. ~39!

This is the constraint that the depths of the feat
points have the same sign before and after the cam
motion.9

3. Apply SVD to 2t3E as follows:

2t3E5VLUT. ~40!

For a vectora and a matrixA, we definea3A to be
the matrix consisting of columns that are the vec
products ofa and the individual columns ofA. Also
L is a diagonal matrix with diagonal elements~sin-
gular values! in nonincreasing order, andV andU are
orthogonal matrices.

4. Compute the rotationR as follows:

R5V diag~1,1,detVUT!UT. ~41!

This procedure produces a least-squares solution for$t,R%
even if the rank constraint detF50 is not strictly satisfied.9

The 3-D position of theath point is given by

r̂a5Ẑax̂a , r̂a85Ẑa8x̂a8 , ~42!

with respect to the first and the second camera coordi
systems, respectively, where the depthsẐa and Ẑa8 are
given as follows9:

Ẑa5~ t3Rx̂a8 ,na!, Ẑa85~ t3 x̂a ,na!. ~43!

Here, we have defined
484 / Journal of Electronic Imaging / July 2003 / Vol. 12(3)
-
,

-

a

e

na5
x̂a3Rx̂a8

i x̂a3Rx̂a8i2 . ~44!

Finally, we must adjust the signs of the depths beca
the sign of the fundamental matrixF is indeterminate. The
signs of$Ẑa% and$Ẑa8% are inverted, if necessary, so tha

(
a51

N

~sgn@ Ẑa#1sgn@ Ẑa8# !.0, ~45!

where sgn@•# is the signature function that takes 1, 0, a
21 for x.0, x50, andx,0, respectively. This operation i
necessary, because we may not select the correct soluti
we simply compute(a51

N (Ẑa1Ẑa8); a very large positive
depth may turn out to be close to2` due to noise.

5.2 Optical Flow Approach

The 3-D reconstruction from optical flow goes similarl
After optimally computing the flow fundamental matrixW
and C using the method described in the compani
paper,12 the flow ẋa and image locationxa of each feature
point are corrected so as to satisfy the flow epipolar eq
tion ~4! exactly in a statistically optimal way10:

xNa5 ẋa1
E@ ẋa ,xa#

V@ ẋa ,xa#
V0@ ẋa#Wxa ,

x̂a5xa2
E@ ẋa ,xa#

V@ ẋa ,xa#
V0@xa#~Wẋa12Cxa!. ~46!

Here, we have defined

E@ ẋa ,xa#5~xa ,Wẋa!1~xa ,Cxa!,

V@ ẋa ,xa#5~Wxa ,V0@ ẋa#Wxa!

1~Wẋa12Cxa ,V0@xa#~Wẋa12Cxa!!. ~47!

Letting ẋa←xNa andxa← x̂a , we repeat this procedure unt
the flow epipolar equationE@xNa ,x̂a#50 is sufficiently sat-
isfied. As in the finite motion approach, the convergen
has quadratic speed, so one iteration is almost sufficien

In reconstructing the 3-D structure from optical flo
taken by an uncalibrated camera, all information
encoded12–14 in the flow fundamental matricesW and C.
They are determined up to scale and constrained by
decomposability condition of Eq.~6!. SinceW and C are
antisymmetric and symmetric matrices, respectively, th
have seven degrees of freedom in total. The instantane
motion of the camera is specified by the translation veloc
v and the rotation velocityv, but the absolute scale of th
translational motion is indeterminate. So, the motion p
rameters$v,v% have five degrees of freedom. As in the ca
of finite motion, only two camera parameters can be rec
ered.

A practical choice for them is, as before, the focal leng
f and its change rateḟ . Brookset al.13 presented a compli-

cated procedure for computingf, ḟ , v, andv from the flow
fundamental matricesW5(Wi j ) and C5(Ci j ). Here, we
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present an elegant group-theoretical procedure using42 irre-
ducible representations of the group of 2-D rotatio
SO(2). Theindeterminate scale of the translation veloc
v is normalized toivi51.

Let wi be thei ’ th component of the vectorw defined in
Eq. ~5!, and do the following computation:

A5C111C22, B̃5~C112C22!12iC12,

C̃52~C131 iC23!, D5C33, ~48!

w̃5w11 iw2 , w̃85
B̃

w̃
, v815R@ṽ8#,

v825J@ṽ8#, v352
A1~w̃,ṽ8!

2w3
, ~49!

f 85S 2
D

~w̃,ṽ8! D
1/2

, f̃5
C̃2 f 82w3ṽ8

w̃
,

v35R@f̃#, ḟ 852 f 8J@f̃#, ~50!

v15 f 8v81 , v25 f 8v82 , f 5 f 8 f 0 , ḟ 5 ḟ 8 f 0 ,

v5NF S w1

w2

~ f / f 0!w3

D G . ~51!

Here,i is the imaginary unit. The quantities with tildes a
complex numbers:R@•# andJ@•# denote the real and imag
nary parts, respectively. We define the ‘‘inner product’’
complex numbersz5x1 iy and z85x81 iy8 by (z,z8)
5xx81yy8. The operationN@•# designates normalizatio
into a unit vector:N@a#5a/iai . Note thatv3 is computed
in two ways by the fifth of Eqs.~49! and the third of Eqs.
~50!. The decomposability condition of Eq.~6! requires that
the two values coincide.

The 3-D positions of the feature points are reconstruc
as follows. First, we recompute$xNa% and$x̂a% by replacing

f 0 by its true valuef and incorporating its change rateḟ .
This is done as follows:

Fig. 3 Simulated images of a 3-D scene.
xNa← f 0

f
S xNa2

ḟ

f
diag~1,1,0!x̂aD ,

x̂a←diagS f 0

f
,

f 0

f
,1D x̂a . ~52!

The 3-D position of thea ’ th point is given by

r̂a5Ẑax̂a , ~53!

where the depthẐa is given as follows:9

Ẑa52
~v,Sav!

~v,Sa~ ẋa1v3xa!!
. ~54!

Here, we have defined

Sa5~ I2xakT!T~ I2xakT!, ~55!

where k5(0,0,1)T. In view of the sign indeterminacy o

the flow fundamental matricesW andC, the signs of$Ẑa%
are inverted, if necessary, so that the following condition
satisfied for the same reason as in the finite motion
proach:

(
a51

N

sgn@ Ẑa#.0. ~56!

Fig. 4 Finite motion approach: (a) reconstructed shape (solid lines)
and the true shape (dotted lines); and (b) uncertainty ellipsoids of
the grid points.

Fig. 5 Optical flow approach: (a) reconstructed shape (solid lines)
and the true shape (dotted lines); and (b) uncertainty ellipsoids of
the grid points.
Journal of Electronic Imaging / July 2003 / Vol. 12(3) / 485
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6 Performance Comparison

We now compare the performance of the finite motion
gorithm and the optical flow algorithm by simulation an
real-image experiments using the same data.

6.1 Simulation Experiments

Figure 3 shows simulated 5123512-pixel images of a 3-D
scene. We added independent random Gaussian nois
mean 0 and standard deviation 3~pixels! to each of thex
and y coordinates of the grid points and reconstructed
3-D shape using the default noise model of Eq.~9!.

Figure 4~a! shows the 3-D shape~solid lines! recon-
structed by the finite motion algorithm superimposed on
true shape~dotted lines! rescaled toi ti51. Figure 4~b!
shows uncertainty ellipsoids centered on the reconstru
vertices. We can evaluate the uncertainty of the compu
fundamental matrixF in the form of the covariance tenso
so that it can be propagated to the uncertainty of the
reconstruction~we omit the details!. The ellipsoids in Fig.
4~b! indicate three times the standard deviation in each
entation. As we can observe, they are very thin needle-
shapes with their major axes approximately in the de
orientation. They are larger for points farther away from t
cameras.††

Figure 5 shows the corresponding 3-D shape rec
structed by the optical flow algorithm using the defa
noise model of Eqs.~10!. Here, the random Gaussian noi
is reduced to standard deviation 0.5~pixel!, because adding
more noise would deteriorate the results intolerably. Fr
this, we can observe the poor performance of the opt
flow approach even in this low noise level.

6.2 Real Image Experiments

Figure 6 shows a pair of real images (5123768 pixels) of
an indoor scene. We manually selected feature points
marked in the images and reconstructed the 3-D shape.
ure 7 shows the 3-D shape computed in two ways: Fig. 7~a!
with the finite motion approach using the noise model
Eq. ~9!; and Fig. 7~b! with the optical flow approach usin
the noise model of Eqs.~10!. Wireframes consisting o
some of the reconstructed points are shown for visual a

On each reconstructed point is centered the uncerta
ellipsoid that indicates the standard deviation in each
entation ~this time not magnified!. They are like thin

††The uncertainty shown here is relative to the first camera coordi
system with the camera translation normalized to unit length, so it d
not have an absolute meaning since the first camera coordinate sy
and the camera translation also have their uncertainty. To extrac
absolute meaning, we require the gauge theory of uncerta
description.43

Fig. 6 Real images of an indoor scene.
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needles, showing that the uncertainty is very large along
depth orientation. Although the reconstructed shape it
looks natural for both Figs. 7~a! and 7~b!, we can clearly
see that the optical flow solution has far larger uncertai
than the finite motion solution.

Figure 8 shows real images (5123768 pixels) of a car.
We manually selected feature points as marked in the
ages and reconstructed the 3-D shape. Figure 9 shows s
new views generated by creating a wireframe model fr
the reconstructed points and mapping the texture to it:
upper row is obtained by the finite motion approach w
the noise model of Eq.~9!; the lower row is obtained by the
optical flow approach with the noise model of Eqs.~10!.

Although it is difficult to grasp the exact 3-D shape fro
static views, we are given a fairly realistic impression
the 3-D shape by continuously changing the viewpoint. A
ter careful observations, however, we find that the 3
shape is unnaturally deformed in the part far away from
viewer as compared with the front part, which is fairy a
curate. We also find that the deformation is larger for t
optical flow solution than the finite motion solution.

7 Conclusions

We have presented two linear algorithms for 3-D reco
struction: one is for finite motion; and the other is for o
tical flow. Both are theoretically optimal in the sense th
they extract maximum information from the input. The
first compute the fundamental matrix and the flow fund
mental matrices by renormalization followed by optim
correction. For each approach, experiments have sh
that the solution falls in the vicinity of the theoretical a
curacy bound.

We then presented for each approach a 3-D reconst
tion procedure based on the computed fundamental m
ces. We compared the performance of the two algorith

m
n

Fig. 7 Uncertainty ellipsoids of points reconstructed (a) by the finite
motion approach and (b) by the optical flow approach.

Fig. 8 Real images of a car.
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Comparing optimal three-dimensional reconstruction . . .
by simulation and real-image experiments using the sa
data and observed that the finite motion solution is alw
superior to the optical flow solution.

Since optical flow is a first-order approximation of fini
motion, the computation could be stabler for optical flo
when the disparity is very small. We tested this by simu
tion. Evidently, the 3-D information cannot be obtained
the disparity between the two images is too small whate
method is used. Gradually reducing the disparity, we
the two algorithms for the same data and found that
optical flow algorithm always collapsed first. In all the e
periments we performed, we were unable to find any
vantage of the optical flow algorithm in accuracy, ef
ciency, or stability as far as 3-D reconstruction
concerned.

The reason why so many studies of 3-D reconstruct
from optical flow have been done in the past lies perhap
the ease of its computation and the rich information it co
tains. Indeed, humans can easily perceive the 3-D struc
of the scene by simply looking at its motion. Thus, it
natural that people have sought algorithms for 3-D rec
struction from optical flow. In fact, many authors assert t
studying 3-D reconstruction algorithms from optical flo
can lead to understand the workings of the human brai5,8

Optical flow is also useful for motion segmentation.
For 3-D reconstruction, however, one should use the

nite motion algorithm; nothing is gained by using firs
order approximations. Of course, our comparison exp
ments are limited in that point correspondence over t
images is identified with optical flow. Establishing corr
spondence for finite motion by template matching is a d
ficult task, and its accuracy is limited, while optical flo
can be obtained with subpixel accuracy by spatiotemp
filtering of a long image sequence. One can also estim
the true instantaneous velocity rather than point corresp
dences over consecutive images. We also restricted ou
vestigation to two-view analysis and did not consider
multiframe approach for finite motion.1,2

These limitations are an unavoidable consequence
comparing algorithms for different types of data. Evident
high-accuracy methods do not perform well for poor da
while naive methods may work well for good data. Th
paper focused on only 3-D reconstruction accuracy, dis
garding the quality of input data. The optimality of ou

Fig. 9 Reconstructed and texture-mapped 3-D shape using the fi-
nite motion approach (above) and the optical flow approach (below).
e
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procedure is of only theoretical nature based on idealiz
assumptions, and the accuracy was tested by only a lim
number of experiments. Thus, there is much room for i
proving the performance for both approaches.
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