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Abstract A new numerical scheme is presented for com-
puting strict maximum likelihood (ML) of geometric fit-
ting problems having an implicit constraint. Our approach
is orthogonal projection of observations onto a parameter-
ized surface defined by the constraint. Assuming a linearly
separable nonlinear constraint, we show that a theoretically
global solution can be obtained by iterative Sampson error
minimization. Our approach is illustrated by ellipse fitting
and fundamental matrix computation. Our method also en-
compasses optimal correction, computing, e.g., perpendicu-
lars to an ellipse and triangulating stereo images. A detailed
discussion is given to technical and practical issues about
our approach.

Keywords Geometric fitting · Maximum likelihood ·
Ellipse fitting · Fundamental matrix · Stereo image
triangulation

1 Introduction

This paper presents a unified numerical scheme for comput-
ing strict maximum likelihood (ML) for a problem called ge-
ometric fitting [16] having an implicit constraint. This type
of problem very frequently appears in computer vision ap-
plications. By “strict”, we mean Gaussian noise is assumed
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in the original data space, while many existing methods
implicitly assume it in a transformed data space, minimiz-
ing what is known as the Sampson error. By “unified”, we
mean we need not derive a problem-specific cost function
for particular applications. Assuming a linearly separable
constraint, which is very common in computer vision ap-
plications, we show that a theoretically global solution can
be obtained by iterative Sampson error minimization in a
problem-independent manner.

Our approach is orthogonal projection of observations
onto a parameterized surface defined by the constraint. The
principle itself is well known, but we present a new scheme
by exploiting the linear separability of the constraint. We il-
lustrated our procedure by applying it to ellipse fitting and
fundamental matrix computation. Our method also encom-
passes optimal correction [16], which, too, plays an impor-
tant role in computer vision applications. We illustrate our
approach by computing perpendiculars to an ellipse and tri-
angulating stereo images.

We first state the problem and give mathematical funda-
mentals in Sect. 2 and 3. In Sect. 4 and 5, we contrast two
types of ML. In Sect. 6, we review existing approaches and
sketch our strategy. The computational details are described
in Sect. 7 and 8. In Sect. 9, we apply our approach to el-
lipse fitting and fundamental matrix computation and show
some numerical results. In Sect. 10, we reduce our method to
optimal correction schemes, showing how to compute per-
pendiculars to an ellipse and triangulate stereo images. We
summarize technical and practical issues of our approach in
Sec. 11 and conclude in Sect. 12.

2 Geometric fitting

We consider the problem of fitting to noisy vector data xα ,
α = 1, ..., N, an implicit equation in the form
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F(x;θ) = 0, (1)

parameterized by θ . In other words, we want to estimate
the parameter θ in such a way that F(xα ;θ) ≈ 0 for all α .
Many computer vision problems are formulated in this way
[15,16]; one can infer the shapes and the positions of objects
seen in images from the thus computed θ . In the statistics lit-
erature, this problem is sometimes called the Gauss-Helmert
model, while it is called the Gauss-Markoff model if (1) can
be explicitly solved for x in terms of θ [9,28].

The function F(x;θ) in (1) is generally nonlinear in the
data vector x. In a wide range of computer vision problems,
however, F(x;θ) is frequently linear in the parameter θ or
can be made linear by an appropriate reparameterization. In
such a case, (1) can be rewritten as

(ξ (x),θ) = 0, (2)

where and throughout this paper we denote by (a,b) the in-
ner product of vectors a and b. The ith component ξi(x) of
the vector ξ (x) consists of (generally nonlinear) terms in
x that are multiplied by θi. If terms that do not involve θ
are added, they are regarded as multiplied by an unknown,
which we identify with the final component θn of θ . Then,
we should obtain a solution such that θn = 1, but because (2)
is homogeneous in θ , we can determine θ only up to scale.
It follows that an arbitrary normalization can be imposed on
θ , such as ‖θ‖ = 1.

Example 1 (Ellipse Fitting) We want to fit to a point se-
quence (xα ,yα), α = 1, ..., N, an ellipse in the form

Ax2 +2Bxy+Cy2 +2(Dx+Ey)+F = 0, (3)

(Fig. 1). If we define ξ (x,y) and θ by

ξ (x,y) = (x2 2xy y2 2x 2y 1)>, θ = (A B C D E F)>, (4)

(3) has the form of (2) [22].

Example 2 (Fundamental Matrix Computation) Consider
two images of the same scene viewed from different posi-
tions. If point (x,y) in the first image corresponds to (x′,y′)

Fig. 1 Fitting an ellipse to a
point sequence.

(x   , y   )α α

(x   , y   )α α

(x  ’, y  ’)α α

Fig. 2 Computing the fundamental matrix from corresponding points
between two images.

in the second, the following epipolar equation is satisfied
[15] (Fig. 2):

(

x
y
1

 ,F

x′

y′

1

) = 0. (5)

Here, F is a matrix of rank 2, called the fundamental ma-
trix, which does not depend on the scene we are looking at;
it depends only on the relative positions of the two cameras
and their intrinsic parameters. By computing the fundamen-
tal matrix F from point correspondences, we can reconstruct
the 3-D shape of the scene and the camera positions [19]. If
we define

ξ (x,y,x′,y′) = (xx′ xy′ x yx′ yy′ y x′ y′ 1)>,

θ = (F11 F12 F13 F21 F22 F23 F31 F32 F33)>, (6)

(5) has the form of (2) [20].

3 Gaussian noise in the ξ -space

For statistical inference from noisy data, we need to specify:

– Noise model: What kind of property do we assume noise
to have?

– Criterion of optimality: What kind of solution do we re-
gard as optimal?

The standard noise model is independent Gaussian noise
of mean 0; each observation may have a different (non-
isotropic) covariance matrix. For this, however, we have two
alternatives: Gaussian noise in the original data xα or in the
transformed data ξα = ξ (xα). The covariance matrix V [xα ]
of xα and the covariance matrix V [ξα ] of ξα are related by

V [ξα ] =
(∂ξ

∂x

)
α
V [xα ]

(∂ξ
∂x

)>
α
, (7)

up to high (fourth1 in Examples 1 and 2) order noise terms,
where (∂ξ/∂x)α denotes the Jacobian matrix of the map-
ping ξ (x) evaluated at x = xα .

1 Covariance matrices are expectation of second order noise statis-
tics. For symmetrically distributing noise of mean 0, expectation of
third order noise terms vanishes.
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Example 3 (Ellipse Fitting) If each point (xα ,yα) has inde-
pendent noise of mean 0 and standard deviation σ in its x
and y coordinates, the covariance matrix V [ξα ] has the fol-
lowing form [22]:

V [ξα ] = 4σ2



x2
α xα yα 0 xα 0 0

xα yα x2
α + y2

α xα yα yα xα 0
0 xα yα y2

α 0 yα 0
xα yα 0 1 0 0
0 xα yα 0 1 0
0 0 0 0 0 0

 . (8)

Example 4 (Fundamental Matrix Computation) If each cor-
respondence pair (xα ,yα) and (x′α ,y′α) has independent
noise of mean 0 and standard deviation σ in its x and y co-
ordinates, the covariance matrix V [ξα ] is as follows [20]:

V [ξα ] = σ2



x2
α +x′2α x′α y′α x′α xα yα 0 0 xα 0 0
x′α y′α x2

α +y′2α y′α 0 xα yα 0 0 xα 0
x′α y′α 1 0 0 0 0 0 0

xα yα 0 0 y2
α +x′2α x′α y′α x′α yα 0 0

0 xα yα 0 x′α y′α y2
α +y′2α y′α 0 yα 0

0 0 0 x′α y′α 1 0 0 0
xα 0 0 yα 0 0 1 0 0
0 xα 0 0 yα 0 0 1 0
0 0 0 0 0 0 0 0 0


.

(9)

4 ML in the ξ -space

The standard criterion for optimality is maximum likelihood
(ML): the likelihood function obtained by substituting ob-
served data into the probability density of the noise model
is maximized, or equivalently its negative logarithm is min-
imized. It is known that the resulting solution achieves the
theoretical accuracy bound called the KCR lower bound [6,
16,17] up to higher order noise terms.

If Gaussian noise is assumed in the ξ -space, ML reduces
to minimization of the Mahalanobis distance

J =
N

∑
α=1

(ξα − ξ̄α ,V [ξα ]−1(ξα − ξ̄α)), (10)

between observed values {ξα} and their true values {ξ̄α}
subject to

(ξ̄α ,θ) = 0, α = 1, ...,N, (11)

with respect to ξ̄α and θ . Since the constraint is linear in ξ̄α ,
it can be eliminated by introducing Lagrange multipliers, re-

ducing (10) to2 [18]

J =
N

∑
α=1

(ξα ,θ)2

(θ ,V [ξα ]θ)
, (12)

which is called the Sampson error, originating from ellipse
fitting by Sampson [29].

Various numerical schemes are available for minimiz-
ing (12) [18], including the FNS (Fundamental Numerical
Scheme) of Chojnacki et al. [7], the HEIV (Heteroscedas-
tic Errors In Variables) of Leedan and Meer [26], and the
projective Gauss-Newton iterations of Kanatani and Sug-
aya [20,22]. These apply when no special constraint (scale
normalization aside) is imposed on θ . For computing the
fundamental matrix, however, it has an additional constraint
that it has rank 2. The FNS of Chojnacki et al. [7] can be
extended to incorporate such constraints in the form of the
CFNS3 (Constrained FNS) of Chojnacki et al. [8] and the
EFNS (Extended FNS) of Kanatani and Sugaya [21].

2 If ξα has constant components as in (4) and (6), the covariance
matrix V [ξα ] becomes singular as seen in (8) and (9). In such a case,
we replace V [ξα ]−1 in (10) by the pseudoinverse, which means we
focus only on those components of ξα that can vary. Still, (12) holds
[16].

3 It was pointed out that CFNS does not necessarily compute a cor-
rect solution [21].
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In the past, minimizing the Sampson error (12) has been
regarded by many as an approximation to ML; some called
Sampson error minimization “approximate ML”. We point
out that Sampson error minimization is “exact ML” for
Gaussian noise in the ξ -space: No approximation is intro-
duced to go from (10) and (11) to (12). We will show that
this observation plays a crucial role in computing ML in the
x-space.

5 ML in the x-space

The preceding formulation suits numerical computation and
accuracy analysis [18]. For ellipse fitting, however, it is natu-
ral to assume that each point (xα ,yα) has independent Gaus-
sian noise in its x and y coordinates. Then, the noise in ξα
after the nonlinear transformation (4) is, strictly, no longer
Gaussian. For fundamental matrix computation, too, it is
natural to assume that each corresponding pair (xα ,yα) and
(x′α ,y′α) has independent Gaussian noise in its x and y co-
ordinates, but the noise in ξα after the nonlinear transfor-
mation (6) is, strictly, no longer Gaussian. Whether we as-
sume Gaussian noise in the ξ -space or in the x-space may
not make much difference as long as the noise is small, but
some difference may arise when the noise is large. Studying
this is the main motivation of this paper.

If Gaussian noise is assumed in the x-space, ML reduces
to minimization of the Mahalanobis distances4

E =
N

∑
α=1

(xα − x̄α ,V [xα ]−1(xα − x̄α)), (13)

between observations {xα} and their true values {x̄α} sub-
ject to the nonlinear constraint

(ξ (x̄α),θ) = 0, α = 1, ...,N, (14)

with respect to x̄α and θ . To avoid confusion, we call the
Mahalanobis distance (13) the reprojection error as opposed
to the Sampson error (12), which equals the Mahalanobis
distance (10) in the ξ -space. Traditionally, the term “repro-
jection” has been used in the context of 3-D reconstruc-
tion from images: an assumed 3-D shape is “reprojected”
onto the image plane and compared with the actually ob-
served image; the 3-D shape with the smallest discrepancy
is sought. Here, we slightly abuse this term to mean the
Mahalanobis distance between actual observations and their
guesses in the original x-space.

4 The following argument holds if V [xα ] is singular. All we need is
to replace V [xα ]−1 by its pseudoinverse and appropriately use projec-
tion operations [16].

6 Existing ML approaches

In the past, many researchers have studied minimization of
the reprojection error (13) subject to a general constraint (1)
instead of (14). Popular approaches can be roughly classified
into orthogonal projection and bundle adjustment.

Orthogonal projection. The constraint F(x;θ) = 0 defines
a hypersurface S in the x-space, and the problem of
finding x̄α that minimizes (13) can be interpreted as find-
ing a point x̄α ∈ S closest to xα measured in (13).
Hence, the solution is obtained by “orthogonally” pro-
jecting the observations xα onto S , where orthogonality
is defined with respect to V [xα ]: a and b are orthogonal
if (a,V [xα ]−1b) = 0 (Fig. 3). An initial guess {x(0)

α , θ (0)}
(x(0)

α are the observations xα themselves) is assumed,
and a sequence {x(0)

α , θ (0)}, {x(1)
α , θ (1)}, {x(2)

α , θ (2)},
... is generated by computing {x(k)

α , θ (k)} from {x(k−1)
α ,

θ (k−1)} [1,2,9,28].
Bundle adjustment. Introducing auxiliary variables, we

solve the constraint F(x̄α ;θ) = 0 for each x̄α in terms of
θ and the auxiliary variables. The resulting expressions
are substituted into (13) to define an explicit function E
of θ and the auxiliary variables. Then, it is minimized
by a standard tool such as the Levenberg-Marquardt
method. Usually, a local minimum of E is obtained, but
methods that can find a global minimum also exist, e.g.,
branch and bound [13]. Here, we are slightly abusing
the term “bundle adjustment”. It has traditionally been
used in the context of 3-D reconstruction from images;
we adjust the bundle of “rays” starting from camera pro-
jection center in such a way that the reprojection error is
minimized [31].

The purpose of this paper is to show that if the constraint
has the form of (14) we can exploit the close relationship
between the ML in the ξ -space ((10), (11), and (12)) and
the ML in the x-space ((13) and (14)), which seems to have
been overlooked in the past.

Of course, we could adopt the traditional approach even
for the constraint (14). Indeed, bundle adjustment has been
very popular. For ellipse fitting, for example, auxiliary vari-
ables such as the center, the radii, the major and minor axes,
and the angular parameters of individual points are intro-
duced, and the resulting high dimensional space is searched

S

xα

xα-

(x-x  ,V[x  ]   (x-x  )) = constantααα
-1

Fig. 3 Orthogonal projection of xα with respect to V [xα ].
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[4,10,11,30]. For fundamental matrix computation, auxil-
iary variables are introduced by tentatively reconstructing
the 3-D positions of the observed points from an assumed
fundamental matrix, which is a function of the camera pa-
rameters (the relative positions of the cameras and its in-
trinsic parameters). The resulting high dimensional space is
searched so that the reprojection error is minimized [3].

However, the way we obtain an explicit form of E is
problem-dependent, since the choice of auxiliary variables
depends on particular properties of the problem. Also, the
search space is usually very high dimensional, and the ef-
ficiency of computation depends largely on how we imple-
ment the search; the speed can be greatly accelerated by a
clever preprocessing of sparse Hessians by considering the
particularities of the problem.

In the following, we adopt the orthogonal projection ap-
proach to the constraint (14) and show that the optimization
is formulated in a problem-independent way without using
any particular properties of the problem. We show that the
computation reduces to repeated minimization of the Samp-
son error (12). The resulting solution is a global optimum if
the Sampson error can be globally minimized. Our approach
appears to be the same in spirit as the extended HEIV of
Matei and Meer [27], but we explicitly take advantage of
the correspondence between ML in the x-space and ML in
the ξ -space.

Note that minimization of (10) is not affected by multi-
plication of V [ξα ] by any positive constant. Similarly, V [xα ]
in (13) can be multiplied by any positive constant. Hence,
the scales of V [ξα ] and V [xα ] are not important. However,
they must be related by (7), which plays a key role in our
subsequent analysis. In other words, we need to know V [ξα ]
and V [xα ] up to a common scale.

7 Orthogonal projection computation

Our goal is to orthogonally project each observation xα onto
the hypersurface S defined by (14) in the x-space, where
the “orthogonality” is defined with respect to the covariance
matrix V [xα ]. The precise meaning is as follows. Let us call
the direction specified by

n = V
(∂ξ

∂x

)>
θ (15)

the V-normal of S at x ∈ S . It is easily seen that (t,Vn)
= 0 for any tangent vector t at x (See Appendix). Our goal
is to find for each xα a point x̄α ∈ S such that x̄− xα is
in the direction of the V [xα ]-normal at x̄α . Such a point xα ,
if it uniquely exists, minimizes (x̄− xα ,V [xα ]−1(x̄− xα)).
However, we do not know the value of θ that defines S ; it
should be determined so that (13) is minimized. We solve
this problem by the following iterative procedure.

We identify S with a “level set” of (ξ (x),θ) = c for c
= 0 and view the x-space as filled with continuously varying
level sets with varying c (foliation in mathematical terms).
The observation xα is on the surface (or leaf ) Sα : (ξ (x),θ)
= cα , where cα = (ξα ,θ). We first project xα onto S in the
direction of the V [xα ]-normal at xα ∈ Sα , where the value
of θ is not specified yet. The projection x̂α = xα −λα nα is
given by computing the magnitude λα so as to satisfy

(ξ (xα −λα nα),θ) = 0. (16)

If θ were given a specific value, we could determine λα by
numerical line search. If each component of ξ (ξ ) is a poly-
nomial of ξ , we might even be able to compute λα analyti-
cally. Here, however, we need to express λα as an explicit
function of θ to be optimized later. Assuming that λα is
small and using the Taylor expansion

ξ (xα −λα nα) = ξα −λα

(∂ξ
∂x

)
α
nα + · · · , (17)

we express λα to a first approximation in the form

λα =
(ξα ,θ)

((∂ξ/∂x)α nα ,θ)
=

(ξα ,θ)
((∂ξ/∂x)αV [xα ](∂ξ/∂x)>α θ ,θ)

=
(ξα ,θ)

(θ ,V [ξα ]θ)
, (18)

where the identity (7) is used. The reprojection error of the
thus computed x̂α , α = 1, ..., N, is

E =
N

∑
α=1

(xα − x̂α ,V [xα ]−1(xα − x̂α))

=
N

∑
α=1

(λα nα ,V [xα ]−1λα nα)

=
N

∑
α=1

λ 2
α(V [xα ]

(∂ξ
∂x

)>
α
θ ,V [xα ]−1V [xα ]

(∂ξ
∂x

)>
α
θ)

=
N

∑
α=1

λ 2
α(θ ,

(∂ξ
∂x

)
α
V [xα ]

(∂ξ
∂x

)>
α
θ)

=
N

∑
α=1

λ 2
α(θ ,V [ξα ]θ)

=
N

∑
α=1

(ξα ,θ)2

(θ ,V [ξα ]θ)
, (19)

which is nothing but the Sampson error (10). At this stage,
we assign to θ the value θ̂ that minimizes (19) over the en-
tire domain of θ , using some Sampson error minimization
method such as FNS or HEIV. Then, the orthogonal projec-
tion is given by

x̂α = xα − (ξα , θ̂)V [xα ]
(θ̂ ,V [ξα ]θ̂)

(∂ξ
∂x

)>
α

θ̂ . (20)
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8 Strict orthogonal projection

Now the nature of the Sampson error has become clear. The
core of our algorithm is to iteratively modify it so that it co-
incides with the reprojection error. In the preceding compu-
tation, we projected xα along the V [xα ]-normal of the level
set Sα at xα , while our goal is to project xα along the V [xα ]-
normal of the hypersurface S itself at x̄α , which is unknown
yet. So, we project xα along the V [xα ]-normal of the level
set Ŝα at x̂α that we have just computed (Fig. 4). To do this,
we again view θ as a mere variable whose value is unspeci-
fied; the value assigned to it in the preceding computation is
discarded. The V [xα ]-normal of Ŝα at x̂α is

n̂α = V [xα ]
(∂ ξ̂

∂x

)>
α

θ , (21)

where (∂ ξ̂/∂x)α is the Jacobian matrix (∂ξ/∂x) evaluated
at x̂α . We project the original xα , not the computed x̂α , onto
S in the form ˆ̂xα = xα − λ̂α n̂α (Fig. 4) and determine λ̂α so
as to satisfy

(ξ (xα − λ̂α n̂α),θ) = 0. (22)

If x̂α is a good approximation to the true solution x̄α as
compared with the original data xα , we have ‖ ˆ̂xα − x̂α‖ ¿
‖ ˆ̂xα −xα‖ (Fig. 4). Hence, if we write

ξ (xα − λ̂α n̂α) = ξ (x̂α +xα − x̂α − λ̂α n̂α)

= ξ (x̂α + x̃α − λ̂α n̂α), (23)

where we define

x̃α ≡ xα − x̂α , (24)

then x̃α − λ̂α n̂α is a small quantity of a higher order. Using
the Taylor expansion

ξ (xα − λ̂α n̂α) = ξ̂α +
(∂ ξ̂

∂x

)
α
(x̃α − λ̂α n̂α)+ · · · , (25)

where ξ̂α ≡ ξ (x̂α), we obtain from (22) to a first approxi-
mation the expression

λ̂α =
(ξ̂α ,θ)+(θ ,(∂ ξ̂/∂x)α x̃α)

(θ ,V [ξ̂α ]θ)
=

(ξ̂ ∗
α ,θ)

(θ ,V [ξ̂α ]θ)
. (26)

S

Sα

Sα xα

xα

xα

nα

nα

nα

Fig. 4 Successive projection along the V [xα ]-normal of the level set.

Here, we define

ξ̂ ∗
α ≡ ξ̂α +

(∂ ξ̂
∂x

)
α
x̃α ,

V [ξ̂α ] ≡
(∂ ξ̂

∂x

)
α
V [xα ]

(∂ ξ̂
∂x

)>
α
. (27)

The reprojection error of the thus computed ˆ̂xα , α = 1, ...,
N, is

E =
N

∑
α=1

(xα − ˆ̂xα ,V [xα ]−1(xα − ˆ̂xα))

=
N

∑
α=1

(λ̂α n̂α ,V [xα ]−1λ̂α n̂α)

=
N

∑
α=1

λ̂ 2
α(V [xα ]

(∂ ξ̂
∂x

)>
α
θ,V [xα ]−1V [xα ]

( ∂̂ ξ
∂x

)>
α
θ)

=
N

∑
α=1

λ̂ 2
α(θ ,

(∂ ξ̂
∂x

)
α
V [xα ]

(∂ ξ̂
∂x

)>
α
θ)

=
N

∑
α=1

λ̂ 2
α(θ ,V [ξ̂α ]θ) =

N

∑
α=1

(ξ̂ ∗
α ,θ)2

(θ ,V [ξ̂α ]θ)
. (28)

Again, this has the same form as (12), so we assign to θ ,
whose value has been unspecified, the value ˆ̂θ that mini-
mizes (28) over the entire domain of θ , using some Samp-
son error minimization method such as FNS or HEIV. Then,
the true value x̄ is estimated to be

ˆ̂xα = xα − (ξ̂ ∗
α , ˆ̂θ)V [xα ]

( ˆ̂θ ,V [ξ̂α ] ˆ̂θ)

(∂ ξ̂
∂x

)>
α

ˆ̂θ . (29)

Now, we again discard the value ˆ̂θ , viewing θ as a mere vari-
able. Identifying ˆ̂xα with x̂α , we repeat the same process un-
til it converges. In the end, x̂α is on the surface S : (ξ (x),θ)
= 0 and is a projection of xα along the V [xα ]-normal of S it-
self at x̂α , i.e., the desired exact orthogonal projection. From
(28), we see that strict ML in the x-space coincides with
Sampson error minimization in the modified ξ̂ ∗-space. As
we can see from (27), however, the mapping from x to ξ̂ ∗ is
defined only dynamically in the course of iterations.

9 Examples of strict ML

We now apply the above procedure to typical examples,
where we assume that the x and y coordinates of each point
have independent and identical Gaussian noise of mean 0
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and variance σ2. Then, the Mahalanobis distance (13) in the
x-space coincides with the Euclidean distance. The noise
variance σ2 need not be known, since minimization of (13)
is not affected by multiplication of V [xα ] by any positive
constant. So, we regard σ to be 1 in the computation.

Example 5 (Ellipse Fitting) The procedure for fitting an el-
lipse to a point sequence (xα ,yα), α = 1, ..., N, is obtained as
follows5. We remove the scale indeterminacy of the ellipse
parameter θ in (4) by normalizing it to ‖θ‖ = 1:

1. Let E0 = ∞ (a sufficiently large number), x̂α = xα , ŷα =
yα , and x̃α = ỹα = 0, α = 1, ..., N.

2. Let V [ξ̂α ] be the matrix obtained by substituting x̂α and
ŷα for xα and yα , respectively, in (8).

3. Compute the following ξ ∗
α , α = 1, ..., N:

ξ ∗
α =



x̂2
α +2x̂α x̃α

2(x̂α ŷα + ŷα x̃α + x̂α ỹα)
ŷ2

α +2ŷα ỹα
2(x̂α + x̃α)
2(ŷα + ỹα)
1

 . (30)

4. Compute the 6-D unit vector θ = (θi) that minimizes the
following function (e.g., by FNS or HEIV):

E(θ) =
N

∑
α=1

(θ ,ξ ∗
α)2

(θ ,V [ξ̂α ]θ)
. (31)

5. Update x̃α , ỹα , x̂α , and ŷα in the form(
x̃α
ỹα

)
← 2(θ ,ξ ∗

α)

(θ ,V [ξ̂α ]θ)

(
θ1 θ2 θ4
θ2 θ3 θ5

)x̂α
ŷα
1

 , (32)

x̂α ← xα − x̃α , ŷα ← yα − ỹα . (33)

6. Compute the reprojection error

E =
N

∑
α=1

(x̃2
α + ỹ2

α). (34)

7. If E ≈ E0, return θ and stop. Else, let E0 ← E and go
back to Step 2.

This scheme was obtained by Kanatani and Sugaya [23] by
using differentiation and Lagrange multipliers based on a
specific analysis for ellipse fitting. Here, it is derived as a
special case of our general theory.

As pointed out by Kanatani and Sugaya [23], however,
the resulting accuracy is practically the same as Sampson

5 The source code is available at:
http://www.iim.cs.tut.ac.jp/~sugaya/public-e.html

(a) (b)

Fig. 5 (a) 20 points on an ellipse. (b) RMS error of the fitted ellipse
over 1000 trials vs. the noise level σ . 1. Least squares. 2. ML in the
x-space. 3. ML in the ξ -space. The dotted line shows the KCR lower
bound.

error minimization; the difference is only in the last few sig-
nificant digits. Figure 5(a) shows 20 points on an ellipse,
and Fig. 5(b) shows the RMS error of the fitted ellipse over
1000 trials with independent Gaussian noise of mean 0 and
standard deviation σ (pixels) added to the x and y coordi-
nates of each point. The plots of ML in the ξ -space and ML
in the x-space completely overlap. For the Sampson error
minimization, we used the FNS of Chojnacki et al. [7]. As a
comparison, the RMS error of the least squares (or algebraic
distance minimization [15]) is also plotted. The dotted line
shows the theoretical accuracy limit (KCR lower bound [6,
16,17]).

Example 6 (Fundamental Matrix Computation) The vector
θ in (6) that encodes the fundamental matrix F of rank 2 is
computed from corresponding points (xα ,yα) and (x′α ,y′α),
α = 1, ..., N, as follows5. We remove the scale indeterminacy
of θ by normalizing it to ‖θ‖ = 1:

1. Let E0 = ∞ (a sufficiently large number), x̂α = xα , ŷα =
yα , x̂′α = x′α , ŷ′α = y′α , and x̃α = ỹα = x̃′α = ỹ′α = 0, α = 1,
..., N.

2. Let V [ξ̂α ] be the matrix obtained by substituting x̂α , ŷα ,
x̂′α , and ŷ′α for xα , yα , x′α , and y′α , respectively, in (9).

3. Compute the following ξ ∗
α , α = 1, ..., N:

ξ ∗
α =



x̂α x̂′α + x̂′α x̃α + x̂α x̃′α
x̂α ŷ′α + ŷ′α x̃α + x̂α ỹ′α
x̂α + x̃α
ŷα x̂′α + x̂′α ỹα + ŷα x̃′α
ŷα ŷ′α + ŷ′α ỹα + ŷα ỹ′α
ŷα + ỹα
x̂′α + x̃′α
ŷ′α + ỹ′α
1


. (35)

4. Compute the 9-D unit vector θ = (θi) that minimizes the
following function subject to the constraint that the re-
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sulting fundamental matrix F has rank 2 (e.g., by EFNS
[21]):

E(θ) =
N

∑
α=1

(θ ,ξ ∗
α)2

(θ ,V [ξ̂α ]θ)
. (36)

5. Update x̃α , ỹα , x̃′α , ỹ′α , x̂α , ŷα , x̂′α , and ŷ′α in the form(
x̃α
ỹα

)
← (θ ,ξ ∗

α)

(θ ,V [ξ̂α ]θ)

(
θ1 θ2 θ3
θ4 θ5 θ6

)x̂′α
ŷ′α
1

 ,

(
x̃′α
ỹ′α

)
← (θ ,ξ ∗

α)

(θ ,V [ξ̂α ]θ)

(
θ1 θ4 θ7
θ2 θ5 θ8

)x̂α
ŷα
1

 , (37)

x̂α ← xα − x̃α , ŷα ← yα − ỹα ,

x̂′α ← x′α − x̃′α , ŷ′α ← y′α − ỹ′α . (38)

6. Compute the reprojection error

E =
N

∑
α=1

(x̃2
α + ỹ2

α + x̃′2α + ỹ′2α ). (39)

7. If E ≈ E0, return θ and stop. Else, let E0 ← E and go
back to Step 2.

This scheme was obtained by Kanatani and Sugaya [24] by
using differentiation and Lagrange multipliers based on a
specific analysis for fundamental matrix computation. Here,
it is derived as a special case of our general theory.

As pointed out by Kanatani and Sugaya [24], however,
the resulting accuracy is practically the same as Sampson
error minimization; the difference is only in the last few sig-
nificant digits. Figure 6(a) shows a curved grid viewed from
two positions. Figure 6(b) plots the RMS error of the com-
puted fundamental matrix over 1000 trials with independent
Gaussian noise of mean 0 and standard deviation σ (pixels)
added to the x and y coordinates of each grid point. Again,
the plots of ML in the ξ -space and ML in the x-space com-
pletely overlap. For the Sampson error minimization with
the rank constraint, we used the EFNS of Kanatani and
Sugaya [21]. As a comparison, the RMS error of the least
squares (known as algebraic distance minimization [15] or
Hartley’s 8-point algorithm [12]) is also plotted. The dotted
line shows the KCR lower bound.

We also conducted conventional bundle adjustment.
First, we computed the fundamental matrix by least squares,
from which we computed the focal lengths of the two
frames, the relative camera displacement and rotation, and
reconstructed the 3-D positions of the grid points. Then, we
adjusted them in their joint space of dimension 280 (2 for fo-
cal lengths, 2 for the translation, 3 for the rotation, and 273
for the 91 grid points) by the Levenberg-Marquardt method
so that the reprojection error is minimized.

Figure 6(c) shows an example of convergence for σ =
0.1. The marks ∗ indicate the reprojection error (in pixel
per point per frame) in each iteration. For comparison, we
started the iteration from the true values of the 280 pa-
rameters; the marks 2 indicate the resulting reprojection
error. The marks • indicate the reprojection error of our
orthogonal projection. All converged to the same solution.
The numerical values of the reprojection errors are listed in
Fig. 6(d). Our orthogonal projection converged to 9 signif-
icant digits after three iterations, while bundle adjustment
converged to the same significant digits after four iterations
when starting from the least squares estimates and after
seven iterations starting from the true values.

For both examples, we should note the following:

– During the iterations of orthogonal projection, the repro-
jection error E generally increases. By definition, E is
the sum of square Mahalanobis (Euclidean in the above
examples) distances between the observation xα and our
guess x̂α . We start by regarding xα as our guess x̂α ,
so initially E is 0. Since the guess does not satisfy the
constraint, we modify x̂α so as to satisfy it. Maximum
likelihood means that we do this by increasing E by a
minimal amount. The increase of E may not always be
monotonic; it can oscillate near the convergence. In each
step, on the other hand, we minimize E with respect to θ .
Optimization with constraints is known to involve both
minimization and maximization [5].

– In both examples, the Sampson error minimization in
Step 4 is iterative, so we stop it if the update of θ is
smaller than a specified threshold. However, the Samp-
son error E(θ) in the form of (31) and (36) does not
depend on the sign of θ , so it may happen that new
value of θ has an opposite direction to the previous one.
Hence, we must align their orientations of before com-
paring them.

– In Step 7 in both examples, we stop the iteration when
the change of E is small enough. We could stop when
the current value of θ is close to the previous one, but
we must be careful about the interference of the nested
iteration loops. If we stop the outer loop by demanding
a stricter threshold on θ than can be afforded by the in-
ner Sampson error minimization, the outer iteration may
continue forever. No such interferences can occur if we
stop the inner loop by θ and the outer loop by E.

10 Application to optimal correction

As a byproduct, our strict ML leads to a new numerical
scheme for optimal correction [16]: we optimally correct a
given x so as to satisfy the constraint (ξ (x),θ) = 0, where
the parameter θ is given and fixed. For this, we minimize

E = (x− x̄,V [x]−1(x− x̄)), (40)



9

(a)

 0.1

 0.2

 0.3

 0  1  2
σ

 1

 2

 3

 0.1

 0.2

 0.3

 0  1  2  3  4  5  6  7

(b) (c)

• ∗ 2

0 0.0000000000000 0.2740543086661 0.2097120015146
1 0.1071688468318 0.1083766529404 0.1075557226703
2 0.1071686014356 0.1076009069457 0.1073337819788
3 0.1071686015030 0.1076005713017 0.1072415103709
4 0.1071686013682 0.1071718714030 0.1071691179312
5 0.1071686015030 0.1071686014673 0.1071691179312
6 0.1071686013682 0.1071686014580 0.1071686014609
7 0.1071686016378 0.1071686014580 0.1071686014580

(d)[0.2cm]

Fig. 6 (a) Curved grids viewed from two angles. (b) RMS error of the fitted fundamental matrix over 1000 trials vs. the noise level σ . 1. Least
squares. 2. ML in the x-space. 3. ML in the ξ -space. The dotted line shows the KCR lower bound. (c) An example of reprojection error convergence
for σ = 0.1 (pixel) vs. the number of iterations. •: our orthogonal projection. ∗: bundle adjustment starting from least-squares estimates. 2: bundle
adjustment starting from true values. (d) Numerical values of the reprojection errors in (c).

subject to

(ξ (x̄),θ) = 0, (41)

for a given θ . All we need is to remove the computation of
θ in the procedure described in Sect. 7.

Example 7 (Perpendicular to an Ellipse) Given a point (x,y)
and an ellipse in the form of (3), we want to compute the foot
(x̂, ŷ) of the perpendicular from (x,y) (Fig. 7). It is computed
as follows (θ is defined by (4)):

1. Let E0 = ∞ (a sufficiently large number), x̂ = x, ŷ = y, and
x̃ = ỹ = 0.

2. Let V [ξ̂ ] be the matrix obtained by substituting x̂ and ŷ
for xα and yα , respectively, in (8).

Fig. 7 Drawing a perpendicular
to an ellipse. (x, y)

(x, y)

3. Compute the following ξ ∗:

ξ ∗ =



x̂2 +2x̂x̃
2(x̂ŷ+ ŷx̃+ x̂ỹ)
ŷ2 +2ŷỹ
2(x̂+ x̃)
2(ŷ+ ỹ)
1

 . (42)
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4. Update x̃, ỹ, x̂, and ŷ in the form

(
x̃
ỹ

)
← 2(θ ,ξ ∗)

(θ ,V [ξ̂ ]θ)

(
θ1 θ2 θ4
θ2 θ3 θ5

)x̂
ŷ
1

 , (43)

x̂ ← x− x̃, ŷ ← y− ỹ. (44)

5. Compute the reprojection error

E = x̃2 + ỹ2. (45)

6. If E ≈ E0, return (x̂, ŷ) and stop. Else, let E0 ← E and
go back to Step 2.

The perpendicular to an ellipse can be obtained by solv-
ing simultaneous algebraic equations. It seems, however, the
above simple procedure has not been known. The computa-
tion converges after at most two or three iterations (usually
with one iteration), but even the first solution has sufficient
accuracy for practical use.

Example 8 (Triangulation) When the fundamental matrix F
is known and a noisy correspondence pair (x,y) and (x′,y′)
is given, we can optimally reconstruct its 3-D position by
minimally correcting (x,y) and (x′,y′) so as to satisfy the
epipolar equation in (5) (Fig. 8(a)), since the lines of sight
determined by points (x,y) and (x′,y′) can intersect if and
only if the epipolar equation in (5) holds [15]. Today, there
are still many who use the non-optimal method of regarding
the “midpoint” of the shortest line segment connecting the
two lines of sight as the intersection (Fig. 8(b)).

The optimally corrected positions (x̂, ŷ) and (x̂′, ŷ′) that
minimize the sum of square distances from (x,y) and (x′,y′)
are computed as follows (θ is defined by (6)):

1. Let E0 = ∞ (a sufficiently large number), x̂ = x, ŷ = y, x̂′

= x′, and ŷ′ = y′, x̃ = ỹ = x̃′ = ỹ′ = 0.
2. Let V [ξ̂ ] be the matrix obtained by substituting x̂, ŷ, x̂′,

and ŷ′ for xα , yα , x′α , and y′α , respectively, in (9).

(x, y)

(x’, y’)
(x, y)

(x’, y’)

(a) (b)

Fig. 8 Computing the 3-D position from noisy correspondence pair.
(a) Optimal triangulation. (b) The mid-point method.

3. Compute the following ξ ∗:

ξ ∗ =



x̂x̂′ + x̂′x̃+ x̂x̃′

x̂ŷ′ + ŷ′x̃+ x̂ỹ′

x̂+ x̃
ŷx̂′ + x̂′ỹ+ ŷx̃′

ŷŷ′ + ŷ′ỹ+ ŷỹ′

ŷ+ ỹ
x̂′ + x̃′

ŷ′ + ỹ′

1


. (46)

4. Update x̃, ỹ, x̃′, ỹ′, x̂, ŷ, x̂′, and ŷ′ in the form(
x̃
ỹ

)
← (θ ,ξ ∗)

(θ ,V [ξ̂ ]θ)

(
θ1 θ2 θ3
θ4 θ5 θ6

)x̂′

ŷ′

1

 ,

(
x̃′

ỹ′

)
← (θ ,ξ ∗)

(θ ,V [ξ̂ ]θ)

(
θ1 θ4 θ7
θ2 θ5 θ8

)x̂
ŷ
1

 , (47)

x̂ ← x− x̃, ŷ ← y− ỹ,

x̂′ ← x′− x̃′, ŷ′ ← y′− ỹ′. (48)

5. Compute the reprojection error

E = x̃2 + ỹ2 + x̃′2 + ỹ′2. (49)

6. If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop. Else, let E0
← E and go back to Step 2.

This procedure is nothing but the stereo triangulation of
Kanatani et al. [25], who derived this algorithm by directly
minimizing the reprojection error, using differentiation and
Lagrange multipliers. Here, it is derived as a special case of
our general theory. A popular method for optimal triangula-
tion is due to Hartley and Sturm [14], who determined the
epipolar lines of the corresponding points by algebraically
solving a 6-degree polynomial. Kanatani et al. [25] experi-
mentally confirmed that their solution is identical to that of
Hartley and Sturm [14] yet the computation is significantly
faster (Fig. 9).

11 Observations

We summarize the main characteristics of our approach:

– Accuracy: We compute the strict ML solution, so the
accuracy is the same as all existing ML-based methods.
Our approach can be regarded as a special implementa-
tion of the “Gold Standard” of Hartley and Zisserman
[15]. Our Example 6 demonstrates that our computation
converged to the same solution as bundle adjustment. We
have also confirmed for ellipse fitting that our solution is
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(a) (b)
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(c)

Fig. 9 (a) Stereo images of a planar grid. Some of the epipolar lines are
drawn. (b) Top view of the camera configuration. (c) Computation time
(ms) for triangulation per point (average over 1000 trials). The CPU is
Intel Core2Duo E6700 2.66GHz. The horizontal axis is for the stan-
dard deviation σ of the added noise. Solid line: our method. Dashed
line: The Hartley-Sturm method. The black dot is for the exceptional
behavior for σ = 0.

identical to those by others such as Gander et al. [10]
and Sturm and Gargallo [30].

– Global optimality: Our approach is to iteratively change
the variables in the data space so that the Sampson er-
ror coincides with the reprojection error. Hence, the so-
lution is globally optimal provided the Sampson error
minimizer returns a global minimum. However, popu-
lar tools such as FNS and HEIV are not guaranteed to
reach a global minimum. Of course, we could globally
minimize the Sampson error in each iteration, using, say,
branch and bound, but that would make the process ex-
tremely inefficient.

– Efficiency: We cannot draw a universal conclusion if our
approach is more efficient than others, because the ef-
ficiency heavily depends on particular applications and
implementations. For example, the efficiency of bundle
adjustment can be greatly improved by appropriate pre-
processing by considering the particularities of the prob-
lem. The efficiency of our approach, on the other hand,
critically depends on the efficiency of the Sampson error
minimizer we use. According to our experience, how-
ever, our approach is significantly faster than bundle ad-
justment in many examples. The computation is done in
a low dimensional data space, arriving at the solution af-
ter one or two iterations.

– Convergence: It is difficult to give a mathematical proof
of the convergence of our orthogonal projection, because
it is a property of the hypersurface S defined by the con-
straint, rather than a property of the operation. The hy-
persurface S may have singularities, e.g., for the epipo-
lar constraint, S is hyperbolic in 4-D with singularities
at the epipoles. The iteration should converge if S is
more or less flat and its supporting function is nearly
linear, or equivalently, if the observations are sufficiently
close to S , i.e., if the noise is small. However, it is diffi-
cult to bound the noise level to insure convergence in
terms of the differential characteristics of S such as
the curvature. In our experience, however, the orthog-
onal projection converges after at most two or three it-
erations (mostly with one iteration). On the other hand,
we have frequently observed that the inner Sampson er-
ror minimization failed to converge in the presence of
large noise. Popular Sampson error minimizers such as
FNS and HEIV are not guaranteed to converge. Thus,
the convergence of our approach is practically dictated
by the Sampson error minimizer we use.

12 Conclusions

This paper has presented a new numerical scheme for strict
ML computation for geometric fitting problems. Our ap-
proach is orthogonal projection of observations xα onto a
parameterized surface S defined by the constraint in the
x-space, where the orthogonality is defined with respect to
the covariance matrix V [xα ] of xα . This approach has been
adopted by many researchers for a general constraint, but we
have shown that if the constraint is linearly separable, the
optimization can be done by repeated Sampson error mini-
mization in the dynamically defined ξ ∗-space. We illustrated
our procedure by applying it to ellipse fitting and fundamen-
tal matrix computation. We have also shown that our the-
ory encompasses optimal correction problems, demonstrat-
ing that compact schemes are obtained for computing per-
pendiculars to an ellipse and optimally triangulating stereo
images.

Our approach is problem-independent in the sense that
the computation is based solely only the linearly separa-
ble constraint; apparently different problems, such as ellipse
fitting and fundamental matrix computation, can be solved
by the same procedure. This contrasts to bundle adjustment,
for which we need to derive an explicit cost function from
particularities of the problem and a high-dimensional space
needs to be searched.

Since our approach is ML, the accuracy is the same as all
other ML-based method. It is difficult to obtain a universal
conclusion for efficiency, because it depends on applications
and implementation. The efficiency and convergence of our
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approach are practically determined by the performance of
the Sampson error minimizer we use.

In this paper, Sampson error minimization is treated as
a black box; we are not proposing any new Sampson error
minimizer. Our finding here directs us to focus on improving
Sampson error minimization. Once a good Sampson error
minimizer is discovered, it is automatically upgraded to a
good reprojection error minimizer by our theory. To have
established this fact is the main contribution of this paper.
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Appendix. V [xα ]-normal

Define the orthogonality of vectors a and b by (a,Gb) = 0
for a positive definite symmetric matrix G. The gradient of a
surface S : F(x) = 0 is ∇xF , and (t,∇xF) = 0 holds for any
tangent vector to Sα at x. If we let

n = G−1∇xF, (50)

we see that for any tangent vector t to S at x

(t,Gn) = (t,GG−1∇xF) = (t,∇xF) = 0. (51)

Thus, n is orthogonal to any tangent vector t to S at x. In
our problem, G = V [xα ]−1 and F = (ξ (x),θ)− cα , so the
gradient is ∇xF(xα) = (∂ξ/∂x)>α θ at xα , and the V [xα ]-
normal at xα is given by (15).
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