Lent. Appl. Engng Sci. Vol. 18, pp. 989-998 0020-7225/80/0701-0989/302.00/0
© Pergumon Press Lid.. 1980. Printed in Great Britain
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A statistical mechanical analogy for characterization of granular materials is dis~
cussed by using such notions as the state of the material, the density of states,
entropy, canonical distribution and the partition function. The transition law of
states during shear deformations of the material is microscopically investigated im
the case of two-dimensional model granular materials. The assumption of entropy
growth is shown to characterize the dilatancy of the material. A rough proof is

given by assuming the measure preserving property of the transition .and . shouwing its
ergodicity.

1. INTRODUCTION

There have been two different approaches to the modeling of granular materials: the
macroscopic or contimuwnm approach and the microscopie or particulate approach. The continu-
um approach is quite adaptable to experiments where macroscopic quancities such as the
stress and the strain are the main interest. Drucker & Prager |1} proposed a plasticity
theory of soils based on the so called assoclated flow rule, which has been often criticized

" for disagreement with experimental obaservations. Spencer [2] introduced the idea that de-
formation occurs by shear on certain critical planes and developed the so called double-glip
theory. Goodman & Cowin {3] assumed that the stress depends on the gradient of the solid <
volume fraction of the material and developed a general continuum theory. Kanatani {4} con-
bined the particulate approach with the continuum appreach, analyzing interparticle friction
and collisions in the flow of graanular materials and taking statistical average to obtain
constitutive equations of 'an equivalent continuum. He also showed that his theory is com-
patible with the plasticity theory of Drucker & Prager [1) Af the associated flow rule is
interpreted in a wide sense and that the new interpretation resolves all the inconsisten-
cies of the Drucker-Prager theory [5]. .

In the particulate approach, one considers an assembly of particles idealized, say, as'
rigid spheres and attempts to deduce mechanical laws governing the assembly. This idea can
be traced back to Reynolds [6]. Since mechanical properties of a particle assembly are gem-
erally very sensitive to the spatial configuration of the particles, one must adopt statis-
tical methods ¢o obtain more or less realistic models. Newland & Allely {7] cansidered
particles oo a potential slip plane and tried to relate the statistics of the interparticle
contacts to macroscopic deformations. Rowe (8] studied mechanical properties of .regularly
packed rods and spheres and inferred mechanical characteristics of their random assemblies.
Trying to give a theoretical basis to Rowe's inferemce, Horne [9) described macroscopic de-
formations by superposing statistics of two particles. However, magy characteristics of
granular materials Including the so called dilatancy are related to. many-parcicle interac-
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tions, and hence it seems that they cannot be characterized by the two-particle stacistics
alone.

In this paper, we take the particulate approach to study the incipient deformations of
3ranular materials, which are excluded by the continuum theory of Kanatani [4,5]. We extend
Rowe's idea to random assemblies of particles and describe the assembly in terms of statis-
tical mechanical notions such as the state of the material, the density of states, entropy,
canonical distribution and the partition function. Then, we investigate the transition law
of states during shear deformations in the case of two~dimensional model granular materials
consisting of cylindrical rods of uniform size. We show that the assumption of entropy
growthcharacterizes the dilatancy of the material. We glve a rough proof, assuming the

measure preserving property of the transition and showing its ergodicity.

2. MICROSTATES AND ENTROPY

Consider a particle assembly of bulk volume V. We
agaume that the particles are rigid spheres of volume

Vo. The number ¥ of the particles in the sample is as-

sumed to be large, and the particles are assumed to be
packed randomly. Microscopically, however, the assea-
bly is considered to consist of small cells in which
particles are packed regularly in a certain arrange-
ment. (See FIG.1.) Let E be the local void fraction
in the cells, and let Eyy, E34 -+.4 Ey be the values £
can assume in the sample. Let V; be the total volume
of those cells whose void fraction equals E;, and let

€y Vi Ny By sV IV
N; be the number of particles in these cells. Appar-

ently, ¥y + Vy ¢ oo ¢+ Vpa Vand ) + Ny + ... 8, = :

#. Put p; = V;/V. He say that the sample consists of Ez Nz pz"'vz’v

*
microstates, or simply 8tateg, 1, 2, ..., n with re-

cyeae - E ] N =V.
spective probabilities p,, ps, ... Pn- Let £ be the 3 3 3P v
*

average void fraction of the overall sample. By defi- H ! '
1

nition, H i

V - vnﬁ n Vi - "n”z FIG.1
Ee Ztﬂl Vi -#L zclstpt > 1

Microstates and their probabflitles.
Hence, the average void fractlon E equals the expecta-

tion value of £ with respect to the probabilities | X

Consider the following problem: Prescribe the values of P:such that the packing is completely
random subject to the constraint that the average void fraction be £. Let us hypothetically
divide the space occupied by the sample into M cells of equal volume and try to assign n

states to these cells. Let M; be the number of cells to which the t-th state is assigned.
Then,

1:1 Mi'”" E’ 1315M M. (2)

The number of all the poosaible ways of osuch asgignment is
HaH!/H,:Myl...Mn: . )

the
Takeplogarithm of this expression. Assuming that M and M;'s are sufficiently large, we can
apply the Stirling approximation formula to it to obtain

logh = - & [inl(Mi/M) log (M; /M) . (%)
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1f each assignment is equivalent a priort, the "most probablé@ way of assigament is the one
that makes expression (4) maximum subject to constraints (2). Since Py = M;/M, we can say
that the wmost probable p; are obtained by maximizing

Hy = - L:l pP;logp; A (5)

subject to the coanstraincs
Imp: =t o Epy = E (6)
Since A, is Shannon's entropy in information theory [10], we call it the entropy

of the sample. The principle of entropy maximization for prescription of probabilities to a
completely random system subject to comstraints was first proposed by Jaynes [11,12,13], anrd
it found various applications in characterization of granular materials, e.g. the coordina-
tion number (Brown |14]). Statistical concepts similar to the above have been also intro-
duced to determine comnstitutive equations of sand (Mogami [15], Shimbo [16]).

3. DENSITY OF STATES AND CANONICAL DISTRIBUTION

Consider a continuous version o!‘ﬁntmpy (5). As the sample size increases, the number
of those values £ c'a‘xlx:gsggmed to increase , and inthe limit we candefine the probability den-
gity p(E) such that the probability of the states with void fraction in the iasterval [E,

EwiE) is p(E)AE. As Jaynes pointed out [12], the counterpart of (5) is not - | p(E) log p(E) &F
because it is not invariant to the choice of parameters (e.g. void fraction, void ratio,
solid volume fraction, solid volume ratio). We must define the density of states S(E) such
that the number of the states with vold fraction in the interval [E, E+iE] divided by the
total number of states ia the sample is Q(EJaZ. Then, H, has the following asymptotic form:

Hy = - [ p(E)log(;(E)/UE)IAE - logn . N
The last term diverges as n + = but is independent of p(E). Hence, we can define entropy as
H = - [ p(E)log(p(E)/QE)NE . (8)

The integration is taken over the domain of £ ia which p(E) aad Q(£) are defined. Apparent-
ly, this expression is invariant to the choice of parameters. This agrees with Kullback's -
informatioa in statistical information theory [16] and is known to represent in a certain ‘sense
the "distance” between the two distributions p(E) and Q(E).
Now, we consider the t:ollovlns problem: Maximize # subject to the constraints
Jp(EYE = 1, [EP(EVE = F . 9

Introducinglagrange multipliers, we finally obtain the following form of p(F), which we callthe
canonical distribution.

pte) = e% a(e)szte) , 2(0) = fo"F a(g)aE . ‘ a0y

We call 7(0) the partition fumction. 'The value of parameter © is determined so that the av-
erage void fraction be E. Since

(d/20) log 2{8) = Z’(0)/2(6) = [Ep(E)aE = E , (11)
we can determine 6 by solving
E = (d/d8)1og 2(8) . 12)
Thus, 6 i3 a function of E and we call it the conjugate average void fraction. We also see
(a?/d6) 1og 2(0) = 27(8)/2(8) - (2°(8)/2(8))? =.E7 - E?, 3
which 18 the variance V of the void fraction in the sample. Hence,
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v = (4?/d0?) 1og 2(0) . (14)
After application of (12), the entropf for canonical distribution (10) becomes
H(EY = - uZl +lop 2(0) . (15)
Th1§ is the Legendre transform of logZ{0) with respect to E. and hence by virtue of (12)
dif = - 8dE . (16)

All the above formulations are parallel to those of statistical mechanics, where £ 1s
the total energy of the system in a thermal equilibrium. The temperature T of the systen is
related to 0 by 6 = - (kT)~!, where k is the Boltzmann constant. (See Jaynes {11] for de-
tails.) The method of Lagrange multipliers can only give the conditions that # becomes sta~
tionary, but it can be easily shown from the convexity of the logarithmic functfon that the
canonical distribution (10) actually maximizes the entropy. Similarly, it can be shown that
the right-hand side of (12) is a monotonlic function of 6, and hence 6(E) 18 a single—valued
function of E (o.f. Khinchin [18]).

4. STATE TRANSITION OF TWO-DIMENSIONAL GRANULAR MATERIALS

Consider a two-dimensional model of
granular materials consisting of cylindrical

rods (FIG.2). Draw straight lines passing Vs ?7 L oLA

through the centers of the particles and the
contact points, and define angles a and 8 as
shown in FIG.2. The domains of a and B are

t ot

#b<a<w/3, 078<n/2, (17)

respectively, where we have temporarily ex-

Q.

cluded the spectal case of the closest
packing ( a = /6, n;1 ). It ts later con-
sidered. We assume that all the states are

ttrr

those thus parameterized by (a, 8) or the
closest packing and ignore all the other

possible sparse arrangements. This assump— l x rtrot ; t 1t
2

tion isnot so unreasonable if we consider 0

materiuls in compression. Take the xr-axis F1G.2
- and the y-axis as the principal atress axes, A typical state of a two—dimensional
granular material.

and let 0) and o; be the respective princi-

pal stresses (positive for compression). Decompose the contact force into normal and
tangential components, and .put them to be ny, n; and 1 as indicated in FI1G.2. The tan-

pential force at the two pairs of contact points (see FI1G.2) has the same magnitude in

consequence of the balance of moments. Let f = (fps fb) be the force per unit length exert-

ed through line A4’ in FI1G.2. By definition of the principal stress axes,
fy = o1sin{a + 8) , fy = ozcos(a + 8) . 18)
Since this force is balanced by the coatact forces ny; and 1, we get
v = 2aloysin(a + B8)sin(u - B) - o,cos(a + 8)cos(a - 8)) , 19)
nz = Zalo;sin{a + B)cos(a ~ B) + o,cos(a + B)sinla - 8)} . (20)

where a 1s the radius of the particles. Similarly, considering the force acting through
line BB" in FI1G.2, we get ’
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ny = 2alo;sin(a - B)cos(a + B) + ozcoa(a - B)ain(a + 8)} . (21)
If we put
p = (o +0y)/2, q = (o) - 03)/2 , (22)
vhiéh represent compressive and shearing forces respectively, we can rewite (19), (20) and
(21) as
T = 2a(~- pcos2a + qcos28) ,
ny = 2a(psin2a - qsin28) , (23)
ny = 2a(psin2a + qsin28) .
low, we consider the slip of the particles. We say that the slip is (+ 1), if ft oc-
curs at the contact points with normal force nj and if 1 is positive. 1If v is negative, the
slip is said to be (- 1). The other possible slips (+ 2) and (- 2) are similarly defined.

Let ¢ be the friction angle of the pa}ticles. The Coulomb condition that these slips occur
are as follows:

(+ 1): T > nytané be qcos{28 - ¢) > pcos(2a - ¢) ,
(- 1): -t > njtan¢d e qcos(28 + ¢) < pcos(2a + ¢) ,
(24)
(+ 2): T > nytan ¢ B qcos(28 + ¢) > pcos(2a - §) ,
(- 2): - 1 > nptané e qcos(28 - ¢) < pcos{2a + ¢} .

Consider such loadings that the sample is initially in uniform compression (q = 0) and grad-
ually q/p increases. The possible slip is the one for which the Coulomb condition is first
satisfied. If ¢ < w/b or q/p is small and a 1is nearly %/6 or u/3 (=/6 < a < w/k - ¢/2, x/b
+ ¢/2 < a < u/3), then such slips occur that a becomes w/6 or n/3 (the closest packing).
Otherwise, the possible slip is shown to be (+ 1) {f a > B and (- 1) if a < B.

Finally, consider the case of the closest
packing. As is shown in F1G.3, the state specifi-
cation by (a, 8) is degenerate, and the same
state can be specified differently. Let ~ desig-
nate the relation that both expressions specify

the same state. We can easily see that
(w/6, 8} ~ {(v/6, B ¢ v/3) ,
(n/3, 8) ~ (®/3, B £ 0/3) , “(25)

(u/6, 8) ~ (2/3, B ¢ »/6) .

We can summerize the law of state trarsgition F1G.3

State degeneration in the closest
by F1G.4. A state (a, B) is represented as a packing of the two-di tonal gran-
point inside rectangle ABCD or on its circumfer- ‘ular material.

ence, where AD and BC, DG and HC, GH and AE, EF

and HC, and FR and AE are identified respectively. The slip is (+ 1) in the left half AEAD
and i3 (~ 1) in the right half EBCH. In both cases, it is clear from the definition of a
and ¢ in FI1G.2 that o and 8 change their values by the same ahsolute amount. Hence, 1f the
initial state corresponds to point Py in FIG.4, it moves up along a straight line with tan-
gent 45° and reaches point P), which i3 identified as point P,. 1t then moves down to point
P3, which is again identified as point P,, and repeats this cycle. The short arrows in FIG.4
indicate the possible incipient transitions. We can see that the states inside triangles
ADG and FBC soon disappear because there are no trajectories of states entering these re-
glons. After all, all the states fall into pericdic cycles. If we cut out AEHG and EFCH,
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FI1G.4
State space and state transition of the two-dimensional granular material.

and put AEZ and GH together and EF and HC together, we obtain two cylinders on which all the
trajectories of states are closed orbits and are parallel to each other.

5. CANONICAL DISTRIBUTION AND ENTROPY OF TWO-DIMENS1ONAL GRANULAR MATERIALS

We now consider the probability distribution of states. As {s seen from F1G.2, the
void fraction of state (a, B) ig

E(a) = 1 - n/bgin2a , (26)

which does not depend on 8. Hence, we have only to consider distributions for a. In other
words, since we are concerned with the average void fraction E as the macroscopic parameter
and it 1is invariant to rigid rotations of the sample, we can assume that B is distributed
uniformly over all directions. First, we must determine the density of states Q(F), whick
is fundamental to our formulation. However, we may instead determine .2(a) because our for-
mulation is invariant to the choice of parameters. Here, we assume that (a) is uniform:

f(a) = 6/n , 2/6 <a <a/3. 27y

This means that we are assuming all the states with arbitrary a in the interval (»/6, 8/3)

are mutually equivalent a priori for constituting a completely random sample. In terms of
E, we have . -

Q(E) = 6/(1 - E)16EZ ~ 32E + 16 - =2 , Eg <cBE <k . (28)

The minimum value Ey of £ corresponds to a = ®/6, /3 and the maximum value €) corresponds
to a = u/l, They have the following values.

Eg =1 - /31/6 = 0.0931... , Ey=1-a/b=o0,216... . (29)
The canonical distribution is given by
pla) = (6/2) & Vrz0) L 2(0) @ (611112 Sl (30)

See F1G.5. The corresponding distribuion p(E) for E is plotted in FI1G.6. The conjugate
average void fraction 6 is determined by solving (12) and has the values plotted in FIC.7.

The entropy 8(E) 1is plotted in FIG.8. The 'most’ random ssmple with aaximua # is the one
vith E = E,, where

Eq = 0.176040769... . (31)

This value corresponds to & = 0 and in this case the canonical distribution pfa) becomes
uniform, i.e., pla) = g(a).
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Canonical distribution p(a). Canonical distribution p(F).
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Conjugate average void fraction 8(E). Entropy H(E).

6. ENTROPY GROWTH, DILATANCY AND ERGODICITY

The internal configuration of particles will change when the material undergoes shear
deformations, and its exact description is almost impoasible. Here, we assume the growth of
entropy in analogy with Boltzmann's H theorem in the kinetic theory of gas. A rough proof
is given later in the case of two-dimensional granular materials. We assume that the dis-
tribution of states is always canonical, i.e., the material preserves its randomness during
deformations. Let ¢ be a parameter measuring the degree of shearing. Then, dif/dc 1o deter-
mined only by the present canonical distribution and hence is regardéd as a function of 8.

1f we put
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[ . . . .
0 1 2 3 Ke 4 Sx‘o-s
FIG.9

Dilatancy of granular materials (F(8) = ke?).

di/de = F(8) , (32)

we must demand that

F(e) 2 0, (33)
with equality for 8 = 0, in which case H attains its maximum. By (16) we have
dE/de = = F(o(E))/0(F) (34)

The right~hand side is positive for 8 < O and negative for 8 > 0. In other words, the aver-
age vold fraction E increases if E < E, and decreases if E, < E. This phenomenon corre-

sponds to the so called dilatancy of granular materials. Solutions of (34) are given in the
form

(E) = - ;?e(:)a:/r(a(a)) , ‘ (35)
1

where E{ is the initial average void fraction. An example of the solutions for F(6) = 82
(X = const.) is shown in FIG.9. Note that we have neglected the possible incipient transi-~
tions. If they are also taken into consideration, the average void fraction should first
decrease near ¢ = 0 as i3 usually observed. As the deformation proceeds, the average void
fraction approaches a constant value E,. This stage is regarded as the flow regime
Kamatani [4,5] studied.

Now, we give a theoretlical basis to the above description in the two-dimensional case,
assuming the measure preserving property of the transition and showing its ergodicity. As
was shown in Sect.5, the trajectories of states are closed orbits on two cylinders. We as-
sume that the transition velocity is constant for each orbit and is continuous over neigh-
boring orbits. Since all the orbits are parallel to each other, if we neglect the 'noise’
caused by the interactions through the boundaries of state cells in the sample, the transi-
tion on the state space, i.e., the two cylinders, is measure preserving. .In other words,
if the points in a region D on the cylinders move after some time and form a new region D',
the mcasure (f.e., the area) of U’ is equal to that of D. The entropy growth assumption is
nothing but to say that the distribution on the state space approaches uniforam distribution
as the deformation proceeds. We now prove the ergodicity of the transition, i.e., we show
that any initial distribution p(a) converges to uniform distribution qQver the state space in
the weak sense. Take a new inclined axis for a such that each orbit is represented by 8 =



An entropy model for shear deformation of granular materials 97

const.. Extend the interval [n/6, n/3]) of a to (- =, =) and periodically extend the initial
distribution pla). Since pla) has periocd n/6, it can be expressed by the Fourier series
-12tak

pla) = po + [, Pye . (36)
The distribution at time ¢t is given by
pla, 8, t} = pla - u(B)t) , an,.

where v(8) is the velocity of state transition along orbit 8. By symmetry, we consider the

domain 0 < 8 < n/6 only. Let f(B) be an arbitrary continuous function over that domain.
Then, we can see that

[*8ri8)pta, B, t)as = ["2%poriaran + [, pre 1280k (16 () 120V (B kg

-12iak pv(n/A)
; v(0)

where the integrations are in the sense of Lebesgue. 1f dR/dv is continuous, the last term

" Iﬁ/6

12vtk d
Opof(8)as + [, pye fis)eteve a% v , (38)

converges to 0 as t ~ = by the Riemann-Lebesgue theorem. Thus, pla, R, t) converges to pg
as t + @ in the weak sense, or in other words as a diastribution of Schwartz. Even if the

'noise' is present, it seems probable that the convergence is not prevented and may be even
accelerated.

7. CONCLUDING REMARKS

We have discussed a statistical theory of granular materials, using statistical cechan-
ical notions. Although our analysis is restricted to the two-dimensional model granular ma-
terials, the formulation gives a conceptual basis to construct constitutive theories of

granular mater'als in various applicatione.
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