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1. Introduction

A fundamental problem in computer vision is the
extraction of 2-D/3-D geometric information from
noisy observations, for which the maximum likelihood
(ML) estimator is known to provide a highly accurate
solution [3, 4]. However, ML computation is usually
iterative and may not converge for high noise levels.
The convergence critically depends on the accuracy
of the initial guess to start the iterations, for which
the least squares (LS) estimator has been widely used
with limited accuracy. Following Kanatani [5], we do
rigorous error analysis and derive a new LS estimator
called “hyperLS” with accuracy comparable to ML.
The improved accuracy results from introduction of a
normalization that eliminates the statistical bias up
to second order noise terms.

2. Geometric Fitting

Suppose noisy observations x1, ..., xN are pertur-
bations in the true values x̄1, ..., x̄N that satisfy im-
plicit geometric constraints of the form

F (k)(x; θ) = 0, k = 1, ..., L. (1)

The unknown parameter θ allows us to infer the
2-D/3-D shape and motion of the observed objects
[3, 4]. We call problems of this type geometric fitting .
In many important applications, the problem can be
reparameterized to make the functions F (k)(x; θ) lin-
ear in θ (but nonlinear in x) so that Eq. (1) is written
as

(ξ(k)(x),θ) = 0, k = 1, ..., L, (2)

where and hereafter (a, b) denotes the inner product
of vectors a and b. The vector ξ(k)(x) represents a
nonlinear mapping of x.

3. Algebraic Methods

We abbreviate ξ(k)(xα) as ξ(k)
α . Algebraic methods

refer to those minimizing the algebraic distance

J =
1
N

N∑
α=1

L∑
k=1

(ξ(k)
α , θ)2 =

1
N

N∑
α=1

L∑
k=1

θ>ξ(k)
α ξ(k)>

α θ

=(θ, Mθ), (3)

where we define

M =
1
N

N∑
α=1

L∑
k=1

ξ(k)
α ξ(k)>

α . (4)

Equation (3) is trivially minimized by θ = 0 unless
scale normalization is imposed on θ. The most com-
mon normalization is ‖θ‖ = 1; we call this the stan-
dard LS . However, the solution depends on the nor-
malization. The aim of this paper is to find a nor-
malization that maximizes the accuracy of the solu-
tion. This issue has been raised by Al-Sharadqah and
Chernov [1] and Rangarajan and Kanatani [8] for cir-
cle fitting, by Kanatani and Rangarajan [6] for ellipse
fitting, and by Niitsuma et al. [7] for homography esti-
mation. In this work, we generalize their results to an
arbitrary number of constraints in Eq. (2). Following
[1, 6, 7, 8], we consider the class of normalizations

(θ, Nθ) = constant. (5)

This approach can be regarded as an extension of the
well known method of Taubin [10], but we show that
our result exceeds it.

Traditionally, the matrix N is assumed to be pos-
itive definite, but here we allow nondefinite (i.e.,
neither positive nor negative definite) matrices and
search for N that maximizes the accuracy. For such
an N , the solution that minimizes Eq. (3) subject to
Eq. (5), if it exists, is obtained by solving the gener-
alized eigenvalue problem

Mθ = λNθ. (6)

Evidently, λ = 0 in the absence of noise. If N is
positive definite, the parameter θ is estimated as the
generalized eigenvector for the smallest eigenvalue λ,
but in other cases for the smallest absolute value |λ|.
To avoid the possibility that the expectation of θ di-
verges to ∞, we regard Eq. (6) as the definition of
our “algebraic method”. Then, the solution θ can be
normalized to ‖θ‖ = 1 rather than Eq. (5).

4. HyperLS

We propose to use as N

N = NT − 1

N2

N
X

α=1

L
X

k,l=1

„

tr[M−V (kl)[ξα]]ξ(k)
α ξ(l)>

α

+(ξ(k)
α , M−ξ(l)

α )V (kl)[ξα]+2S[V (kl)[ξα]M−ξ(k)
α ξ(l)>

α ]

«

,

(7)

where S[ · ] denotes symmetrization (S[A] = (A +
A>)/2). The superscript ( · )− denotes the Moore-
Penrose pseudoinverse. The matrix NT is defined to
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Figure 1: (a) 31 points on an ellipse. (b) Two views of a curved grid. (c) Two views of a planar grid.
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Figure 2: RMS error vs. the standard deviation σ of noise added to each point. 1. standard LS, 2. hyperLS, 3. Taubin
approximation, 4. ML. The dotted lines indicate the KCR lower bound. (a) Ellipse fitting. (b) Fundamental matrix
computation. (c) Homography computation.

be

NT =
1
N

N∑
α=1

L∑
k=1

(
V (kk)[ξα] + 2S[ξ(k)

α e(k)>
α ]

)
, (8)

where e
(k)
α is the expectation of the second order error

in ∆ξα. The covariance of ξ(k)
α , k = 1, ..., L, is defined

by by (E[ · ] denotes expectation)

V (kl)[ξα] ≡ E[∆1ξ
(k)
α ∆1ξ

(l)>
α ]

= T (k)
α E[∆xα∆x>

α ]T (l)>
α = T (k)

α V [xα]T (l)>
α , (9)

where V [xα] is the covariance matrix of observation
xα, and T (k)

α is the Jacobian matrix defined by

T (k)
α ≡ ∂ξ(k)(x)

∂x

∣∣∣∣∣
x=x̄α

. (10)

Standard linear algebra routines for solving the gen-
eralized eigenvalue problem of Eq. (6) assume that
N is positive definite, but here N is nondefinite. We
circumvent this problem by rewriting (6) in the form

Nθ =
1
λ

Mθ. (11)

The matrix M in Eq. (4) is positive definite except
in the absence of noise, in which case the smallest
eigenvalue is 0.

5. Numerical Experiments

We fit an ellipse to the point sequence shown in
Fig. 1(a). We compute the fundamental matrix be-
tween the two images shown in Fig. 1(b). We com-
pute the homography relating the two images shown
in Fig. 1(c).

Figure 2 plots for the noise level σ, the RMS error
for each method, the Taubin approximation [9], and
the theoretical accuracy limit called the KCR lower
bound [2, 4, 5]. In all examples, the standard LS per-
forms poorly, while ML provides the highest accuracy.
We also see that ML computation fails in the pres-
ence of large noise. In contrast, hyperLS can produce
a solution close to ML in any noise level.
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