テンプレートマッチングによる対応探索の自動しきい値設定法

金谷健一†

金澤 靖‡

† 岡山大学工学部情報工学科 ‡ 豊橋技術科学大学知識情報工学系

画像モザイク生成や3次元復元を想定し,特徴抽出フィルタで抽出した2画像の特徴点間の対応をテンプレートマッチ ングによって定める問題を考察する.まずマッチングの残差のしきい値処理が必要なこと,しかししきい値は一律に設 定できず,画像ごとに動的に設定すべきことを指摘する.そして残差の統計モデルを導入し,「等価テンプレートサイ ズ」を定義する.続いてモデル定数の推定法を述べ,正対応の検出率と正解率を解析する.そしてしきい値の自動的な 設定法を提案し,最後に実画像例を用いて提案手法の有効性を示す.これは物体やシーンの撮影位置が大きく異なる2 画像の特徴点を対応づけに利用できる.

キーワード: テンプレートマッチング,画像マッチング,特徴点の対応,対応点の探索,自動しきい値設定,統計的推定

Automathic Thresholding for Correspondence Detection Using Template Matching

[†]Department of Information Technology, Okayama University, Okayama 700-8530 Japan

[†]Department of Knowledge-based Information Engineering Toyohashi University of Technology, Toyohashi, Aichi 441-8580 Japan

Motivated by image mosaicing and 3-D reconstruction applications, we study the template matching problem for matching feature points detected by a feature detector in two images. We first point out that an appropriate thresholding procedure is necessary and that it should not be fixed but set dynamically for each image. We introduce a statistical model of the residual and define the *effective template size*. We then describe how to estimate the model parameters and analyze the detection ratio and the accuracy ratio for choosing correct matches. Finally, we show real image examples to demonstrate the effectiveness of our scheme, which can be applied to match two images taken from far different positions and angles.

Key words: template matching, image matching, feature point correspondence, correspondence detection, automatic thresholding, statistical estimation

1. まえがき

今日のコンピュータビジョン応用では1枚の画像 しか用いないということはまれであり,通常は複数 の画像を用いる.したがって,複数画像間の対応を 定めることはあらゆる処理の出発点である.これに は次の二通りの方針がある.

- 連続ビデオ画像から隣接フレームごとに対応を 追跡する.
- 異なる画像間の対応を直接に探索する.

本論文では後者に焦点を当てる.前者では画像のず れが微小であるから,輝度値の勾配拘束条件に基づく オプティカルフローの検出が有効であるが[2,10,16], 後者ではテンプレートマッチングによる局所相関の

探索が基礎となる.これはさまざまに定式化できるが,次の方法が広く行われている[1,5,11,17].

- 2 画像の各々に独立に特徴抽出フィルタ (Harris 作用素 [4], SUSAN[15]等)を適用して特徴点を 抽出する.
- 2. 各特徴点の近傍をテンプレートマッチングで比 較して対応の候補を得る.
- 6. 候補の中からランダム投票(最小メジアン法[13], RANSAC[3]等)により,成立すべき幾何学的拘 束条件(射影変換,エピ極線方程式,等)を満た すものを選ぶ.

これは連続画像での特徴点追跡にも用いられる[6,18]. 従来は第3段階に関心が集中し,第2段階はなお

ざりにされていたようである.例えば Beardsley ら [1] は,緩い基準でなるべく多くの候補を残しておく と述べている.しかし,これは第3段階のランダム 投票に決定的な影響を与える.なぜなら,拘束条件 を満たさないアウトライヤが5割近いと反復が収束

[†]700-8530 岡山市津島中 3–1–1, 岡山大学工学部情報工学科, Tel/Fax: (086)251-8173

E-mail: kanatani@suri.it.okayama-u.ac.jp [‡]441-8580 豊橋市天伯町雲雀ヶ丘 1-1, 豊橋技術科学大学知識 情報工学系, Tel: (0532)44-6888, Fax: (0532)44-6873 E-mail: kanazawa@tutkie.tut.ac.jp

しなかったり誤った解が得られたりするからである. 正しい対応の残差 J(P,Q) はランダム誤差に起因す したがって第2段階で十分に候補を絞ってアウトラ イヤを5割以下に押さえる必要がある.

本論文ではテンプレートマッチングの残差の統計 モデルを導入し,しきい値を動的に設定する方法を 提案する.そして実画像例を用いて提案手法の有効 性を示す.

2. テンプレートマッチングの一対一化

2 画像間の特徴点の対応を定める基本原理はテン プレートマッチングである.Harris 作用素等で第1 画像に N 個,第2画像に M 個の特徴点が抽出され たとする.第1画像の点 Pと第2画像の点 Qの類似 度は次の残差(平方和)で測ることができる.

$$J(P,Q) = \sum_{(i,j)\in\mathcal{N}} |T_P(i,j) - T_Q(i,j)|^2$$
(1)

ここに $T_P(i,j), T_Q(i,j)$ はそれぞれの画像の点 P, Qを中心とする $n \times n$ 領域 \mathcal{N} での輝度値である.その 他,正規化相関など種々の尺度があり,それぞれ一 長一短があるが,本論文では解析の容易な式(1)を 用いる.しかし,以下の原理は他の尺度にも拡張が 可能である.

最も単純なマッチングは第1画像の各点 Pを, J(P,Q) が最小となる第2画像の点Qに対応させる ことである.しかしそれでは $2 \pm P, P'$ が同一点Qに対応したり,またQに対してはPでJ(P,Q)が最 小になるとは限らない. Zhang ら [17] や市村 [6] は 同じ操作を第2画像の各点Qに対しても行ない,衝 突を避ける逐次的な手順を述べているが,次の手順 がそれに等価であり、かつわかりやすい。

まず P = 1, ..., N, Q = 1, ..., M に対する J(P,Q)の値を N 行 M 列の表にまとめ,表中の最 小値 J(P*,Q*)を探し,点 P* と点 Q* を対応させ る.そして表から P* 行と Q* 列を削除して得られる N-1行M-1列の表に対して以下同様にすると, 最終的に $L = \min(M, N)$ 個の対応が得られる.こ れはすべての J(P,Q) の値をあらかじめソートして おけば効率よく計算できる.この操作を対応の一対 一化と呼ぶ.

3. 残差のしきい値処理

上記のようにすると,本来は対応しないものまで 強制的に対応させてしまうので, 残差 J(P,Q) があ る程度より大きいものは除去する必要があるが,従 来はこれが無視されるか,そのしきい値が単に経験 的に設定されていた.例えば Zhang ら [17] は単純に 正規化相関が 0.8 以上のものを採用している.しか し,これは一律に定めることができない.なぜなら, るのではなく, "画像の変形"によるからである.

例えば平面や遠景を異なる2視点から撮影すると, 対応点の近傍は互いに拡大縮小,回転,アフィン変 換,射影変換等の変形を受ける.また3次元復元の ためにカメラを移動して撮影しても,対応点の近傍 は見え方が変化する.さらに,特徴点が2画像で独 立に抽出されるため,シーンの同一部分が選ばれて も厳密に(サブ画素精度で)対応しているとは限らず, 数画素のずれが生じる可能性がある.従来はこのよ うな変形を考えず,同一画像を並進して照度を変え たりガウス誤差を加えて実験を行うことが多かった [10].

|連続ビデオ画像のフレーム間の特徴点追跡 [16] な らそれでよいが,モザイク画像生成や3次元復元の ための2画像間のマッチングでは,このような画像 の変形のため,対応する点の輝度値が同じでも(1)の J(P,Q)は0でなく,残差は用いるテンプレートの サイズと画像の変形の程度に依存する.この変形の 程度は未知であるから,あらかじめ一律にしきい値 を設定することは困難である.

そこで本論文では一律なしきい値を静的に定める のではなく, すべての可能な対応の残差 J(P,Q)の ヒストグラムを作り,それを解析してその画像に適 したしきい値を動的に設定することを考える.

4. 残差の統計モデル

次のモデルを考える.対応が正しい場合は式(1)中 の輝度値の差

$$\Delta T_{ij} = T_P(i,j) - T_Q(i,j) \tag{2}$$

は画像の微小変形およびランダム誤差や照度変化が 合わさったものである.これは期待値0,標準偏差 σ_0 の正規分布に従うとする.このとき $(\Delta T_{ij}/\sigma_0)^2$ は自 由度1の χ² 分布に従う. 各画素間の誤差が独立であ れば J/σ_0^2 は自由度 n^2 の χ^2 分布に従う.

一方,対応が正しくない場合は ΔT_{ij} は画像中の輝 度値の変動である.これは期待値0,標準偏差 σ_1 の 正規分布に従うとする.このとき $(\Delta T_{ij}/\sigma_1)^2$ は自由 度1の χ^2 分布に従う.各画素間の誤差が独立であれ ば J/σ_1^2 は自由度 n^2 の χ^2 分布に従う.

このモデルに従えば,残差Jの確率密度は正対応, 誤対応に対してそれぞれで次のように書ける.

$$f_0(J) = \frac{1}{\sigma_0^2} \phi_{n^2}(\frac{J}{\sigma_0^2}), \quad f_1(J) = \frac{1}{\sigma_1^2} \phi_{n^2}(\frac{J}{\sigma_1^2}) \quad (3)$$

ここに $\phi_d(x)$ は自由度 d の χ^2 分布の確率密度であ り,次のように与えられる.

$$\phi_d(x) = \frac{e^{-x/2} x^{d/2-1}}{2^{d/2} \Gamma(d/2)} \tag{4}$$

 $\Gamma(x)$ はガンマ関数である.自由度 d の χ^2 変数の期 ただし次のように置いた. 待値は d, 分散は 2d である.

5. 等価テンプレートサイズ

前節で n^2 個の画素の輝度値の変化 ΔT_{ij} が独立で あるとしたが,実際には隣接画素間に相関があり,n² 画素が独立であるとは考えにくい.しかし,この相 関を理論的にモデル化することは困難である、そこ で次のように近似的に処理する.

正対応と誤対応が混じった残差Jの確率密度f(J)は式 (3) の $f_0(J)$, $f_1(J)$ の混合であるが,正対応が少 ないときは誤対応の確率密度 $f_1(J)$ に近似的に等し いであろう.このとき Jの期待値 E[J] は $n^2\sigma_1^2$,分 散 V[J]は $2n^2\sigma_1^4$ である.したがって J のヒストグ ラムからその平均 μ_J と分散 σ_J^2 を計算すれば,自由 度が真に n² なら次の関係が成り立つはずである.

$$\mu_J \approx n^2 \sigma_1^2, \quad \sigma_J^2 \approx 2n^2 \sigma_1^4$$
 (5)

 σ_1 を消去すると $n^2 \approx 2 \mu_I^2 / \sigma_I^2$ となるが,画素間の 相関のために右辺は左辺よりかなり小さいであろう. そこで等価テンプレートサイズを

$$n = \frac{\sqrt{2}\mu_J}{\sigma_J} \tag{6}$$

と定義する (n は整数である必要はない). すなわち n は実際のテンプレートの大きさでなく,この値の とき残差の変動が各画素の輝度値の変化を独立とみ なした結果に等しいという意味である.

6. モデル定数の推定

正対応と誤対応の割合をそれぞれ p, q (= 1 - p) と すると残差 J の確率密度は次の混合分布となる.

$$f(J) = pf_0(J) + qf_1(J)$$

= $\frac{J^{n^2/2-1}}{2^{n^2/2}\Gamma(n^2/2)} \left(\frac{pe^{-J/2\sigma_0^2}}{\sigma_0^{n^2}} + \frac{qe^{-J/2\sigma_1^2}}{\sigma_1^{n^2}}\right)$ (7)

モデル定数 σ_0, σ_1 (=正対応と誤対応のそれぞれの 輝度値の変化の標準偏差)を最尤推定で定める.す べての組み合せの残差を小さい順にソートしたもの を *J*₁, ..., *J*_{NM} とすると , その尤度は次のように書 ける.

$$\prod_{i=1}^{NM} f(J_i) = \frac{\prod_{i=1}^{NM} J_i^{n^2/2-1}}{2^{n^2 N M/2} \Gamma(n^2/2)^{NM}} \times \prod_{i=1}^{NM} \left(\frac{p e^{-J_i/2\sigma_0^2}}{\sigma_0^{n^2}} + \frac{q e^{-J_i/2\sigma_1^2}}{\sigma_1^{n^2}} \right) \quad (8)$$

次式を得る.

$$\sigma_0^2 = \frac{\sum_{i=1}^{NM} A_i J_i}{n^2 \sum_{i=1}^{NM} A_i}, \quad \sigma_1^2 = \frac{\sum_{i=1}^{NM} B_i J_i}{n^2 \sum_{i=1}^{NM} B_i}$$
(9)

$$A_{i} = \frac{1}{1 + \frac{q}{p} \left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{n^{2}} e^{\frac{J_{i}}{2} \left(\frac{1}{\sigma_{0}^{2}} - \frac{1}{\sigma_{1}^{2}}\right)}}$$
$$B_{i} = \frac{1}{1 + \frac{p}{q} \left(\frac{\sigma_{1}}{\sigma_{0}}\right)^{n^{2}} e^{\frac{J_{i}}{2} \left(\frac{1}{\sigma_{1}^{2}} - \frac{1}{\sigma_{0}^{2}}\right)}}$$
(10)

したがって σ_0, σ_1 の初期値を例えば

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^{\lfloor pNM \rfloor} J_i}{n^2 \lfloor pNM \rfloor}}, \quad \sigma_1 = \frac{\sigma_J}{\sqrt{2\mu_J}} \tag{11}$$

を与えて式 (9) によって σ_0, σ_1 を再計算し, これを反 復すればよい.|·|は床関数であり,第2式は式(5) から n² を消去して得られるものである.式 (9), (10) 中の総和は項が進むに従って急速に小さくなるから, 有効数字に影響しないところで打ち切ればよい.

正対応と誤対応の割合 p, q は,重なりの少ない混合 分布なら EM アルゴリズム等で推定できるが [14],後 の実験例に示されるように正対応のかなりが誤対応の 分布に包含される.このため p, q を尤度のみから推定 することは困難である.しかし,これは比較的容易に 推測できる.例えば,第1画像のN点と第2画像の M点との正対応は最大 $L = \min(N, M)$ 個しかないか ら,例えば何も条件のない画像ではp = 0.5L/NM, ある程度前処理した画像ではp = 0.8L/NMのよう に経験的に指定する.

7. 検出率と正解率

あるしきい値 J_c を設定し, $J > J_c$ なら誤り, $J \leq$ J_cなら正しいと判定するとき,正対応を取り出す割 合 α を検出率と呼ぶ. J が正対応の残差であるとき, これが選ばれる確率は次のようになる (P[·] は確率 を表す).

$$\alpha = P[J < J_c] = P[\frac{J}{\sigma_0^2} < \frac{J_c}{\sigma_0^2}]$$
(12)

 J/σ_0^2 は自由度 n^2 の χ^2 分布に従うから,自由度 n^2 の χ^2 分布の下側 $100\alpha\%$ 点を $\chi^2_{n^2}(\alpha)$ と書くと,上 式は J_c/σ_0^2 g が $\chi^2_{n^2}(\alpha)$ に等しいことを意味する. ゆ えにしきい値 Jc は次のように定まる.

$$J_c = \sigma_0^2 \chi_{n^2}^2(\alpha) \tag{13}$$

このようにしきい値を設定すると誤対応も拾い上げ 対数をとって σ_0^2, σ_1^2 で微分して 0 と置くとそれぞれ てしまう可能性がある. J が誤対応の残差であると き,これが選ばれる確率 γ は次のようになる.

$$\gamma = P[J \le J_c] = P[\frac{J}{\sigma_1^2} \le (\frac{\sigma_0}{\sigma_1})^2 \chi_{n^2}^2(\alpha)]$$
 (14)

図 1: (a), (b) 遠景を撮影した実画像と抽出した特徴点.(c) 全組み合せの残差のヒストグラム.(d) 正対応の推定分布 とヒストグラム.(e) 誤対応の推定分布とヒストグラム.(f) 提案手法で得られた対応.(g) しきい値処理をしない場合 の対応 . (h) 大津の 2 値化で得られた対応 . (i) モデル定数と対応の検出率と正解率 (%) . 図 (c), (d), (e) 中の縦の実線 は計算した α から定めたしきい値,縦の点線は大津の2値化で定めたしきい値.

 J/σ_1^2 は自由度 n^2 の χ^2 分布に従うから,自由度 n^2 のの正解率 β が低下する.ランダム投票によるロバス χ^2 分布の X の下側確率を $\Phi_{n^2}(X) \left(= \int_0^X \phi_{n^2}(x) dx\right)$ と書くと,上式は

$$\gamma = \Phi_{n^2}((\frac{\sigma_0}{\sigma_1})^2 \chi_{n^2}^2(\alpha))$$
 (15)

を意味する.全対応数が NM 個あるから,正対応, 誤対応はそれぞれ pNM 個, qNM 個ある.正対応 は平均 αpNM 個,誤対応は平均 γqMN 個得られる から,正解率βは次のように見積もれる.

$$\beta = \frac{\alpha p N M}{\alpha p N M + \gamma q M N} = \frac{\alpha p}{\alpha p + \gamma q} \qquad (16)$$

8. しきい値の設定

検出率 α を設定すれば式 (13) のしきい値 J_c が定 まるが, α をどう選べばよいであろうか. なるべく 多くの正対応を取り出そうとして α を大きくすれば Harris 作用素で抽出した 100 個の特徴点をマークし J_c が大きくなり,誤対応を拾う確率も増え,式 (16) たものである.図 1(c)は 9 imes 9 テンプレートによる

ト推定には $\beta > 0.5$ が必要であり,これはなるべく 大きい必要がある.しかし,これを大きくすると得 られる正対応の数が少なくなる.

そこで検出率 α と正解率 β が等しくなるようにし きい値を定める.これは正対応を見逃す割合 $1-\alpha$ と誤対応を拾う割合 $1 - \beta$ を等しくバランスさせる ものである.式 (16) で $\beta = \alpha$ として式 (15) を代入 すると次式を得る.

$$\alpha = 1 - \frac{q}{p} \Phi_{n^2}((\frac{\sigma_0}{\sigma_1})^2 \chi_{n^2}^2(\alpha))$$
(17)

ニュートン法によって容易に解 α が定まり (詳細省 略),式 (13) からしきい値 J_c が定まる.

9. 実験例

図 1(a), (b) は遠景を撮影した 2 画像にそれぞれ

図 2: (a), (b) 遠景を撮影した実画像と抽出した特徴点.(c) 全組み合せの残差のヒストグラム.(d) 正対応の推定分布 とヒストグラム.(e) 誤対応の推定分布とヒストグラム.(f) 提案手法で得られた対応.(g) しきい値処理をしない場合 の対応.(h) 大津の2値化で得られた対応.(i) モデル定数と対応の検出率と正解率(%).図(c),(d),(e) 中の縦の実線 は計算した α から定めたしきい値,縦の点線は大津の2値化で定めたしきい値.

これら特徴点のすべての組み合せの残差のヒストグ ラムである.p = 0.6とすると,5節で定義した等価 テンプレートサイズn,6節の方法で推定したモデル 定数 σ_0, σ_1 ,および8節の方法で定めたしきい値に 対応する α はそれぞれ図1(i)に示すようになった.

図 1(d), (e) は式 (3) で推定した正対応と誤対応の 残差の密度分布 $f_0(J)$, $f_1(J)$ に実際に正対応と誤対 応を選別して得られるヒストグラムを重ねたもので ある.この正対応は遠景では 2 画像間が射影変換で 結ばれることを利用して次のようにして求めた.ま ず両画像から対応点を手で注意深く選び,それから 画像間の射影変換を最適に計算し [7],第1画像の各 特徴点の理論的対応位置から距離 3 画素以内にある 第2 画像の特徴点 (そのような点が複数ある場合は 最も近いもの)を正しい対応点とした.図1(c)から, 推定した分布と実際の分布がよく一致していること がわかる. 図1(f) は一対一化によって得られた最終的な対応 を"オプティカルフロー"(2画像を重ねて対応点を線 分で結んだもの)として図示したものである.図1(g) は比較のために2値化処理をせずに一対一化した場 合の対応である.よく知られている自動的なしきい 値設定法として大津の2値化がある[12].これを用 いた場合を図1(h)に示す.それぞれの場合の検出率 と正解率を図1(i)に示す.

この結果から,2値化処理をしなければ正対応が 多く取り出せるものの,誤対応も多く拾い,正解率 が著しく低下することがわかる.図1(c),(d),(e)の 縦の実線は計算した α から定めたしきい値,縦の点 線は大津の2値化で定めたしきい値である.これか らもわかるように,大津の2値化はヒストグラムを 単にまとまりのよいように分割するので特に効果が 見られない.それに対して提案手法は分布に関する 知識を活用し,正解率を高く,かつ多数の正対応を

図 3: (a), (b) 遠景を撮影した実画像と抽出した特徴点.(c) 全組み合せの残差のヒストグラム.(d) 正対応の推定分布 とヒストグラム.(e) 誤対応の推定分布とヒストグラム.(f) 提案手法で得られた対応.(g) しきい値処理をしない場合の対応.(h) 大津の2値化で得られた対応.(i) モデル定数と対応の検出率と正解率(%).図(c),(d),(e) 中の縦の実線 は計算した α から定めたしきい値,縦の点線は大津の2値化で定めたしきい値.

選ぶという二つの目的をうまくバランスしている.

図 2, 3, 4 は別の例を同様に示したものである.これらの結果から提案手法が有効であることが確認される.

10. まとめ

本論文では画像モザイク生成や3次元復元を想定 し,特徴抽出フィルタで抽出した2画像の特徴点間 の対応をテンプレートマッチングによって定める問 題を考察した.まずマッチングの残差のしきい値処 理が必要なこと,しかししきい値は一律に設定でき ず,画像ごとに動的に設定すべきことを指摘した.そ して残差の統計モデルを導入し「等価テンプレート サイズ」を定義した.続いてモデル定数の推定法を 述べ,正対応の検出率と正解率を解析した.そして しきい値の自動的な設定法を提案し,最後に実画像 例を用いて提案手法の有効性を示した.

本方法によってアウトライヤ率はかなり低下する

が,完全ではない.さらにアウトライヤを除去する には射影変換やエピ極線方程式のような幾何学的拘 束条件に基づくロバスト推定が必要である.図5に 図1~4の結果から得られた対応,それからロバスト 推定で選られる対応,およびそれから生成したモザ イク画像[8]を示す.これについては次報[9]で発表 する.

謝辞: 有益なコメントを頂いた産総研の市村直幸氏に感謝 します.本研究の一部は文部科学省科学研究費基盤研究 C (2) (No. 13680432),テレコム先端技術研究支援センター, 栢森情報科学振興財団の助成によった.

参考文献

- P. Beardsley, P. Torr and A. Zisserman, 3D model acquisition from extended image sequences, *Proc. 4th Euro. Conf. Comput. Vision*, April 1996, Cambridge, U.K., Vol. 2, pp. 683–695.
- [2] M. Bober, N. Georgis and J. Kittler, On accurate and robust estimation of fundamental matrix, *Comput. Vision Image Understand.*, **72**-1 (1998-10), 39–53.

図 4: (a), (b) 遠景を撮影した実画像と抽出した特徴点.(c) 全組み合せの残差のヒストグラム.(d) 正対応の推定分布とヒストグラム.(e) 誤対応の推定分布とヒストグラム.(f) 提案手法で得られた対応.(g) しきい値処理をしない場合の対応.(h) 大津の2値化で得られた対応.(i) モデル定数と対応の検出率と正解率(%).図(c),(d),(e) 中の縦の実線は計算した α から定めたしきい値,縦の点線は大津の2値化で定めたしきい値.

- [3] M. A. Fischler and R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, *Comm. ACM*, **24**-6 (1981), 381–395.
- [4] C. Harris and M. Stephens, A combined corner and edge detector, *Proc. 4th Alvey Vision Conf.*, Aug. 1988, Manchester, U.K., pp. 147–151.
- [5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, U.K., 2000.
- [6]市村直幸,フレーム毎の特徴点抽出に基づく特徴点の追跡,情報処理学会研究報告,2001-CVIM-130-5 (2001-11),31-38.
- [7] K. Kanatani, N. Ohta, and Y. Kanazawa, Optimal homography computation with a reliability measure, *IE-ICE Trans. Inf. & Syst.*, E83-D-7 (2000-7), 1369–1374.
- [8] 金澤靖,金谷健一,幾何学的 AIC による画像モザイク生成の安定化,電子情報通信学会論文誌 A, J83-A-6 (2000-6), 686-693.
- [9] 金澤靖,金谷健一,段階的マッチングによる画像モザイク生成,情報処理学会研究報告,2002-CVIM-132 (2002-3).
- [10] 満田隆, 宮崎陽司, 丸典明, 宮崎文夫, 粗いオプティカルフ ローを用いた高精度な位置決めビジュアルサーボ, 日本ロボッ ト学会誌, 17-2 (1999-11), 227–233.

- [11] 奥富正敏,野口卓,中野勝之,ステレオ画像からの射影変換 行列の抽出により道路領域検出,日本ロボット学会誌,18-8 (2000-11),1105-1111.
- [12] 大津展之,判別および最小2乗法に基づく自動しきい値選定 法,電子通信学会論文誌,J63-D-4 (1980-4),349-356.
- [13] P. J. Rousseeuw and A. M. Leroy, *Robust Regression and Outlier Detection*, Wiley, New York, 1987.
- [14] 関田巌, 栗田多喜夫, 大津展之, ナビー・アブデルマルク, 画 像の量子化誤差を考慮したしさい値選定法, 電子情報通信学 会論文誌 D-II, **J78-D-II**-12 (1995-12), 1806–1812.
- [15] S. M. Smith and J. M. Brady, SUSAN—A new approach to low level image processing, *Int. J. Comput. Vision*, 23-1 (1997-5), 45–78.
- [16] C. Tomasi and T. Kanade, "Detection and Tracking of Point Features," CMU Tech. Rep. CMU-CS-91-132, April 1991; http://vision.stanford.edu/~birch/klt/.
- [17] Z. Zhang, R. Deriche, O. Faugeras and Q.-T. Luong, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, *Artif. Intell.*, 78 (1995), 87–119.
- [18] Z. Zhang, Z. Liu, D. Adler, M. Cohen, E. Hanson, and Y. Shan, Cloning your own face with a desktop camera, *Proc. 8th Int. Conf. Comput. Vision*, July 2001, Vancouver, Canada, Vol. 2, p. 745.

図 5: 左から順に図 1~4 で得られた対応, それからロバスト推定で得られる対応, およびそれから生成したモザイク画像.