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Abstract We present a new method, called “EFNS” (“extended FNS”), for linearizable constrained maximum likelihood
estimation. This complements the CFNS of Chojnacki et al. and is a true extension of the FNS of Chojnacki et al. to an
arbitrary number of intrinsic constraints. Computing the fundamental matrix as an illustration, we demonstrate that CFNS
does not necessarily converge to a correct solution, while EFNS converges to an optimal value which nearly satisfies the
theoretical accuracy bound (KCR lower bound).
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1. Introduction

One of the fundamental principles of computer vi-
sion is to hypothesize a structure, expressed as param-
eterized equations, in the scene we are viewing and es-
timate the parameters by fitting the equations to the
observed images. Such a structure is called a model,
and the equations it implies constraints.

Most deeply studied in the past are the problems
for which the constraints are linear in unknowns, for
which many numerical techniques have been proposed
for computing the maximum likelihood (ML) solution,
including FNS (Fundamental Numerical Scheme) [2],
HEIV (Heteroscedastic Errors-in-Variable) [9], renor-
malization [6], and projective Gauss-Newton iterations
[8].

All these assume that the unknown parameters are
unconstrained. In many problems, however, we in-
troduce intrinsic constraints to avoid complications
arising from minimal parameterization. For example,
the “epipolar equation” can be succinctly described in
terms of the fundamental matrix F' constrained to be
det F = 0.

Hereafter, we call the equations that link vari-
ables with “data” extrinsic constraints and those only
“among” variables intrinsic constraints. Typical ap-
proaches to optimization with intrinsic constraints are:
A posteriori correction. We first compute the solu-

tion without considering the intrinsic constraints
and then modify the solution so that they are sat-
isfied (Fig. 1(a)).

Internal access. We minimally parameterize the
problem and do optimization in the reduced (“in-
ternal”) parameter space (Fig. 1(b)).

External access. We do iterations in the redundant
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(“external”) parameter space in such a way that
an optimal solution that satisfies the intrinsic con-
straints automatically results (Fig. 1(c)).

Maximum likelihood (ML) estimation reduces to
minimization of the negative logarithm of the likeli-
hood, which is a relatively simple function if appro-
priate intrinsic constraints are introduced and can be
easily minimized with a small number of iterations us-
ing a method like FNS [8, 7]. If the problem is mini-
mally parameterized, however, we need to optimize a
complicated nonlinear equation which has a lot of local
minima [11], requiring close attention to avoid them.

The concept of external access dates back to such
heuristics as introducing penalties to the violation of
the constraints or projecting the solution onto the sur-
face of the constraints in the course of iterations, but
it is Chojnacki et al. [3] that first presented a system-
atic scheme for constrained optimization of lineariz-
able problem. They termed their method CFNS (Con-
strained FNS).

The purpose of this paper is i) to point out that
CFEFNS does not necessarily converge to a correct so-
lution and ii) to present a new scheme, called EFNS
(extended FNS), which always converges to an opti-
mal value. Our method is different from CFNS in the
following respects:

e CFNS is for problems with a single intrinsic con-
straint, so multiple constraints must be combined
into one, while EFNS incorporates any number of
intrinsic constraints from the beginning.

e CFNS has no relation to FNS, while EFNS reduces
to FNS if the number of intrinsic constraints is 0.
In this sense, EFNS is a true extension of FNS.

e There is no guarantee that the CFNS solution
is the desired value, while we can prove this for
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Figure 1: Contours of the function to minimize and the constraint surface. (a) A posteriori correction. (b) Internal

access. (c) External access.

EFNS.

In Sec. 2, we summarize mathematical fundamen-
tals. After briefly describing the CFNS of Chojnacki
et al. [3] in Sec. 3, we present our EFNS in Sec. 4.
In Sec. 5, we compare them by computing the funda-
mental matrix and demonstrate that CFNS does not
necessarily converge to a correct value while EFNS con-
verges to an optimal solution. We also show that our
EFNS is more accurate than a posteriori correction
and more robust than minimal parameterization. We
conclude in Sec. 6.

2. Mathematical Fundamentals

Intrinsic constraints
We assume that the data {£,}, « = 1, ..., N, are
n-D vectors whose noiseless values {£,} should satisfy

(u,€,) =0, (1)

where w is an unknown n-D vector. In this paper, we
denote the inner product of vectors a and b by (a,b).
Our task is to estimate w from noisy data {£,}.

Since Eq. (1) does not constrain the scale of u, we
impose normalization ||u| = 1, which is an intrinsic
constraint. In addition, we allow r constraints on wu:

We assume that these r equations and the normaliza-
tion ||u|| = 1 are algebraically independent and mu-
tually transversal! [12]. We also assume that all these
constrain the scale indeterminate u. So, like Chojnacki
et al. [3], we assume that each ¢ (u) is a homogeneous
equation of degree ki in u. Hence, the following iden-
tity holds for arbitrary nonzero ¢:

¢k (tu) = tm‘gﬁk (u)

Covariance matrices
We define the covariance matrix V][] of an estimate
4 of w computed from noisy data {€,} by

Vla] = B[(Pya)(Pya) '], (4)

1This means that the hypersurfaces defined by individual con-
strains ¢p(u) = 0 do not share their tangent spaces at their
intersections [12].

a=1,..,N,

k=1,..r.

(3)
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where FE[-] denotes expectation with respect to the
noise distribution. The operator P;; projects R™ onto
the domain U of u defined by ||u| = 1 and ¢y (u) =
0, k =1, ..., r. By the transversality assumption, it
is an (n — r — 1)-D submanifold of R™. Eq. (4) means
that the error of u is evaluated after projected onto
the tangent space T4 (U) to U at a.

Complement space

Each constraint ¢;(u) = 0 defines a hypersurface
in R™, whose unit surface normal is Vy¢r(u). By
the transversality assumption, vectors u, Vyo1(u), ...,
Vudr(u) are linearly independent. Let

N = {'u'v Vu¢1 (u)7 ) vu¢r(u)}£ (5)

be the (r + 1)-D linear subspace they spanned?. This is
the orthogonal complement of the tangent space Ty, (U)
of the domain U of u:

We call N the complement space of u.

KCR lower bound
If the noise in {£,} is independent and Gaussian
with mean 0 and covariance matrix V[€,], the follow-

ing inequality holds for an arbitrary unbiased estimator
o of u [6]:

Here, > means that the left-hand side minus the right
is positive semidefinite, and (), denotes the pseu-
doinverse of rank® r. Chernov and Lesort [1] called the
right-hand side of Eq. (9) the KCR (Kanatani-Cramer-
Rao) lower bound and showed that Eq. (7) holds up to
higher order noise terms even if 4 is not unbiased; it
is sufficient that & — u as the noise decreases.

2Namely, this is the set of all directions along which the in-
trinsic constraint is violated.

3The matrix obtained by replacing the largest r eigenvalues
by their reciprocals and the remaining ones by Os in its spectral
(or eigen) decomposition.
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Maximum likelihood (ML)

If the noise in {€,} is independent and Gaussian
with mean 0 and covariance matrix V€], mazimum
likelihood (ML) estimation of w is to minimize the sum
of square Mahalanobis distances*

N
J= (6o =& ViEliia =€) (8)

subject to Eq. (1). We are assuming that the data
{&€,} are also subject to s algebraically independent
intrinsic constraints, such as being unit vectors, but
all the necessary information is contained in the form
of V[€,], so we need not explicitly indicate them.

Eliminating the constraint of Eq. (1) by using La-
grange multipliers, we obtain [6]

N
(u,§,)?
J = o (9)
(;_1 (u, VIE,]u)
The ML estimator @ minimizes J subject to ||u|| = 1,
or(u) =0,k =1, .., r. It is known that its covariance

matrix V[u] agrees with the KCR lower bound (the
right-side hand of Eq. (9)) up to higher order noise
terms [6].

3. Constrained FNS

The CFNS (Constrained FNS) of Chojnacki et al. [3]
minimizes Eq. (9) in the same form as their FNS [2].
Namely, we find a symmetric matrix @ such that the
stationarity condition of Eq. (9) subject to the intrinsic
constraints is written in the form

Qu=0, (10)

and do the following iterations:
1. Initialize u.
2. Compute the matrix Q.
3. Solve the eigenvalue problem

Qu = v, (11)

and compute the unit eigenvector v for the eigen-
value A closest to 0.
4. If v &~ u up to sign, return v and stop. Else, let
u «— v, and go back to Step 2.
Chojnacki et al. [3] recommend to correct the resulting
solution appropriately so that the intrinsic constraints
are strictly imposed.
Infinitely many candidates exist for the matrix Q
with which the problem is written as Eq. (10), but

4This means we fit a hyperplane (u, &) = 0 to N points {£,}
in RY so as to minimize the sum of their distances inversely
weighted by their covariance matrices V[£,].
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not all of them allow the above iterations to converge.
Chojnacki et al. [3] gave one, but the derivation is not
written in their paper. In Sec. 5, we show that CFNS
does not necessarily converge to a correct solution.

4. Extended FNS

Here, we present a new scheme, called EFNS (FEaz-
tended FNS), very similar to CFNS. Later, we show
that EFNS is superior to CFNS (Sec. 5).

Stationarity condition

According to the variational principle, the necessary
and sufficient condition for the function J to be sta-
tionary at a point in the submanifold &4 C R"™ is that
its gradient VyJ is orthogonal to U at that point. In
terms of the complement space N defined by Eq. (6),
this can be written as VyJ € N.

Eq. (9) is homogeneous with degree 0 in u, so its
value is unchanged by multiplication of w by a nonzero
constant. This means that VJ is always orthogonal
to u. Hence, if we define

M = {vu¢1 (u)a ceey vu¢r(u)}£a (12)

the condition VyJ € N is equivalent to V,J € M.
Thus, if we let Py be the projection operator onto
the orthogonal complement M~ of M, the stationarity
condition is written as

PyVaJ = 0. (13)

Let {uy, ..., u,} be the orthonormal system obtained
by the Gram-Schmidt orthogonalization of V,¢1(u),
woty Vo, (u). The projection operator Py, has the fol-
lowing matrix representation:

Py=1-) wuy. (14)
k=1

Intrinsic constraints

In addition to the stationarity condition of Eq. (13),
the solution v must satisfy the intrinsic constraints
¢r(u) =0,k =1, .., 7. Since Eq. (3) is an identity in
t, its derivation with respect to ¢ on both sides is also
an identity in t:

(Vud(tu), u) = rpt™ g (u). (15)

Letting t = 1, we have

(Vuop(u),u) = krdp(u). (16)

Hence, ¢r(u) = 0, k = 1, ..., r, is equivalent to
(Vudr(u),u) =0, k =1, ..., r, which means u € M=+
(see Eq. (12)). It follows that the r intrinsic constraints
are expressed in a single form as
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Pyu =u. (17)

The necessary and sufficient condition for J to be sta-
tionary subject to the intrinsic constraints is Eqgs. (13)
and (17).

Formulation
Differentiating Eq. (9) with respect to u, we obtain

Vu/J = Mu — Lu, (18)

where we define
N T N 2
- £a.€a e (W €)VIE]
M=D viegw T2 - (19

Hence, Eq. (13) is written as
Py(M — L)yu = 0. (20)

Using Eq. (17), we can write the left-hand side as
Py(M — L)Pyu. Hence, if we define the symmetric
matrix

X = Py(M - L)Py, (21)

our task is to find uw that satisfies

Xu=0, Pyu =u. (22)

The first equation implies that u belongs to the null
space of X . Since Py is the projection operator onto
M+, Eq. (21) implies XM = 0. Hence, u and M
both belong to the null space of X, and they are mu-
tually orthogonal by the second of Egs. (22). Thus,
the complement space N of Eq. (5) coincides with the
null space of X and is the direct sum of w and M:

N ={u}l,® M. (23)

As a result, the projection operator Py, used in Eq. (4)
has the following matrix form:

Py, =Py —uu'. (24)

Procedure

The above observation implies that w4 can be ob-
tained by finding the complement space N, because u
is an element orthogonal to Vy¢1(u), ..., Vu¢,r(u) in
N. The actual procedure is as follows:

1. Initialize u.

2. Compute the matrices M and L in Egs. (19).

3. Compute the orthonormal system {uq, ..., u,} by
the Gram-Schmidt orthogonalization of Vy¢1(u),
ceny Vu(br(u)

4. Compute the projection matrix Py in Eq. (14).

5. Compute the matrix X in Eq. (21).
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6. Solve the eigenvalue problem
Xv =)o, (25)

and compute r + 1 unit eigenvectors vy, ..., v, for
the smallest eigenvalues in absolute terms.

7. Project the current value u onto N = {vy, ..., v, } 2
to compute

U= Z(u,vk)'uk. (26)

8. Compute
’U,/ = N[PV’EL], (27)

where N|[-] denotes normalization to unit norm.
9. If /' =~ u, return v’ and stop. Else, let u «
N[u + u'] and go back to Step 2.
Justification
When the above iterations have converged, the sub-
space N coincides with the null space of X.

Proof. From the definition of X in Eq. (21) and Py in
Eq. (14), w1, ..., u, are eigenvectors of X with eigen-
value 0. Hence, r of the eigenvectors vy, ..., v, com-
puted in Step 5 always have eigenvalue 0. If A is not
the null space of X, one of them, say v., has nonzero
eigenvalue A (# 0) and is orthogonal to the remain-
ing eigenvectors, which span® M = {uy,...,u,}o. It
follows that v, is orthogonal to M.

By construction, the vector @ in Eq. (26) belongs to
N = {v,}; ® M. Since the vector u’ in Eq. (27) is a
projection of @& within A onto the direction orthogonal
to M, it coincides with f+wv,. The iterations converge
when v = 4/ (= tv.), and v, is an eigenvector of
X with eigenvalue A. Hence, u also satisfies Eq. (25).
Computing the inner product with « on both sides, we
have

(u, Xu) = A (28)

On the other hand, u (= £w.) is orthogonal to all the
eigenvectors of X with eigenvalue 0, so it is orthogonal
to the subspace M they span. Hence, we have

Pyu = u. (29)
Then,

(’LL, X’LL) = (u, Pv(M — L)PV’U,)
= (u, Mu) — (u,Lu) = 0. (30)

The identity (u, Mu) = (u,Lu) in wu is easily con-
firmed by the definition of M and L in Egs. (19).

5Eigenvectors with a multiple eigenvalue are indeterminate,
so the computed eigenvectors of X with eigenvalue 0 need not
coincide with any of w1, ..., ur. Uniquely determined is the
subspace M that they span.

0S-B4-03



Egs. (28) and (30) contradict our assumption that A
# 0. Hence, all elements of N are eigenvectors of X
with eigenvalue 0, i.e., N is the null space of X when
the iterations have converged. O

It follows that both Xu = 0 and Eq. (29) hold, so u
is the desired solution. Of course, this conclusion relies
on the premise that the iterations converge. According
to our experience, if we let w «— u’ in Step 9, the next
value of u’ computed in Step 8 often reverts to the
former value of u, falling in infinite looping. So, we
update u to the “midpoint” (u'+u)/2 and normalized
it to a unit vector N[u' + u] in Step 9. By this, the
iterations converged in all of our experiments.

Reduction to FNS

If the number r of the intrinsic constraints is 0, we
have M = () and Py = I. Hence, w is the eigenvector
of X with the eigenvalue closest to 0. This is noth-
ing but the FNS of Chojnacki et. [2]. In this sense,
EFNS is a true extension of FNS to multiple intrinsic
constraints. The FNS iterations converge simply by
updating u by u’ unless the initial value is very dif-
ferent from the solution [8]. So, we need not use the
“midpoint” N[u' + u], but of course we can.

On the other hand, the matrix @ used in CFNS has
nothing to do with the matrix X used in FNS; for
one thing, @ is positive semidefinite, while X is not.
The basic difference of EFNS from CFNS is that while
CFNS iteratively computes an eigenvector (1-D sub-
space), EFNS iteratively computes an (r + 1)-D sub-
space.

5. Fundamental Matrix Computation

We now compare EFNS and CFNS by computing
the fundamental matrix.

Epipolar equation

Given two images of the same scene, a point (x,y)
in the first image and the corresponding point (z',y’)
in the second satisfy the epipolar equation [5]

x Iy Fip Fig x
({ v || 21 Fa2 Fos y 1)=0, (31)
fo F31 F3p F33 fo

where fy is an arbitrary constant®. The matrix F =
(Fy;) is of rank 2 and called the fundamental matriz;
it is determined by the relative positions and orienta-
tions of the two cameras and their intrinsic parameters
independently of the scene.

6This is for stabilizing numerical computation [4]. In our
experiments, we set fo = 600 pixels.
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If we define
u = (Fi1, Fi2, Fi3, Fo1, Fag, Fog, F1, Fs, F33) |,
€ = (xx/7mylaxfO?yw/ayylanyaf0x17f0y/7fg)—: (32)

Eq. (31) is written as (u, &) = 0. Letting &, represent
the ath corresponding point pair {(Za,¥a), (25, y5)}
and &, their true values {(Za, 7o), (7,7, )}, we have
Eq. (1).

If noise in the z- and y-coordinates is independent
and of mean 0 and standard deviation o, the covariance
matrix of &, has the form V[¢,] = o?Vp[€,] up to
O(o)*, where

TL4 T TLUh  foTh ZTa¥a
Tobe Tat+Pa fode 0
fo, foln fo 0
Zala 0 0 §2+z2

Vol€a] = 0 Tola 0 ZLh
0 0 0 foifx
foZa 0 0 fola
0 foa O 0
0 0 0 0
0 0 fofa O O

ZaJa 0 0 foFa O
0 0 0 0 O

Tobo foTw foGa 0 O

va+ 92 foih 0 foJa O |, (33)

fog f6 0 0 0
0 0 f& 0 0

nga 0 0 fg O
0 0 0 0 0

Since the minimizer of Eq. (9) is not affected by mul-
tiplication of V[€,] by a positive constant, we can re-
place VI[€,] by Wl€,] in the minimization computa-
tion. The true positions (Z,%s) and (Z,,,7,,) are re-
placed by their data values (zq,yq) and (7, ) in the
computation”.

The intrinsic constraint det F' = 0 is written as ¢(u)
= 0, where ¢(u) is the following homogeneous polyno-
mial of degree 3:

(;5(’11,) = ULU5UY + UsUgUT + U3UIU4

—U3UsU7 — U2U4U9 — UTUIUEG- (34)
Its gradient is

UsU9 — UUG
UsU7T — UQU4
UqauUsg — UTUS5
ugU3 — U2U9
UgUl — U3U7 . (35)
Uru2 — UIUS
U2U — U5U3
U3IU4 — UsU1
U1Us5 — U4U2

"We have confirmed that this does not affect the results of
our experiments.
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Figure 2 Simulated images of planar grid surfaces.
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Figure 3: RMS error for Fig. 2 vs. noise level. 1) SVD-
corrected LS. 2) SVD-corrected ML. 3) Optimally corrected
ML. 4) Direct search. 5) CFNS. 6) EFNS. The dotted line
indicates the KCR lower bound.

The projection matrix Py in Eq. (14) is now
Py =1 N[Vu4¢|N[Vuo]". (36)
Hence, the projection matrix Py, in Eq. (24) is
Py =I-N[VupN[Vus]" —uu'.  (37)

Accuracy comparison

Fig. 2 shows simulated images of two planar grid sur-
faces viewed from different angles. The image size is
600 x 600 pixels with 1200 pixel focal length. We added
random Gaussian noise of mean 0 and standard devia-
tion o to the z- and y-coordinates of each grid point in-
dependently and from them computed the fundamental
matrix by 1) SVD-corrected LS, 2) SVD-corrected ML,
3) optimally corrected ML, 4) direct search, 5) CFNS,
and 6) EFNS.

The “SVD correction” means doing singular value
decomposition (SVD) and replacing the smallest singu-
lar value by 0 [4]. “LS” means least-squares (also called
“eight-point algorithm” [4]) minimizing Zle(u, €)%
the solution is the unit eigenvector with the smallest
eigenvalue of the matrix obtained by replacing V[€,]
by I in the definition of M in Egs. (19). For brevity,
we use the shorthand “ML” for unconstrained ML,
for which we used the FNS of Chojnacki et al. [2].
“Optimal correction” refers to the a posteriori correc-
tion approach used in [6, 10]. By “direct search”, we
mean the Levenberg-Marquard (LM) optimization us-
ing minimal parameterization [13]. All iterations are
initialized by LS and stopped when the update of F is
less than 10~% in norm.
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Figure 4: Simulated images of a spherical surface.
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Figure 5: RMS error for Fig. 4 vs. noise level. 1) SVD-
corrected LS. 2) SVD-corrected ML. 3) Optimally corrected
ML. 4) Direct search. 5) CFNS. 6) EFNS. The dotted line
indicates the KCR lower bound.

For each method, Figure 3 plots the root-mean-
square (RMS) error

1 10000
_ o (a))2
D = \| 76005 ; 1 Pra|2, (38)

corresponding to Eq. (6) over 10000 trials using inde-
pendent noise for each o, where @ is the ath value.
The dotted line is the corresponding KCR. lower bound
(the trace of the right-hand side of Eq. (7)).

Figure 4 shows simulated images of a spherical sur-
face (600 x 600 pixels with 1200 pixels focal length).
Figure 5 shows the result corresponding to Fig. 3.

Observations

From Fig. 2, we see that the error behavior of EFNS
is very similar to optimally corrected ML and direct
search; all these nearly achieve the KCR lower bound.
The SVD correction of LS or ML fails to produce com-
parable accuracy. Notable is the fact that CFNS per-
forms as poorly as SVD-corrected ML.

In Fig. 5, CFNS performs even worse, while EFNS
has higher accuracy than optimally corrected ML. Di-
rect search performs very well for small noise but
quickly deteriorates for large noise. This indicates
growth of local minima as the noise increases.

Convergence of CFNS

Showing experimental evidences, Chojnacki et al. 3]
asserted that CFNS is superior to optimally corrected
ML. Figure 3 contradicts their assertion. Close exami-
nation has revealed that the solution of CEFNS depends
on the initial value of the iterations.
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Figure 6: Dependence of CFNS on initializations: LS
(solid line), SVD-corrected LS (dashed line), and the true
value (chained line). The dotted line indicates the KCR
lower bound.
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Figure 7: The convergence of det F' and the residual J
(o = 1) for different initializations: LS (solid line), SVD-
corrected LS (dashed line), and the true value (chained
line). All solutions are SVD-corrected in the final step.
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Figure 8: The results by EFNS corresponding to Fig. 7.

The results in Fig. 3 was obtained by LS initializa-
tion for all methods. Figure 6 compares the effects of
different initializations on CFNS: we used LS, SVD-
corrected LS, and the true value. We can see that the
SVD correction of the initial value greatly increases the
accuracy for small noise, but it quickly deteriorates for
larger noise. If started from the true value, CFNS can-
not obtain a correct value even in the presence of very
small noise. In contrast, EFNS did not exhibit such
initialization dependence.

Figure 7 shows a typical instance (o = 1) of the con-
vergence of the determinant det F' and the residual J
from different initial values. In the final step, det F’
is forced to be 0 by SVD, as prescribed by Chojnacki
et al. [3]. The dotted lines show the values to be con-
verged.

The LS solution has a very low residual J, because
the rank constraint det F' = 0 is ignored. So, J needs
to be increased to achieve det F' = 0, but CFNS fails to

0S-B4-03
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Figure 9: The convergence of det F and the residual J
(o = 3) for different initializations: LS (solid line), SVD-
corrected LS (dashed line), and the true value (chained
line). All solutions are SVD-corrected in the final step.
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Figure 10: The results by EFNS corresponding to Fig. 9.

do so. As a result, det F' remains nonzero and drops
to 0 by the final SVD correction, causing a sudden
jump in J. If we start from SVD-corrected LS, the
residual J first increases, making det F' nonzero, but
in the end both J and det F' converge in an expected
way. In contrast, the true value has a very large J,
so CFNS tries to decrease it sharply at the cost of too
much increase in det F', which never reverts to 0 until
the final SVD. Figure 8 shows corresponding results
by EFNS. Both J and det F' converge to their correct
values with stably attenuating oscillations.

Figures 9 and 10 show the results corresponding to
Fig. 7 and 8 for another instance (¢ = 3). We can
observe similar behavior of CEFNS and EFNS.

CFNS vs. EFNS

From many experiments (not all shown here), we
observe as follows. “Convergence” means the state
of the same solution repeating itself in the course of
iterations. In mathematical terms, the resulting so-
lution is a fized point of the iteration operator, i.e.,
the procedure to update the current solution. In [3],
Chojnacki et al. [3] proved that the solution u satisfy-
ing Eqgs. (13) and (17) is a fixed point of their CFNS.
Apparently, they expected to arrive at that solution
by their scheme. However, as demonstrated by Fig. 7,
CFEFNS has many other fixed points, and which to arrive
at depends on initialization. In contrast, we proved in
Sec. 3 that any fixed point of EFNS is necessarily the
desired solution. This cannot be proved for CFNS.

Real image examples
We manually selected 100 pairs of corresponding
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Figure 11: Real images and 100 corresponding points.

Table 1: The residual and execution time (sec) for comput-
ing the fundamental matrix from the corresponding points
in Fig. 11.

method ‘ residual ‘ time
SVD-corrected LS 45.550 | .00052
SVD-corrected ML 45.556 | .00652
CFNS 45.378 | .01300
Optimally corrected ML 45.378 | .00764
direct search 45.378 | .01136
EFNS 45.379 | .01916

points in the two images in Fig. 11 and computed the
fundamental matrix from them. Since its true value is
unknown, we evaluated the final residual J together
with the execution time (sec). We used Core2Duo
E6700 2.66GHz for the CPU with 4GB main memory
and Linux for the OS.

Evidently, SVD-corrected LS is poor, and again
CFNS performs just as much as SVD-corrected ML,
while optimally corrected ML, LM (from LS or opti-
mally corrected ML), and EFNS arrive at the same
optimal solution.

6. Conclusions

We presented a new method, called EFNS®, for
linearizable constrained ML. This complements the
CFENS of Chojnacki et al. [3] and is a true extension of
the FNS of Chojnacki et al. [2]. Computing the fun-
damental matrix as an illustration, we demonstrated
that CFNS does not necessarily converge to a correct
solution depending on initialization, while EFNS is in-
sensitive to initialization, always arriving at an optimal
value.

The advantage of EFNS is that the computation is
done in the “external” u-space, where expressions are
relatively simple, while direct search is done in the “in-
ternal” space of minimal parameterization, where a lot
of local minima exist due to the complication of ex-
pressions, as pointed out in [11]. As a result, EFNS
performs better than minimal search in the presence
of large noise as demonstrated in Fig. 4. The only

8The source code is available from the authors’ Web page
http://www.iim.ics.tut.ac.jp/ sugaya/public-e.html
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disadvantage of EFNS is its slightly longer computa-
tion time, but this is a very small cost for its higher
accuracy and robustness. More about this subject is
discussed in [13].
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