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1. Introduction

Detecting circles and ellipses in images is the first step
of many computer vision applications including industrial
robotic operations and autonomous navigation. To this end,
point sequences constituting elliptic arcs are detected by im-
age processing operations, and then an ellipse equation is
fitted to them. In the past, many methods have been pro-
posed for ellipse fitting [1], [3], [4]. However, most of them
fit a quadratic equation in x and y, or a conic, to a point
sequence. Usually, this produces an ellipse if the sequence
forms an elliptic arc, but a hyperbola or a parabola could
result when the sequence is very short and the noise is very
large.

It is Fitzgibbon et al. [2] who first proposed a method
that only fits an ellipse. It is an algebraic method, and
the computation is very easy, but the accuracy is low. Re-
cently, Szpak et al. [5] introduced a high accuracy ellipse-
specific method based on Sampson error minimization. In
this paper, we incorporate a procedure for avoiding non-
ellipses to the hyper-renormalization method of Kanatani et
al. [3], which is regarded as the most accurate of all currently
known methods and demonstrate by experiments that our
technique outperforms the method of Szpak et al. [5].

2. Ellipse fitting

Quadratic equations in x and y in the form

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0, (1)

represent curves called conics, which include ellipses,
parabolas, hyperbolas, and their degeneracies such as two
lines. In Eq. (1), f0 is a constant that has the order of the
image size for stabilizing finite length numerical computa-
tion (f0 = 600 in our experiments). For a point sequence
(xα, yα), α = 1, ..., N , we define 6-D vectors

ξα =(x2
α, 2xαyα, y2

α, 2f0xα, 2f0yα, f2
0 )>,

θ=(A, B, C, D, E, F )>. (2)

Then, the condition that (xα, yα) satisfies Eq. (1) is written
as
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(ξα, θ) = 0, (3)

where (a, b) denotes the inner product of vectors a and b.
Since vector θ has scale indeterminacy, we normalize it to
unit norm: ‖θ‖ = 1.

3. Proposed method

It has been observed that the accuracy of hyper-
renormalization is higher than Sampson error minimization
[3]. Hence, it is reasonable to retain the solution of hyper-
renormalization as long as it is an ellipse. If the hyper-
renormalization iterations do not converge within a fixed
limit (we set it to 100 times in our experiment), or if the
resulting solution is not an ellipse, we switch to random
sampling: we randomly choose from the point sequence five
different points and compute the conic that passes through
them. If a non-ellipse results, we discard the five points and
choose new five points. If an ellipse results, we compute its
Sampson error. We repeat this many times (1000 times in
our expriment) and choose the solution for which the Samp-
son error is the smallest.

4. Experiment

We considered the three point sequences shown in
Fig. 1(a). We added independent Gaussian noise of mean 0
and standard deviation σ to the x and y coordinates of each
point and fitted an ellipse. Since the computed value θ and
its true value θ̄ are both unit vectors, we measure the error
∆θ by the component of θ orthogonal to θ̄ and evaluate the
RMS error

D =

√√√√ 1
10000

10000∑
a=1

‖∆θ(a)‖2, (4)

over 10000 trials using different noise each time (the super-
script (a) indicates the value for the ath trial).

Figure 1(b) shows the ratio of non-ellipse occurrences by
hyper-renormalization, and Fig. 1(c) plots the RMS error
D. The horizontal axis indicates the noise level σ divided
by the average distance between neighboring points, which
we call the relative noise level . The dotted lines indicate a
theoretical accuray limit called the KCR lower bound. In-
terrupted plots indicate that convergence was not reached
after a specified number of iterations.

As we can see, the accuracy of the method Fitzgibbon et
al. [2] is generally very low, while hyper-renormalization*1

*1 We used the code at: http://www.iim.cs.tut.ac.jp/˜sugaya/
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Fig. 1 (a) Point sequences for our experiment. The number of points is 30, 30, and 15
and the average distance between neighboring points is 2.96, 3.31, and 2.72, re-
spectively. (b) The ratio of non-ellipse occurences by hyer-renormalization. The
horizontal axis is for the relative noise level ε. (c) The corresponding RMS fitting
error: 1. The method of Fitzgibbon et al. [2]. 2. hyper-renormalization. 3. The
method of Szpak et al. [5]. 4. Proposed method. The dotted lines indicate the
KCR lower bound. Interrupted plots indicate that convergence is not reached after
a specified number of iterations above that noise level. (d) Fitting examples for a
particular noise when hyper-renormalization returns a hyperbola.

and the method of Szpak et al.*2[5] are very accurate; they
almost achieve the KCR lower bound when the noise is very
small. However, the method Fitzgibbon et al. [2] can out-
perform hyper-renormalization and the method of Szpak et
al. [5] when the points are chosen from a low-curvature part
as in Fig. 1(middle) and the noise is very large. Since the
method of Szpak et al. [5] and the proposed method both re-
strict the solution to be an ellipse, their RMS error is smaller
than hyper-renormalization in all cases, and in most cases
our method is superior to that of Szpak et al. [5].

Figure 1(d) shows fitting examples for a particular noise
when hyper-renormalization returns a hyperbola. The dot-
ted lines indicate the true shapes. We can obverve a clear
contrast: the method of Fitzgibbon et al. [2] fits a small
and flat ellipse, while the method of Szpak et al. [5] fits a
large ellipse close to the fitted hyperbola. Our method is in
between, fitting an ellipse closer to the true shape.

5. Concluding remarks

We have proposed a new method that always fits an ellipse
to a point sequence extracted from images. The currently
known best method is hyper-renormalization of Kanatani et
al. [3], but it may return a hyperbola when the noise in the
data is very large. Our proposed method incorporates ran-
dom sampling so that an ellipse always results. Doing simu-
lation, we showed that our method has higher accuracy than

*2 We used the code at: https://sites.google.com/site/szpakz/

the method of Fitzgibbon et al. [2] and the method of Szpak
et al. [5], the two currently known ellipse-specific methods.
We also observed that when hyper-renormalization returns
a hyperbola, the method of Szpak et al. [5] tends to fit a
large ellipse close to that hyperbola while the method of
Fitzgibbon et al. [2] tends to fit a small and flat ellipse. Our
method fits an ellipse somewhat in between.
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