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Abstract A new method is presented for computing the fundamental matrix from point correspondences over two

images: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. There is

no need for tentative 3-D reconstruction. The accuracy of the solution is compared with the theoretical bound (the

KCR lower bound).

1. Proposed Method

The fundamental matrix F has nine elements, on which

the normalization ‖F ‖ = 1 and the rank constraint detF =

0 are imposed. So, it has seven degrees of freedom. In this

paper, we adopt the 7-degree parameterization of Bartoli and

Sturm [1]: we express F by its singular value decomposition

(SVD) F = Udiag(σ1, σ2, 0)V >, where U and V are orthog-

onal matrices, and σ1 and σ2 are the singular values. Since

the normalization ‖F ‖ = 1 is equivalent to σ2
1 + σ2

2 = 1, we

introduce the parameterization σ1 = cos θ, σ2 = sin θ.

Using this parameterization, we minimize the maximum

likelihood (ML) cost function by the Levenberg-Marquard

(LM) method. Following Bartoli and Sturm [1], we use the

“Lie algebraic method” for optimizing the orthogonal matri-

ces U and V (see the text for the details).

2. Experiments

We compared the accuracy and efficiency of our method

with existing methods [4], using simulation data (see the

text). The accuracy of the solution is compared with the

theoretical bound (the KCR lower bound [3]), too.

We also conducted real image experiments, using the im-

ages in Fig. 1. We manually selected 100 pairs of corre-

sponding points and computed the fundamental matrix, us-

ing different methods. The residual (the minimum of the cost

function) and the execution time (sec) are listed in Table 1.

We can see that optimally correction ML and the proposed

method converged to the same solution, while SVD correc-

tions of LS and ML resulted in different values with higher

residuals. For this data set, the proposed method took longer

time than optimally corrected ML.

The reason for the poor performance of CFNS [2] is fully

Figure 1 Real images and 100 corresponding points.

Table 1 The residual and execution time (sec).

method residual time

SVD-corrected LS 45.550 . 00052

SVD-corrected ML 45.566 . 00642

Optimally corrected ML 45.378 . 00764

Our method 45.378 . 01136

CFNS [2] 45.378 . 01300

investigated in another paper of the authors [5], where a new

method called EFNS is proposed and comparative experi-

ments are conducted.
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