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Abstract A new method is presented for computing the fundamental matrix from point correspondences: its singular
value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. There is no need for tentative 3-D
reconstruction. The accuracy achieves the theoretical bound (the KCR lower bound).
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1. Introduction

Computing the fundamental matrix from point cor-
respondences is the first step of many vision applica-
tions including camera calibration, image rectification,
structure from motion, and new view generation [7].

A popular approach is to do maximum likelihood
(ML) computation without imposing the constraint
that the fundamental matrix has rank 2; the rank con-
straint was imposed a posteriori in a statistically opti-
mal manner. The resulting solution has accuracy close
to the theoretical bound (KCR lower bound [2, 8]).

Another possible approach is to do optimization sub-
ject to the rank constraint [1, 4, 13, 15]. In this pa-
per, we propose a new method in this line. Following
Bartoli and Sturm [1], we optimize the singular value
decomposition (SVD) of the fundamental matrix, but
there is no need to include 3-D coordinates or camera
matrices as unknowns; we use the Levenberg-Marquard
(LM) method in the reduced parameter space.

We summarize the mathematical background in
Sec. 2. Then, we describe the optimal correction ap-
proach in Sec. 3 and the proposed method in Sec. 4.
Sec. 5 shows numerical experiments. We conclude in
Sec. 6.

2. Mathematical Fundamentals

Fundamental matrix
Given two images of the same scene, a point (x, y)

in the first image and the corresponding point (x′, y′)
in the second satisfy the epipolar equation [7]

(

 x
y
f0

 ,

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 x′

y′

f0

) = 0, (1)

where f0 is an arbitrary constant1. Throughout this
1This is for stabilizing numerical computation [6]. In our

paper, we denote the inner product of vectors a and b
by (a, b). The matrix F = (Fij) in Eq. (1) is of rank
2 and called the fundamental matrix . If we define

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (2)
ξ = (xx′, xy′, xf0, yx′, yy′, yf0, f0x

′, f0y
′, f2

0 )>, (3)

Eq. (1) can be rewritten as

(u, ξ) = 0. (4)

The magnitude of u is indeterminate, so we normalize
it to ‖u‖ = 1. If we write N observed noisy correspon-
dence pairs as 9-D vectors {ξα} in the form of Eq. (3),
our task is to estimate the 9-D vector u from {ξα}
using Eq. (4).

Covariance matrices
We write ξα = ξ̄α +∆ξα, where ξ̄α is the true value

and ∆ξα is the noise term. The covariance matrix of
ξα is defined by

V [ξα] = E[∆ξα∆ξ>
α ], (5)

where E[ · ] denotes expectation over the noise distri-
bution. If noise in the x- and y-coordinates is inde-
pendent and of mean 0 and standard deviation σ, the
covariance matrix of ξα has the form V [ξα] = σ2V0[ξα]
up to O(σ)4, where

V0[ξα] =



x̄2
α + x̄′2

α x̄′
αȳ′

α f0x̄
′
α x̄αȳα

x̄′
αȳ′

α x̄2
α + ȳ′2

α f0ȳ
′
α 0

f0x̄
′
α f0ȳ

′
α f2

0 0
x̄αȳα 0 0 ȳ2

α + x̄′2
α

0 x̄αȳα 0 x̄′
αȳ′

α

0 0 0 f0x̄
′
α

f0x̄α 0 0 f0ȳα

0 f0x̄α 0 0
0 0 0 0

experiments, we set f0 = 600 pixels.
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, (6)

which we call the normalized covariance matrix . It de-
pends only on the true positions (x̄α, ȳα) and (x̄′

α, ȳ′
α)

of the data points (xα, yα) and (x′
α, y′

α). In numerical
computation, we replace the true values by the data
values2.

We define the covariance matrix V [û] of the resulting
estimate û of u by

V [û] = E[(P U û)(P U û)>], (7)

where P U is a projection operator in R9 onto the do-
main U of u defined by the constraints ‖u‖ = 1 and
det F = 0; we evaluate the error of û by projecting it
onto the tangent space Tū(U) to U at ū.

Geometry of the constraint
The normal to the hypersurface defined by detF =

0 is ∇u det F . After normalization, it has the form

u† ≡ N [



u5u9 − u8u6

u6u7 − u9u4

u4u8 − u7u5

u8u3 − u2u9

u9u1 − u3u7

u7u2 − u1u8

u2u6 − u5u3

u3u4 − u6u1

u1u5 − u4u2


], (8)

where N [ · ] denotes normalization into unit norm.
The inside of this operator is the 9-D representation
(cf. Eq. (2)) of the transpose F †> of the cofactor F †

of F . The constraint detF = 0 is equivalently written
as

(u†, u) = 0. (9)

Since the domain U is included in the unit sphere S8

⊂ R9, the vector u is everywhere orthogonal to U .
Hence, {u, u†} is an orthonormal basis of the orthogo-
nal complement of the tangent space Tu(U). It follows
that the projection operator P U in Eq. (7) has the
following matrix representation (I is the unit matrix):

P U = I − uu> − u†u†>. (10)

KCR lower bound
2We have confirmed that this does not affect the results of

our experiments.

If the noise in {ξα} is independent and Gaussian
with mean 0 and covariance matrix σ2V0[ξ], the fol-
lowing inequality holds for an arbitrary unbiased esti-
mator û of u [8]:

V [û] Â σ2
( N∑

α=1

(P U ξ̄α)(P U ξ̄α)>

(u, V0[ξα]u)

)−

8
. (11)

Here, Â means that the left-hand side minus the right
is positive semidefinite, and ( · )−r denotes the pseu-
doinverse of rank3 r. Chernov and Lesort [2] called
the right-hand side of Eq. (11) the KCR (Kanatani-
Cramer-Rao) lower bound and showed that Eq. (11)
holds up to O(σ4) even if û is not unbiased; it is suffi-
cient that û → u as σ → 0.

Maximum likelihood (ML)
If the noise in {ξα} is independent and Gaussian

with mean 0 and covariance matrix σ2V0[ξ], maximum
likelihood (ML) estimation of u is to minimize the sum
of square Mahalanobis distances4

J =
N∑

α=1

(ξα − ξ̄α, V0[ξα]−2 (ξα − ξ̄α)), (12)

subject to (u, ξ̄α) = 0, α = 1, ..., N . Eliminating the
constraint by using Lagrange multipliers, we obtain [8]

J =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (13)

The ML estimator û minimizes this subject to ‖u‖ = 1
and (u†, u) = 0. Its covariance matrix V [û] agrees with
the KCR lower bound (the right-side hand of Eq. (11))
up to O(σ4) [8].

3. A Posteriori Correction Approach

Optimal correction
A common approach to solve this problem is to mini-

mizes Eq. (13) without considering the rank constraint,
compute the SVD of the resulting fundamental matrix,
and replace the smallest singular value by 0, producing
a “closest” matrix of rank 2 in norm [6]. We call this
SVD correction.

A more sophisticated method is the optimal correc-
tion [8, 12]. According to the statistical optimization
theory [8], the covariance matrix V [ũ] of the rank un-
constrained solution ũ can be evaluated, so ũ is moved
in the direction of the mostly likely fluctuation implied
by V [ũ] until it satisfies the rank constraint. The pro-
cedure goes as follows [8]:

3The matrix obtained by replacing the largest r eigenvalues
by their reciprocals and the remaining ones by 0s in its spectral
(or eigen) decomposition.

4Namely, we fit a hyperplane defined by Eq. (4) to N points
{ξα} in R9 so as to minimize the sum of the distances to the
points inversely weighted by their covariance matrices V0[ξα].
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1. Compute the following 9 × 9 matrix M̃ :

M̃ =
N∑

α=1

ξαξ>
α

(ũ, V0[ξα]ũ)
. (14)

2. Compute the normalized covariance matrix V0[ũ]
as follows:

V0[ũ] = M̃
−
8 . (15)

3. Update the solution ũ as follows5:

ũ ← N [ũ − 1
3

(ũ, ũ†)V0[ũ]ũ†

(ũ†, V0[ũ]ũ†)
]. (16)

4. If (ũ, ũ†) ≈ 0, return ũ and stop. Else, update the
normalized covariance matrix V0[ũ] in the form

P ũ = I − ũũ>, V0[ũ] ← P ũV0[ũ]P ũ, (17)

and go back to Step 3.
Explanation. Since ũ is a unit vector, its endpoint is
on the unit sphere S8 in R9. Eq. (16) is essentially the
Newton iteration formula for displacing ũ in the direc-
tion in the tangent space Tũ(S8) along which J is least
increased so that (ũ†, ũ) = 0 is satisfied. However, ũ
deviates from S8 by a small distance of high order as
it proceeds in Tũ(S8), so the operator N [ · ] pulls it
back onto S8. From that point, the same procedure is
repeated until (ũ†, ũ) = 0. Since the normalized co-
variance matrix V0[ũ] is defined in the tangent space
Tũ(S8), it changes as ũ moves. Eq. (17) corrects it
so that V0[ũ] has the domain Tũ(S8) at the displaced
point ũ. 2

FNS
First, we need to solve unconstrained minimiza-

tion of Eq. (13), for which several methods exist:
the FNS (Fundamental Numerical Scheme) of Choj-
nacki et al. [3], the HEIV (Heteroscedastic Errors-in-
Variable) of Leedan and Meer [11], and the projective
Gauss-Newton iterations of Kanatani and Sugaya [9].
Their convergence properties were studied in [9].

In our experiment, we used the FNS of Chojnacki
et al. [3]. This method is based on the fact that the
derivative of Eq. (13) with respect to u has the form

∇uJ = Xu, (18)

where X has the following form [3]:

X =
N∑

α=1

ξαξ>
α

(u,V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (19)

The procedure of FNS goes as follows [3, 9]:
1. Initialize u.
5ũ† means the operation of Eq. (8) applied to ũ.

2. Compute the matrix X in Eq. (19).
3. Solve the eigenvalue problem

Xu′ = λu′, (20)

and compute the unit eigenvector u′ for the small-
est eigenvalue6 λ.

4. If u′ ≈ u up to sign, return u′ and stop. Else, let
u ← u′ and go back to Step 2.

The resulting solution is then optimally corrected to
satisfy the rank constraint as described earlier.

Least squares (LS)
For computing the initial value for FNS, we use least

squares (LS), minimizing

JLS =
N∑

α=1

(u, ξα)2 = (u, MLSu), (21)

where

MLS =
N∑

α=1

ξαξ>
α . (22)

Equation (21) is minimized by the unit eigenvector of
MLS for the smallest eigenvalue. We could obtain a
more accurate solution using Taubin’s method [9], but
it requires more computation time.

4. Proposed Method

We now propose a new method for minimizing
Eq. (13) subject to the rank constraint, using the pa-
rameterization of Bartoli and Sturm [1].

Bundle adjustment
The fundamental matrix F has nine elements, on

which the normalization7 ‖F ‖ = 1 and the rank con-
straint detF = 0 are imposed. So, it has seven degrees
of freedom.

Many types of 7-degree parameterization have been
proposed in the past. Typical ones are based on
epipoles (e.g., [13, 15]), but the resulting expressions
are often complicated, and the geometric meaning of
the individual unknowns are not clear. This was over-
come by Bartoli and Sturm [1], who regarded the SVD
of F as its parameterization. Their expression is com-
pact, and each parameter has its geometric meaning.

However, they included, in addition to F , the 3-D
positions of the observed feature points, the relative
positions of the two cameras, and their intrinsic pa-
rameters as unknowns. Using assumed values, they

6Originally, the eigenvalue closest to 0 was chosen [3]. Later,
Chojnacki, et al. [5] pointed out that the choice of the smallest
eigenvalue improves the convergence. This was confirmed by the
experiments of Kanatani and Sugaya [9].

7The matrix norm is defined by ‖F‖ =

√∑3

i,j=1
F 2

ij . This

gives the same value as the vector norm ‖u‖ of the transformed
vector u in Eq. (2).
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computed tentative 3-D reconstruction and evaluated
the reprojection error. Then, they searched the high-
dimensional parameter space for the value that mini-
mizes the reprojection error. Since the tentative 3-D
reconstruction from two images is indeterminate, they
chose the one for which the first camera matrix is in a
particular form (“canonical form”).

From the underlying geometry, however, we can see
that the necessary and sufficient condition for the cor-
responding points {(xα, yα)} and {(x′

α, y′
α)} to be a

projection of “some” 3-D structure is the epipolar
equation of Eq. (1) for “some” F , and Eq. (12) de-
scribes the corresponding reprojection error. Hence,
bundle adjustment for minimizing the reprojection er-
ror by assuming “some” 3-D reconstruction is practi-
cally equivalent to minimize Eq. (12), so we need not
consider indeterminate 3-D reconstruction.

Here, using the parameterization of Bartoli and
Sturm [1], we directly minimize Eq. (13) by the
Levenberg-Marquard (LM) method.

SVD-based Lie algebraic method
The fundamental matrix F has rank 2, so its SVD

has the form8

F = Udiag(σ1, σ2, 0)V >, (23)

where U and V are orthogonal matrices, and σ1 and σ2

are the singular values. Since the normalization ‖F ‖ =
1 is equivalent to σ2

1 + σ2
2 = 1, we adopt the following

parameterization9:

σ1 = cos θ, σ2 = sin θ. (24)

The orthogonal matrices U and V have three degrees
of freedom each, so they and θ constitute the seven de-
grees of freedom. However, the analysis becomes com-
plicated if U and V are directly expressed in three
parameters each (e.g., the Euler angles or the rota-
tions around each coordinate axis). Following Bartoli
and Sturm [1], we adopt the “Lie algebraic method”:
we represent the “increment” in U and V by three
parameters each (also see [14]). Let ω1, ω2, and ω3

represent the increment in U , and ω′
1, ω′

2, and ω′
3 in

V . The derivatives of Eq. (13) with respect to them
are as follows (we omit the details):

∇ωJ = F>
UXu, ∇ω′J = F>

V Xu. (25)

8The symbol diag( · · · ) denotes the diagonal matrix with · · ·
as its diagonal elements in that order.

9Bartoli and Sturm [1] took the ratio γ = σ2/σ1 as a variable.
Here, we adopt the angle θ by retaining the symmetry. It has
the value π/4 (i.e., σ1 = σ2) if the principal point is at the origin
(0, 0) and if there are no image distortions [7, 8]. Since we take
the frame center to be the image origin, there is little danger of
σ1 or σ2 becoming 0.

Here, X is the matrix defined in Eq. (19), and the
matrices F U and F V are defined as follows:

F U ≡



0 F31 −F21

0 F32 −F22

0 F33 −F23

−F31 0 F11

−F32 0 F12

−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0


, (26)

F V ≡



0 F13 −F12

−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21

F22 −F21 0
0 F33 −F32

−F33 0 F31

F32 −F31 0


. (27)

The derivative of Eq. (13) with respect to θ is

∂J

∂θ
= (uθ, Xu), (28)

where we define

uθ ≡



σ1u12v12 − σ2u11v11

σ1u12v22 − σ2u11v21

σ1u12v32 − σ2u11v31

σ1u22v12 − σ2u21v11

σ1u22v22 − σ2u21v21

σ1u22v32 − σ2u21v31

σ1u32v12 − σ2u31v11

σ1u32v22 − σ2u31v21

σ1u32v32 − σ2u31v31


. (29)

Second derivatives are similarly computed. Adopting
Gauss-Newton approximation10, we obtain the follow-
ing (we omit the details):

∇2
ωJ = F>

UXF U , ∇2
ω′J = F>

V XF V , (30)

∇ωω′J = F>
UXF V ,

∂J2

∂θ2
= (uθ,Xuθ), (31)

∂∇ωJ

∂θ
= F>

UXuθ,
∂∇ω′J

∂θ
= F>

V Xuθ. (32)

Computational procedure
The LM procedure goes as follows:
1. Initialize F in such a way that detF =

0 and ‖F ‖ = 1, and express it as F =
Udiag(cos θ, sin θ, 0)V >.

2. Compute J in Eq. (13), and let c = 0.0001.
3. Compute F U , F V , and uθ in Eqs. (26), (27), and

(29).
10This amounts to ignoring terms involving (u, ξα).
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4. Compute X in Eq. (19), the first derivatives in
Eqs. (25) an (28), and the second derivatives in
Eqs. (30), (31), and (32).

5. Compute the following matrix H:

H =

 ∇2
ωJ ∇ωω′J ∂∇ωJ/∂θ

(∇ωω′J)> ∇2
ω′J ∂∇ω′J/∂θ

(∂∇ωJ/∂θ)> (∂∇ω′J/∂θ)> ∂J2/∂θ2

 .

(33)
6. Solve the 7-D simultaneous linear equations

(H + cD[H])

 ω
ω′

∆θ

 = −

 ∇ωJ
∇ω′J
∂J/∂θ

 , (34)

for ω, ω′, and ∆θ, where D[ · ] denotes the diago-
nal matrix obtained by taking out only the diag-
onal elements.

7. Update U , V , and θ by

U ′ = R(ω)U , V ′ = R(ω′)V , θ′ = θ + ∆θ,
(35)

where R(ω) denotes rotation around N [ω] by an-
gle ‖ω‖.

8. Update F as follows:

F ′ = U ′diag(cos θ′, sin θ′, 0)V ′>. (36)

9. Let J ′ be the value of Eq. (13) for F ′.
10. Unless J ′ < J or J ′ ≈ J , let c ← 10c, and go back

to Step 6.
11. If F ′ ≈ F , return F ′ and stop. Else, let F ← F ′,

U ← U ′, V ← V ′, θ ← θ′, and c ← c/10, and go
back to Step 3.

5. Experiments

Simulation setting
Figure 1 shows simulated images of two planar grid

surfaces viewed from different angles. The image size
is 600 × 600 pixels with 1200 pixel focal length. We
added random Gaussian noise of mean 0 and stan-
dard deviation σ to the x- and y-coordinates of each
grid point independently and from them computed the
fundamental matrix by 1) SVD-corrected LS, 2) SVD-
corrected ML, 3) CFNS, 4) optimally corrected ML,
and 5) the proposed method.

The CFNS is a method proposed by Chojnacki et
al. [4]. It modifies the matrix X in Eq. (19) in such
a way that the FNS iterations result in a minimizer of
Eq. (13) subject to the rank constraint.

All iterations are initialized by LS and stopped when
the update of F is less than 10−6 in norm.

Accuracy comparison
Figure 2 plots, for σ on the horizontal axis, the fol-

lowing root-mean-square (RMS) error D corresponding

Figure 1: Simulated images of planar grid surfaces.

 0

 0.1

 0.2

 0  1  2  3  4σ

1

2
3

4

5

Figure 2: RMS error for Fig. 1 vs. noise level. 1) SVD-
corrected LS. 2) SVD-corrected ML. 3) CFNS. 4) Optimally
corrected ML. 5) Proposed method. The dotted line indi-
cates the KCR lower bound.

to Eq. (7) over 10000 independent trials:

D =

√√√√ 1
10000

10000∑
a=1

‖P U û(a)‖2. (37)

Here, û(a) is the ath value, and P U is the projection
matrix defined by Eq. (10). The dotted line is the
bound implied by the KCR lower bound (the trace of
the right-hand side of Eq. (11)).

As we can see, SVD-corrected LS is inferior to SVD-
corrected ML. However, optimally corrected ML has
accuracy close to the KCR lower bound. The accuracy
of the proposed method is nearly the same as optimally
corrected ML when the noise is small but gradually
outperforms it as the noise increases.

The CFNS of Chojnacki et al. [4] performs only as
much as SVD-corrected ML over the entire range of σ.
They asserted superiority of CFNS to optimally cor-
rected ML by numerical examples [4], but Fig. 2 con-
tradicts their assertion. The reason for this is studied
in [10], so we do not go into the details here.

Execution time comparison
Figure 3 plots the execution time of optimally cor-

rected ML (dashed line) and the proposed method
(solid line); for each σ, we averaged over 10000 trials.
We used Core2Duo E6700 2.66GHz for the CPU with
4GB main memory and Linux for the OS. We conclude
that the proposed method is more efficient than opti-
mally corrected ML when the noise not so large. As
the noise increases, the search takes more time, making
optimally corrected ML more efficient in the end.

This is explained as follows. For optimally corrected
ML, we first need to compute unconstrained ML, which
requires eigenvalue computation of a 9 × 9 matrix in
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Figure 3: Execution time (including initialization) vs.
noise level. The dashed line is for the optimally corrected
ML; the solid line is for the proposed method.

each iteration step. We used FNS [3] for this, but the
situation is the same if we use the HEIV [11], the pro-
jective Gauss-Newton iterations [9], or renormalization
[8]. In contrast, the proposed method solves 7-D si-
multaneous linear equations in each iteration step, so
there is no need to compute eigenvalues or SVD except
in the initial step, resulting in high efficiency per step.
As the noise increases, however, the search requires
more steps, consuming longer time.

Real image experiments
We manually selected 100 pairs of corresponding

points in the two images in Fig. 4 and computed the
fundamental matrix from them. The final residual J
and the execution time (sec) are listed in Table 1.

We can see that optimally correction ML and the
proposed method converged to the same solution, while
SVD corrections of LS and ML resulted in different
values with higher residuals. For this data set, the
proposed method took longer time than optimally cor-
rected ML.

6. Conclusions

We presented a new method for computing the fun-
damental matrix from point correspondences over two
images11: we adopted the SVD representation of Bar-
toli and Sturm [1] and optimized it by LM. There is no
need for tentative 3-D reconstruction. We compared its
accuracy with the KCR lower bound by numerical ex-
periments (not all are shown here) and concluded that
our method is generally superior to optimally corrected
ML.
Acknowledgments: The authors thank Wojciech Choj-
nacki of the University of Adelaide, Australia for providing
software and having helpful discussions.
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