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Small Algorithm for Fundamental Matrix Computation
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Abstract A very small algorithm is presented for computing the fundamental matrix from point correspondences over two
images. The computation is based on the strict maximum likelihood (ML) principle, minimizing the reprojection error. The
rank constraint is incorporated by the EFNS procedure. Although our algorithm produces the same solution as all existing
ML-based methods, it is probably the smallest of all. By numerical experiments, we confirm that our algorithm behaves as
expected.

Keywords fundamental matrix, EFNS, maximum likelihood, reprojection error minimization

1. Introduction

Computing the fundamental matrix from point cor-
respondences is the first step of many vision applica-
tions including camera calibration, image rectification,
structure from motion, and new view generation [8, 20].
Although its robustness is critical in practice, proce-
dures for removing outlying matches heavily depend on
computation for assumed inliers, e.g., RANSAC-type
hypothesis-based computation followed by choosing the
solution that has maximum support [8, 20]. In this pa-
per, we focus on computation assuming inliers.

Since extracted feature points have uncertainty to
some degree, we need statistical optimization, modeling
the uncertainty as “noise” obeying a certain probability
distribution. The standard model is isotropic and iden-
tical Gaussian noise coupled with maximum likelihood
(ML) estimation. This results in the minimization of the
“reprojection error”, known as the “Gold Standard” [8].

Although all existing ML-based methods minimizes
the same function, vast differences exist in their com-
putational processes. This is mainly due to the fact
that the fundamental matrix is constrained to have rank
2. The strategies for incorporating this constraint are
roughly classified into three categories:
A posteriori correction. The fundamental matrix is

first computed without considering the rank con-
straint and is modified a posteriori so as to satisfy
it (Fig. 1(a)). If the rank constraint is not consid-
ered, the computation is vastly simplified [8, 20].
The crudest method, yet widely used, is to minimize
the square sum of the epipolar equation, called least
squares, algebraic distance minimization, or 8-point
algorithm [6]. The Taubin method [19] incorporates
the data covariance matrices in the simplest way.
These two yield the solution with simple algebraic
manipulations. For incorporating the ML view-
point, one needs iterations, for which many schemes
exist including FNS [3], HEIV [14], and the pro-
jective Gauss-Newton iterations [11]. For imposing

the rank constraint, the most naive method, yet
widely used, is to compute the SVD of the com-
puted fundamental matrix and replace the small-
est singular value by 0 [6]. A more sophisticated
method is the optimal correction [10, 15]: the com-
puted fundamental matrix is moved in the statis-
tically mostly likely direction until it satisfies the
rank constraint (Fig. 1(a)).

Internal access. The fundamental matrix is parame-
terized so that the rank constraint is identically sat-
isfied and is optimized in the (“internal”) parameter
space (Fig. 1(b)). Many types of such parameteri-
zation have been proposed including algebraic elim-
ination of the rank constraint and the expression in
terms of epipoles [20, 16, 21]. Bartoli and Sturm
[1] regarded the SVD of the fundamental matrix
as its parameterization and do search in an aug-
mented space. Sugaya and Kanatani [17] directly
searched a 7-D space by the Levenberg-Marquardt
(LM) method.

External access. We do iterations in the (“external”)
9-D space of the fundamental matrix in such a way
that an optimal solution that satisfies the rank con-
straint automatically results (Fig. 1(c)). This con-
cept was first introduced by Chojnacki et al. [4],
who presented a scheme called CFNS .

In this paper, we present a new method based on the
external access principle. Its description is far shorter
than any of existing ML-based methods, yet produces
the same solution. Although there is no accuracy gain,
since all ML-based methods minimize the same function,
the smallness of the algorithm is of great advantage. In
fact, the reason the non-optimal 8-point algorithm [6]
is still widely used is probably for the complication of
the program. Our algorithm is small enough to code
oneself1.

We describe our algorithm in Sec. 2 and give a deriva-

1But one can try ours if one wishes. See:
http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html
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Figure 1: (a) A posteriori correction. (b) Internal access. (c) External access.

tion in Sec. 3. In Sec. 4, we confirm its performance by
numerical experiments. We conclude in Sec. 5.

2. Fundamental Matrix Computation

Given two images of the same scene, suppose a point
(x, y) in the first image corresponds to (x′, y′) in the
second. We represent the corresponding points by 3-D
vectors

x =

 x/f0

y/f0

1

 , x′ =

 x′/f0

y′/f0

1

 , (1)

where f0 is a scaling constant of the order of the image
size2. As is well known, x and x′ satisfy the epipolar
equation,

(x,Fx′) = 0, (2)

where and hereafter we denote the inner product of vec-
tors a and b by (a, b). The matrix F is of rank 2 and
called the fundamental matrix . Since its scale is inde-
terminate, we normalize it to unit Frobenius norm ‖F ‖
= 1.

Suppose we detect N correspondence pairs {xα,
x′

α}N
α=1. If we assume that the noise in their x- and

y-coordinates is independent, isotropic, and identical
Gaussian noise, maximum likelihood (ML) is equivalent
to minimizing the reprojection error

E =
N∑

α=1

(
‖xα − x̄α‖2 + ‖x′

α − x̄′
α‖2

)
, (3)

with respect to x̄α, x̄′
α, and F subject to

(x̄α, F x̄′
α) = 0, α = 1, ..., N. (4)

So far, no simple procedure existed for minimizing
(3) subject to (4) and the rank constraint on F . Many
researchers minimized the “Sampson error” (to be dis-
cussed later) that approximates (3) [8, 20]. Alterna-
tively, the minimization is done in an “augmented” pa-
rameter space, as done by Bartoli and Sturm [1], com-
puting tentative 3-D reconstruction and adjusting the
reconstructed shape, the camera positions, and the in-
trinsic parameters so that the resulting projection im-
ages are as close to the input images as possible. Such

2This is for stabilizing numerical computation [6]. In our ex-
periments, we set f0 = 600 pixels.

a strategy is called bundle adjustment . Search in a high
dimensional space, in particular if one wants a globally
optimal solution, requires a large amount of computa-
tion [7, 9].

We now present a dramatically compact formulation.
We define 9-D vectors

u =



F11

F12

F13

F21

F22

F23

F31

F32

F33


, u† ≡ N [



u5u9 − u8u6

u6u7 − u9u4

u4u8 − u7u5

u8u3 − u2u9

u9u1 − u3u7

u7u2 − u1u8

u2u6 − u5u3

u3u4 − u6u1

u1u5 − u4u2


], (5)

where N [ · ] denotes normalization to unit norm. The
vector u encodes the nine elements of the fundamental
matrix F . The normalization ‖F ‖ = 1 is equivalent to
‖u‖ = 1. The vector u† encodes the nine elements of the
cofactor F † of F , so we call u† the “cofactor vector” of
u. We denote by “detu” the determinant of the matrix
F corresponding to u. Throughout this paper, we define
the 3×3 projection matrix P k along k (≡ (0, 0, 1)>) and
the 9 × 9 projection matrix P u† along u† by

P k ≡ I−kk>(= diag(1, 1, 0)), P u† ≡ I−u†u†>. (6)

In order to emphasize the smallness of our algorithm,
we state it first and then give its derivation, which is
straightforward but rather lengthy. The main routine
of our algorithm goes as follows:
main
1. Let u0 = 0, and initialize u.
2. Let x̂α = xα, ŷα = yα, x̂′

α = x′
α, ŷ′

α = y′
α, and x̃α

= ỹα = x̃′
α = ỹ′

α = 0.
3. Compute the following 9-D vectors ξα and the 9×9

matrices V0[ξα]:

ξα =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f0(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f0(ŷα + ỹα)
f0(x̂

′
α + x̃′

α)
f0(ŷ

′
α + ỹ′

α)
f2
0


, (7)
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V0[ξα] =



x̂2
α + x̂′2

α x̂′
αŷ′

α f0x̂
′
α x̂αŷα

x̂′
αŷ′

α x̂2
α + ŷ′2

α f0ŷ
′
α 0

f0x̂
′
α f0ŷ

′
α f2

0 0
x̂αŷα 0 0 ŷ2

α + x̂′2
α

0 x̂αŷα 0 x̂′
αŷ′

α

0 0 0 f0x̂
′
α

f0x̂α 0 0 f0ŷα

0 f0x̂α 0 0
0 0 0 0

0 0 f0x̂α 0 0
x̂αŷα 0 0 f0x̂α 0

0 0 0 0 0
x̂′

αŷ′
α f0x̂

′
α f0ŷα 0 0

ŷ2
α + ŷ′2

α f0ŷ
′
α 0 f0ŷα 0

f0ŷ
′
α f2

0 0 0 0
0 0 f2

0 0 0
f0ŷα 0 0 f2

0 0
0 0 0 0 0


. (8)

4. Call EFNS to update u.
5. If u ≈ u0 up to sign, return u and stop. Else,

update x̃α, ỹα, x̃′
α, and ỹ′

α by(
x̃α

ỹα

)
← (u, ξα)

(u, V [ξ̂α]u)

(
u1 u2 u3

u4 u5 u6

)(
x̂′

α

ŷ′
α

f0

)
,

(
x̃′

α

ỹ′
α

)
← (u, ξα)

(u, V [ξ̂α]u)

(
u1 u4 u7

u2 u5 u8

)(
x̂α

ŷα

f0

)
. (9)

6. Go back to Step 3 after the following update:

u0 ← u, x̂α ← xα − x̃α, ŷα ← yα − ỹα,

x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α. (10)

The initialization in Step 1 can be done by least squres
(Appendix A) or the Taubin method (Appendix B). The
EFNS routine in Step 4 goes as follows:
EFNS
1. Compute the following 9 × 9 matrices M and L:

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

.

(11)
2. Compute the cofactor vector u† in (5) and the pro-

jection matrix P u† in (6).
3. Compute the following 9 × 9 matrices:

X = M − L, Y = P u†XP u† . (12)

4. Compute the two unit eigenvectors v1 and v2 of Y
for the smallest eigenvalues in absolute values, and
compute

û = (u,v1)v1 + (u, v2)v2. (13)

5. Compute
u′ = N [P u†û]. (14)

6. If u′ ≈ u up to sign, return u′ and stop. Else, let
u ← N [u + u′] and go back to Step 1.

3. Derivation

3.1 Derivation of the Main Routine

First Approximation. We want to compute x̄α and
x̄′

α that minimize (3) subject to (4), but we may alter-
natively write

x̄α = xα − ∆xα, x̄′
α = x′

α − ∆x′
α, (15)

and determine the correction terms ∆xα and ∆x′
α. Sub-

stituting (15) into (4), we have

E =
N∑

α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)
. (16)

The epipolar equation (4) becomes

(xα − ∆xα, F (x′
α − ∆x′

α)) = 0. (17)

Ignoring the second order term in the correction terms,
we obtain

(Fx′
α,∆xα) + (F>xα,∆x′

α) = (xα, Fx′
α). (18)

Since the correction should be done in the image plane,
we have the constraints

(k, ∆xα) = 0, (k, ∆x′
α) = 0. (19)

Recall that k ≡ (0, 0, 1)>. Introducing Lagrange multi-
pliers for (18) and (19), we obtain ∆xα and ∆x′

α that
minimize (16) as follows (Appendix C):

∆xα =
(xα, Fx′

α)P kFx′
α

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
,

∆x′
α =

(xα, Fx′
α)P kF>xα

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
. (20)

Substituting (20) into (16), we obtain (Appendix D)

E =
N∑

α=1

(xα, Fx′
α)2

(Fx′
α,P kFx′

α) + (F>xα, P kF>xα)
, (21)

which is known as the Sampson error [8]. Suppose we
have obtained the matrix F that minimizes (21) subject
to detF = 0. Writing it as F̂ and substituting it into
(15), we obtain

x̂α =xα−
(xα, F̂ x′

α)P kF̂ x′
α

(F̂ x′
α, P kF̂ x′

α)+(F̂
>

xα, P kF̂
>

xα)
,

x̂′
α =x′

α−
(xα, F̂ x′

α)P kF̂
>

xα

(F̂ x′
α, P kF̂ x′

α)+(F̂
>

xα, P kF̂
>

xα)
.(22)

Higher Order Correction. The solution (22) is only
a first approximation. So, we estimate the true solution
x̄α and x̄′

α by writing, instead of (15),

x̄α = x̂α − ∆x̂α, x̄′
α = x̂′

α − ∆x̂′
α, (23)
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and computing the correction terms ∆x̂α and ∆x̂′
α,

which are small quantities of higher order than ∆xα

and ∆x′
α. Substitution of (23) into (3) yields

E =
N∑

α=1

(
‖x̃α + ∆x̂α‖2 + ‖x̃′

α + ∆x̂′
α‖2

)
, (24)

where we define

x̃α = xα − x̂α, x̃′
α = x′

α − x̂′
α. (25)

The epipolar equation (4) now becomes

(x̂α − ∆x̂α, F (x̂′
α − ∆x̂′

α)) = 0. (26)

Ignoring second order term in ∆x̂α and ∆x̂′
α, we have

(F x̂′
α, ∆x̂α) + (F>x̂α, ∆x̂′

α) = (x̂α, F x̂′
α). (27)

This is a higher order approximation of (4) than (18).
Introducing Lagrange multipliers to (27) and the con-
straints

(k,∆x̂α) = 0, (k,∆x̂′
α) = 0, (28)

we obtain ∆x̂α and ∆x̂′
α as follows (Appendix E):

∆x̂α =

(
(x̂α, F x̂′

α)+(F x̂′
α, x̃α)+(F>x̂α, x̃′

α)
)
P kF x̂′

α

(F x̂′
α, P kF x̂′

α) + (F>x̂α,P kF>x̂α)
−x̃α,

∆x̂′
α =

(
(x̂α, F x̂′

α)+(F x̂′
α, x̃α)+(F>x̂α, x̃′

α)
)
P kF>x̂α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
−x̃′

α. (29)

On substation of this, the reprojection error (24) now
has the following form (Appendix F):

E =
N∑

α=1

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)2

(F x̂′
α, P kF x̂′

α) + (F>x̂α,P kF>x̂α)
.

(30)
Suppose we have obtained the matrix F that minimizes
this subject to det F = 0. Writing it as F̂ and substi-
tuting it into (29), we obtain from (25) the solution

ˆ̂xα =xα−

(
(x̂α,F̂ x̂′

α)+(F̂ x̂′
α,x̃α)+(F̂>x̂α,x̃′

α)
)
P kF̂ x̂′

α

(F̂ x̂′
α, P kF̂ x̂′

α) + (F̂>x̂α, P kF̂>x̂α)
,

ˆ̂x
′
α =x′

α−

(
(x̂α,F̂ x̂′

α)+(F̂ x̂′
α,x̃α)+(F̂>x̂α,x̃′

α)
)
P kF̂>x̂α

(F̂ x̂′
α, P kF̂ x̂′

α) + (F̂>x̂α, P kF̂>x̂α)
.

(31)

The resulting { ˆ̂xα, ˆ̂x
′
α} are a better approximation than

{x̂α, x̂′
α}. Rewriting { ˆ̂xα, ˆ̂x

′
α} as {x̂α, x̂′

α}, we repeat
this until the iterations converge. In the end, ∆x̂α and

∆x̂′
α in (26) become 0, and the epipolar equation is

exactly satisfied.

Compact Description. The above algorithm is
greatly simplified by using the 9-D vector encoding of
(5). The definition of ξα in (7) and V0[ξα] in (8) implies
the following identities:

(x̂α, F̂ x̂′
α) + (F̂ x̂′

α, x̃α) + (F̂>x̂α, x̃′
α) =

(u, ξα)
f2
0

,

(F̂ x′
α, P kF̂ x′

α) + (F̂>xα, P kF̂>xα) =
(u, V0[ξα]u)

f2
0

.

(32)
Since we define x̃α and x̃′

α by (25), we obtain from (31)
the update form in (9). If we let x̂α = xα, ŷα = yα,
x̂′

α = x′
α, ŷ′

α = y′
α, and x̃α = ỹα = x̃′

α = ỹ′
α = 0, as in

the Step 2 of the main routine, the update form (9) is
equivalent to (22). Thus, the main routine is completed
except Step 4, where we need to minimize (21) and (30)
subject to det F = 0.

3.2 Derivation of EFNS

Problem. Using the identities (32), we can rewrite (30)
as

E =
1
f2
0

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (33)

If we let x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α =
ỹα = x̃′

α = ỹ′
α = 0, as in the Step 2 of the main routine,

this reduces to the Sampson error in (21). The problem
is to minimize (33) subject to det u = 0.

Geometry. The necessary and sufficient condition for
E to be stationary at a point u on the 8-D unit sphere
S8 in R9 is that its gradient ∇uE is orthogonal to the
hypersurface defined by detu = 0. Direct manipulation
shows

u† = N [∇u det u]. (34)

In other words, u† is the unit surface normal to the hy-
persurface defined by detu = 0. It follows that ∇uE
should be parallel to the cofactor vector u† at the sta-
tionary point. Differentiating (33) with respect to u, we
see that

∇uE =
2
f2
0

Xu, (35)

where X is the matrix in (12). Using the projection
matrix P u† in (6), we can express the parallelism of
∇uE and u† as

P u†Xu = 0. (36)

The rank constraint det u = 0 is equivalently written as

(u†, u) = 0, (37)

which is a direct consequence of the identity F †F =
(detF )I. In terms of the projection matrix P u† , the
rank constraint (37) is equivalently written as

P u†u = u. (38)
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It follows that the stationarity condition (36) is written
as

Y u = 0, (39)

where Y is the matrix defined in (12). Our task is to
compute the solution u that satisfies the stationarity
condition (39) and the rank constraint (38).

Justification of the Procedure. We now show that
the desired solution can be obtained by the EFNS rou-
tine in Sec. 2. To see this, we show that when the it-
erations have converged, the eigenvectors v1 and v2 of
Y both have eigenvalue 0. From the definition of Y in
(12) and P u† in (6), the cofactor vector u† is always an
eigenvector of Y with eigenvalue 0. This means that ei-
ther v1 or v2 has eigenvalue 0. Suppose one, say v1, has
nonzero eigenvalue λ ( 6= 0). Then, v2 = ±u†. By con-
struction, the vector û in (13) belongs to the linear span
of v1 and v2 (= ±u†), which are mutually orthogonal,
and the vector u′ in (14) is a projection of û within that
linear span onto the direction orthogonal to u†. Hence,
u′ should coincide with ±v1. After the iterations have
converged, we have u = u′ (= ±v1), so u is an eigen-
vector of Y with eigenvalue λ, i.e., Y u = λu. Taking
the inner product with u on both sides, we have

(u, Y u) = λ. (40)

On the other hand, u (= ±v1) is orthogonal to the co-
factor vector u† (= ±v2), so P u†u = u. Hence,

(u, Y u) = (u, P u†XP u†u) = (u, Xu) = 0, (41)

because from the definition of X in (12) we see that
(u,Xu) = 0 is an identity in u. In fact, we can confirm
from the definition of M and L in (11) that (u, Mu)
= (u, Lu) holds identically in u. Since (40) and (41)
contradict our assumption that λ 6= 0, v1 is also an
eigenvector of Y with eigenvalue 0. Thus, (38) and (39)
both hold, so u is the desired solution.

Observations. The EFNS was first introduced by
Kanatani and Sugaya [12] as a general constrained pa-
rameter estimation in abstract terms. It is a straight-
forward extension of the FNS of Chojnacki et al. [3]
(Appendix G) to include an arbitrary number of addi-
tional constraints. In fact, if we replace P u† in (12)
by the identity I, the resulting procedure is identical to
FNS. For this reason, Kanatani and Sugaya [12] called
it EFNS (Extended FNS ). They applied it to minimiza-
tion of the Sampson error (21) and pointed out that the
CFNS of Chojnacki et al. [4] does not necessarily con-
verge to a correct solution while EFNS does. Our new
finding here is that it can also be used for strict ML
(minimization of the reprojection error) if we introduce
the new intermediate variables ξα and V0[ξα] as in (7)
and (8).

The justification described earlier relies on the
premise that the iterations converge. As pointed in [12],

Figure 2: Simulated images of planar grid surfaces.
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Figure 3: The RMS error vs. noise level σ. Solid line: our
algorithm. Dashed line: the alternative method. Chained
line: the 8-point algorithm. Dotted line: KCR lower bound.

if we let u ← u′ in the Step 6 of the EFNS routine,
the next value of u′ computed in Step 5 often reverts
to the former value of u, falling in infinite looping. So,
the “midpoint” (u′+u)/2 is normalized to a unit vector
N [u′ + u]. This greatly improves convergence. In fact,
we have confirmed that this technique also improves the
convergence of FNS, which sometimes oscillates in the
presence of very large noise.

Since our algorithm is based on local update, the re-
sulting solution may, theoretically, not be a global min-
imum of the reprojection error (3). According to our
many experiments, however, we have never encountered
a local minimum. We show a typical example in the
following.

4. Performance Confirmation

Figure 2 shows simulated images of two planar grid
surfaces. The image size is 600 × 600 pixels with 1200
pixel focal length. We added random Gaussian noise
of mean 0 and standard deviation σ to the x- and y-
coordinates of each grid point independently and from
them computed the fundamental matrix.

Since all existing ML-based methods minimize the
same reprojection error, their mutual accuracy compar-
ison does not make much sense. Rather, our concern
is if our algorithm really converges to a correct solu-
tion. To see this, we compare our algorithm with a
carefully tuned alternative method. We compute an ini-
tial solution by least squares, from which we start the
FNS of Chojnacki et al. [3], and the resulting solution is
optimally corrected to satisfy the rank constraint (Ap-
pendix H). From it, we start a direct 7-D search, using
the Levenberg-Marquardt (LM) method [17, 18].

Figure 3 plots, for each σ, the RMS of ‖P U û‖ for
the computed solution û over 10000 independent trials
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Figure 4: Simulated images of spherical grid surfaces.
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Figure 5: The RMS error vs. noise level σ. Solid line: our
algorithm. Dashed line: the alternative method. Chained
line: the 8-point algorithm. Dotted line: KCR lower bound.

with different noise, where P U (≡ I − uu> − u†u†>)
denotes projection onto the space of deviations from the
true solution u and the rank constraint detu = 0. Our
algorithm was initialized by least squares. As a refer-
ence, the chained line shows the corresponding result of
the 8-point algorithm (least squares followed by SVD
rank correction) [6], and the dotted line indicates the
theoretical accuracy limit (KCR lower bound) [2, 10].

From Fig. 3, we see that the solid line (our algorithm)
and the dashed line (the alternative method) completely
coincide, indicating that the same solution is reached
although their paths of approach may be very different
(Fig. 1). We also see that the accuracy almost coincides
with the theoretical limit, so no further improvement is
hoped for. As predicted, the 8-point algorithm performs
poorly.

Figure 4 shows simulated images (600 × 600 pixels)
of a spherical grid surface viewed from different angles.
We added random Gaussian noise of mean 0 and stan-
dard deviation σ to the x- and y-coordinates of each
grid point independently and from them computed the
fundamental matrix. Figure 5 plots the RMS error over
10000 trials corresponding to Fig. 3. Predictably, the
8-point algorithm performs very poorly, and the result
of our algorithm (solid line) completely coincides with
that of the alternative method (dashed line); the accu-
racy almost reaches the theoretical limit.

Doing many experiments (not all shown here), we ob-
served the following:

1. The main routine converges after a few (at most
four) iterations.

2. If we stop at Step 4 in the initial round without
doing any further iterations, we obtain the Samp-
son solution. Yet, it coincides with the final (strict
ML) solution up to three to four decimal places.

The high accuracy of the Sampson solution, which
was also noted by Zhang [20], is contrary to the
prevalent view [5, 8] that the Sampson solution is
inferior to strict ML.

3. If initialized by least squares, the 7-D search does
not necessarily arrive at the true minimum of the
reprojection error, being trapped to local minima,
as reported in [18]. After a careful tuning as de-
scribed above, the solution coincides with our algo-
rithm, which directly arrives at the same solution
without any such tuning.

5. Concluding Remarks

We have presented a very small algorithm for comput-
ing the fundamental matrix from point correspondences
over two images based on the strict ML principle using
the EFNS procedure. By numerical experiments, we
have confirmed that our algorithm behaves satisfacto-
rily. We expect it to be a standard tool for fundamental
matrix computation.

References
[1] Bartoli, A., Sturm, P.: Nonlinear estimation of funda-

mental matrix with minimal parameters, IEEE Trans.
Patt. Anal. Mach. Intell. 26(3), 426–432 (2004)

[2] Chernov, N., Lesort, C.: Statistical efficiency of curve
fitting algorithms, Comp. Stat. Data Anal. 47(4), 713–
728 (2004)

[3] Chojnacki, W., Brooks, M.J., van den Hengel, A., Gaw-
ley, D.: On the fitting of surfaces to data with covari-
ances, IEEE Trans. Patt. Anal. Mach. Intell. 22(11),
1294–1303 (2000)

[4] Chojnacki, W., Brooks, M.J., van den Hengel, A., D.
Gawley, D.: A new constrained parameter estimator
for computer vision applications, Image Vis. Comput.
22(2), 85–91 (2004)

[5] Harker, M., O’Leary, P.: First order geometric distance
(The myth of Sampsonus), In: Proc. 17th Brit. Mach.
Vis. Conf., September 2006, vol. 1, pp. 87–96 (2006).

[6] Hartley, R.I.: In defense of the eight-point algorithm,
IEEE Trans. Patt. Anal. Mach. Intell. 19(6), 580–593
(1997)

[7] Hartley, R., Kahl, F.: Optimal algorithms in multiview
geometry, In: Proc. 8th Asian Conf. Comput. Vision,
Tokyo, Japan, November 2007, vol. 1, pp. 13–34 (2007).

[8] Hartley, R., Zisserman, A.: Multiple View Geometry in
Computer Vision. Cambridge University Press, Cam-
bridge (2000)

[9] Kahl, F., Henrion, D.: Globally optimal estimates for
geometric reconstruction problems, Int. J. Comput. Vis.
74(1), 3–15 (2007)

[10] Kanatani, K.: Statistical Optimization for Geometric
Computation: Theory and Practice. Elsevier Science,
Amsterdam, The Netherlands, 1996; reprinted, Dover,
New York (2005)

[11] Kanatani, K., Sugaya, Y.: High accuracy fundamen-
tal matrix computation and its performance evaluation,
IEICE Trans. Information and Systems, E90-D(2), 579–
585 (2007)

[12] Kanatani, K., Sugaya, Y.: Extended FNS for con-
strained parameter estimation, In: Proc. 10th Meeting

952



Image Recognition Understanding, Hiroshima, Japan,
July 2007, pp. 219–226 (2007)

[13] K. Kanatani, K., Sugaya, Y.: Performance evaluation
of iterative geometric fitting algorithms, Comp. Stat.
Data Anal., 52(2), 1208–1222 (2007)

[14] Leedan, Y., Meer, P.: Heteroscedastic regression in
computer vision: Problems with bilinear constraint, Int.
J. Comput. Vis. 37(2), 127–150 (June)

[15] Matei, J., Meer, P.: Estimation of nonlinear errors-
in-variables models for computer vision applications,
IEEE Trans. Patt. Anal. Mach. Intell. 28(10), 1537–
1552 (2006)

[16] Migita, T., Shakunaga, T.: One-dimensional search for
reliable epipole estimation, In: Proc. IEEE Pacific Rim
Symp. Image Video Tech., Hsinchu, Taiwan, December
2006 pp. 1215–1224 (2006)

[17] Sugaya, Y., Kanatani, K.: High accuracy computation
of rank-constrained fundamental matrix, In: Proc. 18th
British Mach. Vis. Conf., September 2007, vol. 1, pp.
282–291 (2007)

[18] Sugaya, Y., Kanatani, K.: Highest accuracy fundamen-
tal matrix computation, Proc. 8th Asian Conf. Comput.
Vis., Tokyo, Japan, November 2008, vol. 2, pp. 311–321
(2008)

[19] Taubin, G.: Estimation of planar curves, surfaces, and
non-planar space curves defined by implicit equations
with applications to edge and range image segmen-
tation, IEEE Trans. Patt. Anal. Mach. Intell. 13(11),
1115–1138 (1991)

[20] Zhang, Z.: Determining the epipolar geometry and its
uncertainty: A review, Int. J. Comput. Vis. 27(2), 161–
195 (1998)

[21] Zhang, Z., Loop, C.: Estimating the fundamental ma-
trix by transforming image points in projective space,
Comput. Vis. Image Understand. 82(2), 174–180 (2001)

Appendix

A. Least Squares

We minimize

JLS =

N∑
α=1

(u, ξα)2 = (u, MLSu), (42)

where we define

MLS =

N∑
α=1

ξαξ>
α . (43)

The function JLS can be minimized by the unit eigenvector
of MLS for the smallest eigenvalue. Alternatively, we can
compute the SVD of the matrix

(
ξ1 · · · ξN

)
.

B. Taubin Method

Replacing the denominators in (33) by their average, we
minimize

JTB =

∑N

α=1
(u, ξα)2∑N

α=1
(u, V0[ξα]u)

=
(u, MLSu)

(u, NTBu)
, (44)

where we define

NTB ≡
N∑

α=1

V0[ξα]. (45)

The function JTB is minimized by solving the generalized
eigenvalue problem

MLSu = λNTBu (46)

for the smallest generalized eigenvalue. However, we cannot
directly solve this, because NTB is not positive definite. So,
we decompose ξα, u, and V0[ξα] in the form

ξα =

(
zα

f2
0

)
, u =

(
v

F33

)
,

V0[ξα] =

(
V0[zα] 0

0> 0

)
. (47)

and define 8 × 8 matrices M̃TB and ÑTB

M̃TB =

N∑
α=1

z̃αz̃>
α , ÑTB =

N∑
α=1

V0[zα], (48)

where

z̃α = zα − z̄, z̄ =
1

N

N∑
α=1

zα. (49)

Then, (46) splits into two equations

M̃TBv = λÑTBv, (v, z̄) + f2
0 F33 = 0. (50)

We compute the unit generalized eigenvector v of the first
equation for the smallest generalized eigenvalue λ. The sec-
ond equation gives F33, and u is given by

u = N
[(

v
F33

)]
. (51)

C. Derivation of (20)

Introducing Lagrange multipliers λα, µα, and µ′
α for the

constraints of (18) and (19) to (16), we let the derivatives of

N∑
α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)
−

N∑
α=1

λα

(
(Fx′

α, ∆xα)

+(F >xα, ∆x′
α)

)
−

N∑
α=1

µα(k, ∆xα)−
N∑

α=1

µ′
α(k, ∆x′

α), (52)

with respect to ∆xα and ∆x′
α be 0, we have

2∆xα−λαFx′
α−µαk=0, 2∆x′

α−λαF >xα−µ′
αk=0. (53)

Multiplying the projection matrix P k in (6) on both sides
from left and noting that P k∆xα = ∆xα, P k∆x′

α = ∆x′
α,

and P kk = 0, we have

2∆xα−λαP kFx′
α =0, 2∆x′

α−λαP kF >xα =0. (54)

Hence, we obtain

∆xα =
λα

2
P kFx′

α, ∆x′
α =

λα

2
P kF >xα. (55)

Substituting these into (18), we have

(Fx′
α,

λα

2
P kFx′

α)+(F >xα,
λα

2
P kF >xα)=(xα, Fx′

α), (56)

and hence

λα

2
=

(xα, Fx′
α)

(Fx′
α, P kFx′

α) + (F >xα, P kF >xα)
. (57)

Substituting this into (55), we obtain (20).
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D. Derivation of (21)

If we substitute (20) into (16), the reprojection error E
becomes

N∑
α=1

(∥∥∥ (xα, Fx′
α)P kFx′

α

(x′
α, F >P kFx′

α) + (xα, FP kF >xα)

∥∥∥2

+

∥∥∥ (xα, Fx′
α)P kF >xα

(x′
α, F >P kFx′

α) + (xα, FP kF >xα)

∥∥∥2)
=

N∑
α=1

(xα, Fx′
α)2(‖P kFx′

α‖2 + ‖P kF >xα‖2)(
(Fx′

α, P kFx′
α) + (F >xα, P kF >xα)

)2

=

N∑
α=1

(xα, Fx′
α)2

(Fx′
α, P kFx′

α) + (F >xα, P kF >xα)
, (58)

where we have noted due to the identity P 2
k = P k

that ‖P kFx′
α‖2 = (P kFx′

α, P kFx′
α) = (Fx′

α, P 2
kFx′

α)
= (Fx′

α, P kFx′
α). Similarly, we have ‖P kF >xα‖2 =

(F >xα, P kF >xα).

E. Derivation of (29)

Introducing Lagrange multipliers λα, µα, and µ′
α for the

constraints of (27) and (28) to (24), we let the derivatives of

N∑
α=1

(
‖x̃α+∆x̂α‖2+‖x̃′

α+∆x̂′
α‖2

)
−

N∑
α=1

λα

(
(F x̂′

α, ∆x̂α)

+(F >x̂α, ∆x̂′
α)

)
−

N∑
α=1

µα(k, ∆x̂α)−
N∑

α=1

µ′
α(k, ∆x̂′

α), (59)

with respect to ∆x̂α and ∆x̂′
α be 0, we have

2(x̃α + ∆x̂α) − λαF x̂′
α − µαk = 0,

2(x̃′
α + ∆x̂′

α) − λαF >x̂α − µ′
αk = 0. (60)

Multiplying P k on both sides from left, we have

2x̃α + 2∆x̂α − λαP kF x̂′
α = 0,

2x̃α + 2∆x̂′
α − λαP kF >x̂α = 0. (61)

Hence, we have

∆x̂α =
λα

2
P kF x̂′

α−x̃α, ∆x̂′
α =

λα

2
P kF >x̂α−x̃′

α. (62)

Substituting these into (27), we obtain

(F x̂′
α,

λα

2
P kF x̂′

α − x̃α) + (F >x̂α,
λα

2
P kF >x̂α − x̃′

α)

= (x̂α, F x̂′
α), (63)

and hence

λα

2
=

(x̂α, F x̂′
α) + (F x̂′

α, x̃α) + (F >x̂α, x̃′
α)

(F x̂′
α, P kF x̂′

α) + (F >x̂α, P kF >x̂α)
. (64)

Substituting this into (62), we obtain (29).

F. Derivation of (30)

If we substitute (29) into (24), the reprojection error E
becomes

N∑
α=1

(∥∥∥
(
(x̂α, F x̂′

α)+(F x̂′
α, x̃α)+(F >x̂α, x̃′

α)
)
P kF x̂′

α

(F x̂′
α, P kF x̂′

α)+(F >x̂α, P kF >x̂α)

∥∥∥2

+

∥∥∥
(
(x̂α, F x̂′

α)+(F x̂′
α, x̃α)+(F >x̂α, x̃′

α)
)
P kF >x̂α

(F x̂′
α, P kF x̂′

α)+(F >x̂α, P kF >x̂α)

∥∥∥2)
=

N∑
α=1

(
(x̂α, F x̂′

α)+(F x̂′
α, x̃α)+(F >x̂α, x̃′

α)
)2(

‖P kF x̂′
α‖2

+‖P kF >x̂α‖2
)/(

(F x̂′
α, P kF x̂′

α)+(F >x̂α, P kF >x̂α)
)2

=

N∑
α=1

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F >x̂α, x̃′

α)
)2

(F x̂′
α, P kF x̂′

α) + (F >x̂α, P kF >x̂α)
. (65)

G. FNS

The FNS (Fundamental Numerical Scheme) of Chojnacki
et al. [3] is based on the fact that the derivative of (33) with
respect to u has the form

∇uE =
2

f2
0

Xu, (66)

where X is the matrix in (12). The FNS solves

Xu = 0. (67)

by the following iterations:

1. Initialize u.
2. Compute the matrix X in (12).
3. Solve the eigenvalue problem

Xu′ = λu′, (68)

and compute the unit eigenvector u′ for the smallest
eigenvalue λ.

4. If u′ ≈ u up to sign, return u′ and stop. Else, let u ←
u′ and go back to Step 2.

H. Optimal Correction

The fundamental matrix F computed without considering
the rank constraint is moved in the statistically mostly likely
direction until it satisfies the rank constraint. The procedure
goes as follows:

1. Compute the matrix M in (11) and the matrix V0[u]
by

V0[u] = M−
8 . (69)

2. Update u as follows3:

u ← N [u − 1

3

(u, u†)V0[u]u†

(u†, V0[u]u†)
]. (70)

3. If (u, u†) ≈ 0, return u and stop. Else, update the
matrix V0[u] in the form

V0[u] ← P uV0[u]P u , (71)

and go back to Step 3.

3Recall that u† is the cofactor vector of u. Note that det F =
(u, u†)/3.
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