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Renormalization for Motion Analysis:
Statistically Optimal Algorithm

SUMMARY Introducing a general statistical model of image
noise, we present an optimal algorithm for computing 3-D mo-
tion from two views without involving numerical search: (i) the
essential matrix is computed by a scheme called renormalization;
(ii) the decomposability condition is optimally imposed on it so
that it exactly decomposes into motion parameters; (iii) image
feature points are optimally corrected so that they define their
3-D depths. Our scheme not only produces a statistically optimal
solution but also evaluates the reliability of the computed motion
parameters and reconstructed points in quantitative terms.

key words: error analysis, motion analysis, optimal estimation,
renormalization, 3-D reconstruction

1. Introduction

The study of 3-D rigid motion estimation from images,
known as structure from motion, was initiated by Ull-
man [9], and an analytical solution for eight feature
points was independently given by Longuet-Higgins [6]
and Tsai and Huang[8]. Their algorithms are con-
structed on the assumption that all data are exact. Vari-
ous types of statistical optimization for noisy data have
been proposed by Weng et al.[10],[11]. Also, many
other approaches have been proposed, each emphasiz-
ing different aspects[2],[4],[7].

In this paper, a general model of image noise is
introduced, and a statistically optimal criterion is es-
tablished for motion estimation. First, the statistical
behavior of the theoretically optimal solution is ana-
lyzed, providing a theoretical bound on accuracy. Then,
we construct a scheme for computing the optimal solu-
tion as closely as possible without involving numerical
search: (i) the essential matrix is computed by a scheme
called renormalization; (ii) the decomposability condi-
tion is optimally imposed on it so that it decomposes
into motion parameters; (iii) image feature points are
optimally corrected so that they define their 3-D depths.

Our scheme not only produces a statistically opti-
mal solution but also quantitatively evaluates the reli-
ability of the computed motion parameters and recon-
structed points.
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2. Statistical Model of Image Noise and Epipolar
Equation

The camera is associated with an XY Z coordinate sys-
tem with origin O at the center of the lens and Z-axis
along the optical axis. The plane Z = 1 is identified
with the image plane, on which an zy image coordinate
system is defined around the Z-axis such that the z- and
y-axes are parallel to the X - and Y -axes, respectively. A
point on the image plane with image coordinates (z, )
is represented by its position vector = = (z,y,1) ", where
the superscript T denotes transpose.

Let & be the position vector on the image plane
when there is no noise. In the presence of noise, it is
perturbed into © = & + Az. The noise Az is regarded
as a random variable, and its covariance matrix is de-
fined by

Viz] = E[AzAz ], (D

where the symbol E[-] denotes expectation. This matrix
is singular and in general has rank 2. Noise is assumed
to occur at each point on the image plane independently,
but its distribution can be different from point to point.

Suppose two cameras are positioned in the scene
in such a way that the position of the second camera is
obtained by translating the first camera by h and rotat-
ing it around the center of the lens by R: we call {h,
R} the motion parameters.

Let O and O’ be, respectively, the origins of the
first and second camera systems. If p and p’ are cor-
responding image points, they can be projections of a
feature point P in the scene if and only if vectors OP,
O_b,, and O'P are coplanar (Fig. 1):

|0p, 00", 07p'| = 0. )

In this paper, (a, b) denotes the inner product of vectors

Fig. 1  Epipolar geometry.
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a and b, and |a, b, c| (= (a x b,c)) denotes the scalar
triple product of vectors a, b, and c.

Let & and &' be the position vectors of p and p’
on their respective image planes in the absence of noise.
Since the second camera is rotated by R relative to the
first camera, the position vector &' with respect to the
second camera is RZ’' with respect to the first camera.

Since 00" = h, Eq.(2) is rewritten as
|z, h, RT'| = 0. 3)

For a fixed &/, this equation describes a line, called
the epipolar of p', passing through p on the first image
plane, while for a fixed &' it describes a line, called
the epipolar of p, passing through p’ on the second im-
age plane. For this reason, Eq. (3) is called the epipolar
equation. The problem is to determine {h, R} that
satisfy Eq.(3) from multiple corresponding data points
{z,}, {/,}, @ = 1,...,N, in the presence of noise.
However, the scale is indeterminate for the translation
h, meaning that a small camera motion near a small
object is indistinguishable from a large camera motion
far apart from a large object. Since whether h = 0
or not is easily judged by a robust computation [4], we
henceforth assume that h & 0 and adopt the scaling ||kl
= 1.

3. Theoretically Optimal Solution

Since {z,, =}, « = 1,..., N, do not necessarily sat-
isfy Eq.(3) for common h and R, we correct points
x, and x/, t0 &4 = T, + Az, and &, = @, + Az,
in such a way that Eq.(3) is satisfied for some h and
R. There exist infinitely many ways to do this. From
among them, we choose the one that is statistically op-
timal. We measure the optimality by the Mahalanobis
metric: we choose such Az, and Az), o =1,..., N,
that

N N
(Ao, Vizal~Aza) + > (A2, Viah]”Awy)
a=1 a=1
— min, 4)
where V[z,|~ and V[z/ ]~ are the generalized inverses

of the covariance matrices V]z,] and Vi{z,], respec-
tively. Introducing a Lagrange multiplier and minimiz-
ing (4) with respect to Az, and Az, we find that the
problem reduces to the following optimization[5]:

N
1
J[h,R] = NZ Wao(h,R)|®s,h, Rz, |> - min, (5)

a=1

Wy(h,R) = 1/((h x Rzl,,Vzs|(h X Rx,))
+((h x R) @, V]x!)(h x R) z5)
+(Vizal(h x R);h x RV([z,])) (6)
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In this paper, the product u x A of a vector u and
a matrix A is defined by column-wise vector product.
Weng et al.[11] recently proposed an optimization cri-
terion which involves the depths Z, and Z/, but their
criterion should be theoretically equivalent to the above
one.

Let {h, R} be the optimal estimates, and {h, R} be
their true values. Let b = h+Ah and R = R+ AR.
The transformation from R to R is a small rotation.
Hence, there exists a small vector Af2 such that R =
R+ Af2 x R to a first approximation. The covariance
matrices of {h, R} are defined by

Vih] = E[AhAhT], V[h,R] = E[ARART],
V[R, k] = E[ARAR"], VIR]=E[ARART]. (7)

Expanding J[h, R] up to the second order in the
neighborhood of h and R and analyzing the statisti-
cal behavior of the solution, we obtain the covariance
matrices of h and R in the following form [S]:

VIR,h| VIR]
N Tro— = N s~ 1
= Za:l M_/OCC_LOCGJI Za:l I/E/Oéc_"ai% (8)
Z(ZIV:]_ Wabaa’i 25:1 Wababa ’

b, = (&4, RZo )h — (h, RZ,,)Z 0. 9)

Here, W, is the value obtained by replacing x,, @,
h and R by Z,, ¥/, h and R, respectively, in Eq. (6).
Eq.(8) gives an attainable bound on the accuracy of
the computed motion parameters {h, R} in statistical
terms.

4. Renormalization

The optimization (5) is nonlinear, requiring numeri-
cal search. Here, we derive a semi-analytical scheme
for computing the optimal solution as closely as possi-
ble without involving numerical search. Let € be an
appropriately defined “average magnitude” of image
noise, and decompose the covariance matrices V[zg]
and V[z/] into the following form:

Viza] = Volza],  Vz,] = Volz,]. (10)

We call e the noise level, and Vp|z,] and Vy[x),] the nor-
malized covariance matrices. In many practical prob-
lems, the form of the covariance matrix of image noise
is easy to predict (e.g., isotropic), while its absolute
magnitude is difficult to estimate a priori. Hence, as-
suming that the normalized covariance matrices Vp[zo]
and Vp[z,,] are known but the noise level € is unknown,
we construct a scheme for estimating € a posteriori.
Define the essential matrix
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G=hxR (11)
The constraint ||k = 1 is equivalent to |G| = v/2
[3], where the matrix norm is defined by |G| =

Zf”jzlez Then, the function J[h, R] given in

(5) can be regarded as a function of G. Our strategy
consists of two stages: (i) computing G that minimizes
Jlh, R] as closely as possible; (ii) decomposing G into
{h, R} as closely as possible. This procedure is known
as the linearized algorithm [31,6],8],[10] (for the di-
rect optimization approach, see[2],[4],[7],[11]).

The essential matrix is optimally computed by the
followmg procedure, which we call renormalization [57]:

l. Letec = 0and Wy =1, =1,..., N.

2. Compute the moment tensor M =
sors N (1) = (N

(MUM) and ten-
) and N = (Nl(jz,gl) by

1
Mijia = 3 D Wala()Th()TakThay, (12)
a=1

N
1 1
Ni(jlgz = = Z W, <Vo[cca]ik$;(j)93;(z)

+ %[ ]Jlx (z)xa(k)) » (13)

1 .
Nijlcl = N Z Wa%[wa]ik%[m;]jl- (14)

a=1

3. Compute the smallest ‘eigenvalue’ A of the unbiased
moment tensor

M=M-—cNO 4 2N (15)

and the corresponding ‘eigenmatrix’ G' of norm v/2.

4. If A = 0, return G, ¢, and M. Else, update the
constant ¢ and the weights W, as follows:

D = ((G;J\/(UG) - 2c(c:;/\/(2>G))2

—-8AG;N @), (16)
(GNOG)-2¢(G;NAG)—/D
ceen 2AG;NOG) - (17
Wo — 1 /((G:B;, V()'[CCQ]G:I:;)
HG 2o, Vo[2,]G " a)
+e(Volza]G; GVo[z1,))) . (18)

If D < 0, Eq.(17) is replaced by ¢ «— c +
2N (G NO@G G).

5. Go back to Step 2.

Here, ;) and :cfw) denote the ith components of vec-
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tors ¢, and x,, respectively. The inner product of
matrices is defined by (A; B) = Z” 144B;;. The
product 7A of tensor 7 = (Tj;;) and matrix A —

(Aij) is a matrix whose (i) element is Zkl 1 TiintAg.
A matrix A is said to be an eigenmatrix of tensor T
for eigenvalue \ if TA = MA. The eigenmatrices and
eigenvalues of a tensor are easily computed by rearrang-
ing a tensor into a nine-dimensional matrix and solving
the usual eigenvalue problem|[5].

The motivation that underlies the above procedure
is as follows. Let M be the tensor obtained by replac-
ing ¢, and «/, by &, and &/, respectively, in Eq. (12).
The true value of G is the eigenmatrix of M for eigen-
value 0. If the unbiased moment tensor M 1s defined by
Eq.(15), we have E[M] = M for ¢ = €. Renormal-
ization finds a value of ¢ such that M has elgenvalue 0.
At the same time, the weights W,, are optimally chosen.

After renormalization, an unbiased estimate of the
squared noise level €2 is obtained in the form

0 c
= 9
1—8/N (19)
Its mean and variance are given by
2 4
B =¢, VEel=< = < (20)

This result is obtained from the fact that N¢/e? is a y2-
variable of N —8 degrees of freedom under the Gaussian
assumption[5].

The covariance tensor V|G] of the computed es-
sential matrix G = G + AG (G = h x R) is defined
by

VIG] = E[AG ® AG]. 1)

Its (ijkl) element is E[AG;;AGk]. If we write V]G]
= W[G], the normalized covariance tensor Vo[G] is
obtained from the unbiased moment tensor A resulting
from renormalization in the following form[5]:

Vol = A1, 22)

Here, M~ is the generalized inverse of tensor M,
which is computed by rearranging tensor M into a six-
dimensional symmetric matrix and computing its gener-
alized inverse[5]. The unbiased moment tensor M re-
sulting from renormalization has rank 8, so V,[G] also
has rank 8.

5. Optimal Correction

A matrix G is said to be decomposable if there exist a
unit vector k and a rotation matrix R such that G —=
h x R. A matrix G is decomposable if and only if

detG =0, |G|=|GGT| =2, (23)
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which is equivalent to saying that the singular values of
G are 1, 1, and 0 [1],[3].

Since the essential matrix G computed by renor-
malization may not be exactly decomposable, we next
corrected it optimally into G' = G + AG so that
Eqs. (23) are satisfied. We measure the optimality by
the Mahalanobis metric:

(AG;Vo[G]” AG) — min. (24)

Introducing Lagrange multipliers, we obtain the follow-
ing first order solution[5]:

AG = MGG + M W[G(GGT G). (25)

Here, G is the cofactor matrix of G, and A1 and A, are
given by

—det G ) 26)

(% ) - W( (2~ |GGT|[?)/4

_ (el (ellelly
W= < (GGTG;Vo|GIGTT)

@TwleleeTe) \T
(GGTG;W[GIGGT G)) '

This correction is iterated until the decomposability
condition (23) is sufficiently satisfied.

In general, three equations det G = ¢, |G| =
s, and |GGT|| = c3 constrain G to be in a six-
dimensional manifold in the nine-dimensional parame-
ter space for G. However, c; = 0, co = V2, and ¢g =
/2 are critical values, at which the six-dimensional man-
ifold degenerates into five dimensions, admitting only
five degrees of freedom to G. This degeneracy lowers
the speed of convergence of the correction.

A realistic computation should be G’ = v2N[G+
YAG] (0 < v < 1), where N[-] denotes normalization
to unit norm. At each step, the normalized covariance
tensor Vo[G] is also updated, since its null space should
be compatible with G as it changes. It is projected in
the form

3
VO[G]Iijkl = Z PijmnPklquO [G]mnpqa (28)

m,n,p,q=1
where
1
Pkt = 8irbj1 — ~2-Giijl, (29)
and §;; is the Kronecker delta.

6. Decomposition into Motion Parameters

The decomposition of G into {h, R} is done as fol-
lows [3], [4]:

1. Let h be the unit eigenvector of matrix GG for
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the smallest eigenvalue.

2. Adjust the sign of h so that 20
0.

|h, z,, Gl >

3. Compute the matrix K = —h x G, and let K =
VAU be its singular value decomposition [3].

4. Compute R = Vdiag(1,1,det(VU ))U .

Here, the symbol diag(A1, A2, A3) denotes the diagonal
matrix whose diagonal elements are Ay, Az, and Az in
that order.

If G is decomposable, simpler methods exist for
this decomposition [3], but they do not produce an ex-
act unit vector h and an exact rotation matrix R if G is
not strictly decomposable. In contrast, the above proce-
dure yields an exact unit vector h and an exact rotation
matrix R in an optimal way whether G is decompos-
able or not[3]. Hence, the iterations for correcting G
can be stopped at any time if accuracy is not required
so much (the crudest decomposition could be obtained
by skipping the correction altogether).

The a posteriori covariance matrices V[h], V[h, R],
and V[R)] of the actually computed motion parameters
{h, R} can be evaluated by decomposing the covari-
ance tensor V[G] obtained after the modification (28).
Since V|G] has rank 8, it is first projected onto the five-
dimensional subspace admitted to the perturbation AG
of G [5]. It is then decomposed into V[h], V[h, R], and
VIR]. Let g, be the ith column of G. The covariance
matrix V[h] is given by

3
Z (h, Vigy, 9:1h)grg! (30)
k=1

where matrix V[g,,g,| is defined by
Vg 91lss = E[Agrg] ] = VIGliksi- €2y

The covariance matrix V[R] is given by

trV ] )

VIR] = -V 32
B gj (- virs (2
where tr means trace, I is the unit matrix, and r; =
g; X h + g;41 X g4, (the index is added modulo 3).
The matrix V[h, R] is computed similarly. However,
the covariance matrices thus computed are often over-
estimation, probably due to various approximations in-
volved. According to our numerical experiment (see
Sect.9), the error behavior is characterized sufficiently
well by the a priori covariance matrices computed from
Eq. (8) by substituting the computed estimates for their
true values. The error is approximately proportional
to the noise level € and the inverse square root of the

number of corresponding pairs 1/v/N.

7. Computation of 3-D Positions

Even if {h, R} are optimally estimated, the 3-D po-
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sition of each feature point cannot be defined unless
Eq.(3) is satisfied. Hence, each corresponding pair z,
arlld x, is optimally corrected into &, = x4+ Az, and

&, = x,, + Ax/, so that Eq. (3) is exactly satisfied. We
measure the optimality by the Mahalanobis metric:

Jo = (Ao, Vx| ™ Azy) + (Azl, Vo[zl]” Axl)
— min. (33)

Introducing a Lagrange multiplier, we obtain the fol-
lowing first order solution [5]:

Axy = —(xo, GE,)Vo|z |Gl |V,
Az), = (o, Gz, )Vo[2,|G @0/ Va, (34)

Vo = (zh, G Vo[mo]|Gal) + (20, GVo [ |G T,).

(35)

In real computation the corrections @, +— x, + Az,
and x|, — x,, + Ax/, are iterated until Eq.(3) is suﬁi-
cwntly satlsﬁed

The residual of the optimization (33) is given by

Jo = (&4, GEL)? Vo, (36)

where V, is the value obtained by replacing z, and
by 2 Lo and ma, respectlvely, in Eq. (35). It can be shown
that J, /€% is a x?-variable with one degree of freedom
under the Gaussian assumption [5]. Hence, J, is an un-
biased estimator of the squared noise level ¢ for “indi-
vidual” feature points. Its mean and variance are given
by E[J,] = € and V[J,] = 2¢%, respectively. Thus,
the individual covariance matrices are estimated in the
form Viz,] = E[J,|Volz,] and V(zl] = E[J.]Vo|a.].
Let o and 7, be the 3-D positions of a feature
point P, with respect to the first and the second camera
coordinate systems, respectively. The 3-D locations r4
and r/, have the form
=27z a! (37)

T = Zamaa alas

where the depths Z, and Z/, are given as follows:

g _ (hx Rz, &, x R&.)
) [#a x REL[>

(h X &4, &4 x RE.)

7l =
e > R

[e4

- (38)

Two solutions exist, since renormalization com-
putes the essential matrix G' up to sign. One solution
gives {h, R}, Z,, and Z!,; the other gives {—h, R},
—Za, and —Z/, [3],[4]. The correct solution is chosen
by imposing the condition

N

Z(sgn(Za) +sgn(Z.,)) > 0. (39)

a=1

It appears that we could alternatively impose Zfﬂ
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(Zo + Z[,) > 0. However, this is dangerous because
there exists a possibility that the depth of a feature point
located far apart in front of the camera (7, =~ oo0) can
be computed, due to image noise, to be far apart behind
the camera (Z, =~ —o0), disrupting the judgment.

8. Reliability of 3-D Reconstruction

Once the 3-D position 7, is reconstructed, its covari-
ance matrix V[r,] is also computed. Here, two sources
of error must be considered: (i) image noise; (ii) er-
rors in {h, R}. Strictly speaking, errors in {h, R} are
correlated with errors in @, and a.,, since the motion
parameters {h, R} are computed from the feature points
zo and @), « = 1,..., N. However, if we focus on an
“individual” feature point, image noise can be regarded
as approximately independent of errors in {h, R} pro-
vided the number of feature points is large. Hence, the
two sources of error can be analyzed separately.

If {h, R} are correct, the covariance matrix of the
position &, = x4+ Awx, corrected by Egs. (34) is given
as follows [5]:

Viga] = Vizal = (V[2a] GaL) (Vs Gay) '/ Vo

(40)

The covariance matrices V[&,] and V&, &.,] are com-
puted similarly. Then, the covariance matrix of the po-
sition r, reconstructed by Egs. (37) is given in the fol-
lowing form:

Vire = Z2V(ao] + Zo(V]Ea, Zo)@ L

820V &0, Za] )+ VIZal@adl.  (41)

Oé

The variance V[7] and the correlation V&, Z] are eas-
ily computed from V[&,], V[Z,], and V[&,, 2] [5].

On the other hand, suppose the feature points x,
and z, are accurate. If {h, R} are perturbed, the true
positions x,, and «, are corrected into &, and &/, re-
spectively, by Eqs.(34). The covariance matrix of the
corrected position &, is given by

Viga] = —V[Ea (VolwalGay) (Volwa]Gal) T/ Vi,
(42)
where B, = (x4, Gz!,). We obtain
VI[E.] = (aa,V[hlas) + 2(aq, Vh, R]b,)
+(ba, VIR]b,,), (43)

where a,, and b,, are the values obtained by removing all
the bars in Eqs. (9) [5]. The covariance matrices V[
and V[&,, 2, are computed similarly. The covariance
matrix V[r,] is given by Eq. (41), and the variance V[Z]
and the correlation V[&,, Z] are easily computed from
Vida], V&), and Viaa, 2] [5]
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Fig. 2 Simulated images of feature points in the scene.

Fig.3  Errors in motion parameters estimated by optimal least-
squares. (a) Translation. (b) Rotation.

9. Numerical Example

Figure 2 shows simulated 512 x 512-pixel images of one
hundred feature points randomly scattered in the scene
(the surrounding box is for visual effect only). The focal
length is set to 600 (pixels). To the z- and y-coordinates
of each feature point in both frames is added indepen-
dent Gaussian noise of mean 0 and standard deviation
1 (pixel). Hence, the covariance matrix of each point is
Viz, = Vizl] = ¢2diag(1,1,0) and ¢ = 1/600. In 3-D
reconstruction, the value of ¢ is regarded as unknown.
In Figs. 3, 4, and 5, the translation error Ah =
P;(h — h) and the rotation error AQI are plotted in
three-dimensions for one hundred trials, using different
noise each time, where Pj = I—hh'. Here, AQ and

(unit vector) are, respectively, the angle and axis of the
relative rotation RR™'. The ellipse that indicates the
theoretical standard deviation of Ah in each orientation
orthogonal to h is shown in Figs. 3 (a), 4(a), and 5(a);
it is computed from the covariance matrix V[h| given by
Egs. (8). Similarly, the ellipsoid that indicates the the-
oretical standard deviation of Af) in each orientation I
is shown in Figs. 3 (b), 4(b), and 5(b); it is computed
from the covariance matrix V[R] given by Egs. (8).
Figure 3 is for the optimally weighted least-squares
method [4],[10],[11]; Fig.4 is obtained by applying
renormalization, and Fig. 5 is obtained by also adding
the optimal correction. The scale of each figure is dif-
ferent, but the ellipses, ellipsoids, and the boxes shown
there have the same absolute sizes. It is observed that the
error behavior in Fig. 5 is well characterized by the the-
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Fig. 4  Errors in motion parameters estimated by renormaliza-
tion. (a) Translation. (b) Rotation.

(a) (b)

Fig. 5  Errors in motion parameters estimated by renormaliza-
tion and optimal correction of the essential matrix. (a) Transla-
tion. (b) Rotation.

Fig. 6

Reliability of reconstructed points (stereogram).

oretical bound, meaning that nearly optimal estimates
are obtained.

Figure 6 is a stereogram of the ellipsoids that in-
dicate the standard deviations of the errors in the re-
constructed positions in each orientation; they are com-
puted from the covariance matrices V[r,] obtained by
the procedure in the preceding section. The true posi-
tions are indicated by dots. In the figure, all the ellip-
soids are extremely elongated in the depth directions,
showing that uncertainty occurs almost always in the
depth direction.
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10. Concluding Remarks

In this paper, we have introduced a general statistical
model of image noise and presented an optimal scheme
for computing 3-D motion from two views. We have
also obtained a theoretical bound on accuracy. In or-
der to avoid numerical search, we proposed a scheme
called “renormalization” and an optimal correction of
the essential matrix. Our method is characterized as the
“most refined linearized algorithm”. We also presented
an optimal procedure for 3-D reconstruction and com-
puted its reliability in quantitative terms.

The emphasis of this paper is the pursuit of theoret-
ical optimality, so computational efficiency is not con-
sidered very much. Our procedure consists of several op-
timization stages, and a more efficient algorithm could
be obtained by skipping some altogether and replacing
some by cruder but more efficient approximations. The
following are some examples:

e The effect of adding >A® in Eq.(15) is very
small. So, Eq.(15) could be replaced by M =
M — N Egs. (16) and (17) could be simply c
—c+22/(G;N W),

e The accuracy of the solution is not very sensitive
to the weights W, so Eq. (18) could be skipped by
fixing W, =1,aa=1,...,N.

e As mentioned in Sect. 6, the computation of eigen-
vectors and singular value decompositions for de-
composing G into {h, R} could be replaced by the
computation of simpler explicit algebraic expres-
sions. The result is the same if decomposability is
sufficiently imposed on G.

e The optimal correction given by Egs. (34) could be
skipped by defining the lines of sight separately for
T, and x;, and estimating their intersection by least
squares. The difference in accuracy is very small.

e Each of the iterative procedures could be stopped
after one or two iterations. Further improvements
are very small.

Put differently, the following is crucial;

o The renormalization procedure for G should be it-
erated at least once or twice to remove statistical
bias.

e The optimal correction of G should be iterated at
least once or twice to impose the decomposability
condition.

Evaluation of the tradeoff between accuracy and time
requires a bench-mark algorithm that attains the high-
est accuracy without regard to efficiency, against which
measures for efficiency are evaluated. Also, the accu-
racy of the bench-mark solution should be evaluated in
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quantitative terms. To present such an algorithm is the
main purpose of this paper.
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