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Abstract. We present an optimal method for estimat-
ing the current location of a mobile robot by matching an
image of the scene taken by the robot with the model of
the known environment. We first derive a theoretical ac-
curacy bound and then give a computational scheme that
can attain that bound, which can be viewed as describ-
ing the probability distribution of the current location.
Using real images, we demonstrate that our method is
superior to the naive least-squares method. We also con-
firm the theoretical predictions of our theory by applying
the bootstrap procedure.
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1 Introduction

For a mobile robot to navigate autonomously, it must
have a geometric model of the environment. This may
be given as data or constructed by the robot itself us-
ing vision and sensor data. Here we consider the case
in which a robot already has a three-dimensional (3-D)
map of the environment and study the problem of iden-
tifying its current location relative to the world model.
In theory, the current location can be computed by trac-
ing the history of motion from a known initial position,
e.g., integrating the rotation of the wheels or incremen-
tally correcting the position (Suorsa and Sridhar 1994).
However, the accuracy of the computed location quickly
deteriorates as errors (due to slippages of the wheels, vi-
brations of the camera, etc.) accumulate in the course
of the navigation. At some point, therefore, the current
location needs to be estimated by some direct means.

A typical method for localization is to compute the
current camera position by matching feature points in
the images with their corresponding positions in the
world model. A direct method is stereo vision, by which
the 3-D locations of the feature points can be computed
relative to the cameras (Ayache and Faugeras 1988).
This fails, however, if the feature points are located very
far away as compared with the baseline of the stereo sys-
tem. In an outdoor environment, feature points that are
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easily discernible from a wide range of positions are usu-
ally those located very far away (e.g., towers and moun-
tain tops). Hence, we need a method for computing the
current position by matching a single image with the
world model.

Computing the 3-D relationship between image and
model features has been previously studied by many re-
searchers as the problem called “PnP”, in which the
3-D positions of the feature points are computed rela-
tive to the camera, given a 3-D configuration of the fea-
ture points relative to each other. Here we are interested
in computing the absolute position of the camera, given
absolute 3-D positions of feature points.

If the robot motion is constrained to be on a hor-
izontal surface (e.g., the ground or a floor), a simple
method based on elementary geometry of circles is well
known for this purpose (Sugihara 1988). It can also be
applied to three-dimensional motion by replacing circles
by spheres (Sutherland and Thompson 1994). But this
technique uses only pairwise relative orientations of the
lines of sight defined by the feature points; their abso-
lute positions in the image are not used. Using minimal
information has the advantage that it can be adapted
to mismatch removal: we pick out multiple minimal sets
of data and choose the solution supported by majority
voting (Fischler and Bolles 1981). For a given match,
however, it is obviously better to fuse all available infor-
mation in an optimal manner. Such a method also exists
(Betke and Gurvits 1997), but so far the main concern
has been methods for estimation with little attention be-
ing given on theoretical optimality and reliability of the
solution.

The aim of this paper is not to propose a new method
that performs appreciably better than existing ones.
Rather, we focus on theoretically guaranteeing optimal-
ity a priori . Introducing a model of noise, and viewing
the problem as a statistical estimation, we first derive
a theoretical accuracy bound independently of particular
solution techniques. Then we present a computational
scheme that can attain that bound; such a method alone
can be called “optimal” in the sense that no other method
could possibly outperform it .

We can view the bound as describing the “probability
distribution” of the current location by using Gaussian
approximation. This information can be obtained with-
out any knowledge about the magnitude of image noise.
We confirm the theoretical predictions of our theory by
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Fig. 1. Camera imaging geometry

using real images and applying the bootstrap procedure
(Efron and Tibshirani 1993). We also discuss many prac-
tical issues for real implementation of our method.

2 Imaging geometry and noise model

We regard the camera imaging geometry as perspective
projection and define an XY Z camera coordinate system
in such a way that its origin is at the center of projection
and its optical axis is along the Z-axis (Fig. 1). Letting f
be the focal length, we identify the plane Z = f with the
image plane, on which we define an xy image coordinate
system in such a way that the origin is on the optical
axis and the x- and y-axes are parallel to the X- and
Y -axes, respectively.

We represent a point with image coordinates (x, y)
by the following three-dimensional vector:

x =




x/f
y/f
1


 . (1)

This vector indicates the line of sight starting from the
camera coordinate origin and passing through the corre-
sponding point in the scene (Fig. 1).

We regard observed image coordinates (xα, yα) (in
pixels) as perturbed from their true values (x̄α, ȳα) by
noise and write

xα = x̄α + ∆xα, yα = ȳα + ∆yα. (2)

We model the errors ∆xα and ∆yα as (generally corre-
lated) Gaussian random variables with zero mean, inde-
pendently for each α. Let xα and x̄α be the αth observed
point and its true position, respectively. The error ∆xα
= xα − x̄α is a three-dimensional vector. We define its
covariance matrix by

V [xα] = E[∆xα∆x>α ], (3)

where E[ · ] denotes expectation and the superscript >
denotes transpose. Since the Z component of ∆xα is
identically zero, the covariance matrix V [xα] is singular;
its third row and third column consist of zeros.

The covariance matrix V [xα] measures the uncer-
tainty of detecting the feature point xα, but in practice
it is very difficult to predict it precisely. Here we assume

Fig. 2. The camera coordinate system and the world coordinate
system

that the covariance matrix is known only up to scale and
write

V [xα] = ε2V0[xα]. (4)

We assume that V0[xα] is known but that the constant
ε is unknown (see the discussions in Sect.10.4); we call
ε the noise level , and V0[xα] the normalized covariance
matrix (Kanatani 1996).

If ∆xα and ∆yα are subject to an isotropic and iden-
tical Gaussian distribution of mean zero and standard
deviation σ, we have

ε =
σ

f
, V0[xα] = diag(1, 1, 0), (5)

where diag(λ1, λ2, λ3) denotes the diagonal matrix with
diagonal elements λ1, λ2, and λ3 in that order.

3 Statistical robot localization

Suppose the camera coordinate system is in a position
defined by translating the world coordinate system by
t and rotating it by R with respect to the world Ow-
X0Y0Z0 coordinate system (Fig. 2 ). We call {t, R} the
motion parameters. Our goal is formally stated as fol-
lows:

Problem 1. Given image coordinates (xα, yα), α = 1,
..., N , of feature points whose 3-D positions rα, α = 1,
..., N , are known with respect to the world coordinate
system, optimally compute the motion parameters {t,
R} and their probability distribution.

The vector x̄α representing the true position of the
αth feature point is defined with respect to the cam-
era coordinate system. If it is described with respect to
the world coordinate system, it becomes Rx̄α (Fig. 2).
Hence, letting Zα be the depth of the αth feature point in
the scene from the camera coordinate origin, we obtain
the following relationship:

rα = t + ZαRx̄α. (6)

Such a depth Zα exists if and only if vector rα − t is
parallel to vector Rx̄α. Hence, Problem 1 reduces to the
following statistical estimation:

Problem 2. Given {rα}, estimate the motion parame-
ters {t, R} that satisfy

(t− rα)×Rx̄α = 0, α = 1, ..., N, (7)
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from the noisy data {xα}. At the same time, compute
the probability distribution of the estimated motion pa-
rameters {t, R}.

A naive but widely adopted approach to solving this
type of estimation is the least-squares method , minimiz-
ing the square sum of the constraint:

N∑
α=1

‖(t− rα)×Rx̄α‖2 → min . (8)

We will show that this method is not optimal: the ac-
curacy of the solution is inferior to the method that we
going to describe.

4 Theoretical accuracy bound

Let {t̂, R̂} be an estimator of the true motion parame-
ters {t̄, R̄} obtained by some means. Since translations
form an Abelian group under addition, the deviation of
a translation can be measured by the “difference”

∆t = t̂− t̄ (9)

of the estimator t̂ from its true value t̄. Rotations, on
the other hand, form a group denoted by SO(3) (special
orthogonal group) under matrix multiplication. So, the
deviation of a rotation can be measured by the “quo-
tient” R̂R̄>, i.e., the rotation of R̂ relative to R̄. Let l
(unit vector) and ∆Ω be, respectively, the axis and angle
of the relative rotation R̂R̄>, and define
∆Ω = ∆Ωl. (10)

We define the covariance matrices of the estimator {t̂, R̂}
as follows (Kanatani 1996; Kanatani and Morris 2001):

V [̂t] = E[∆t∆t>], V [̂t, R̂] = E[∆t∆Ω>],

V [R̂, t̂] = E[∆Ω∆t>], V [R̂] = E[∆Ω∆Ω>]. (11)

Applying the general theory of statistical optimization
(Kanatani 1996), we can obtain the following lower
bound:(

V [̂t] V [̂t, R̂]
V [R̂, t̂] V [R̂]

)

Â ε2

(∑N
α=1 Ā>

α W̄αĀα

∑N
α=1 Ā>

α W̄αB̄α∑N
α=1 B̄>

α W̄αĀα

∑N
α=1 B̄>

α W̄αB̄α

)−1

. (12)

Here U ÂV means that U−V is a positive semi-definite
symmetric matrix. The matrices Āα, B̄α, and W̄α are
defined as follows (I denotes the unit matrix):

Āα = −(R̄x̄α)× I, (13)

B̄α = (t̄α − rα, R̄αx̄α)I− R̄x̄α(t̄− rα)>, (14)

W̄α =
(
(t̄− rα)× R̄V0[xα]R̄> × (t̄− rα)

)−
. (15)

Throughout this paper, the inner product of vectors u
and v is denoted by (u,v). The product v×U of a vector
v and a matrix U is the matrix whose columns are the
vector products of v and the columns of U. The product
U× v of a matrix U and a vector v is the matrix whose
rows are the vector products of the rows of U and vector
v. The operation ( · )− designates the (Moore-Penrose)
generalized inverse (Kanatani 1996).

5 Optimal estimation

Applying the general theory of statistical optimization
(Kanatani 1996), we can obtain a computational scheme
for solving Problem 2 in such a way that the resulting
solution attains the accuracy bound (12) in the first or-
der (i.e., ignoring terms of O(ε4)): we minimize the sum
of squared Mahalanobis distances

J =
N∑

α=1

(x̄α − xα, V0[xα]−(x̄α − xα)) (16)

with respect to {x̄α} subject to the constraint (7). The
solution is given as follows (Kanatani 1996):

x̄α = xα − V0[xα]R> ((t− rα)×Wα × (t− rα))Rxα,

(17)

Wα =
(
(t− rα)×RV0[xα]R> × (t− rα)

)−
2

. (18)

Here the operation ( · )−r designates the rank-constrained
(Moore-Penrose) generalized inverse computed by trans-
forming it into the canonical form, replacing its eigen-
values except the r largest ones by 0, and computing the
(Moore-Penrose) generalized inverse (this operation is
necessary for preventing numerical instability (Kanatani
1996).

Substituting (17) into (16), we obtain the following
expression to minimize with respect to the motion pa-
rameters {t, R} alone:

J =
N∑

α=1

((t− rα)×Rxα,Wα ((t− rα)×Rxα)) (19)

Let Ĵ be the residual , i.e., the minimum of J . It can
be shown that Ĵ/ε2 is subject to a χ2 distribution with
2N − 6 degrees of freedom in the first order (Kanatani
1996). Hence, we obtain an unbiased estimator of the
squared noise level ε2 a posteriori in the following form:

ε̂2 =
Ĵ

2N − 6
. (20)

The solution {t̂, R̂} of the minimization (19) is
known to attain the accuracy bound (12) in the first
order (Kanatani 1996). Hence, we can evaluate the co-
variance matrix of the solution by optimally estimating
the true positions {x̄α} (see Sect. 7) and substituting the
solution {t̂, R̂} and the estimator ε̂2 given by (20) for
their true values {t̄, R̄} and ε2 in (12). Approximating
the error distribution to be Gaussian, we can obtain the
probability distribution of the current location using the
covariance matrix V [̂t] in (12) in the following form:

p(r) =
1

(2π|V [̂t]|)3/2
e−(r−t̂,V [t̂]−1(r−t̂))/2. (21)

6 Numerical optimization scheme

Equation (19) can be minimized by whatever numerical
scheme, and the optimality of the solution holds irrespec-
tive of the minimization scheme used. We adopt here,
among many possible alternatives, the modified Newton
method, which is known to converge very quickly with
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quadratic speed. It also has the advantage that the the-
oretical accuracy bound (12) is automatically evaluated
as a byproduct, as we now show.

If a rotation R is perturbed by a small rotation repre-
sented by the vector ∆Ω defined by (10), the perturbed
rotation has the expression

R + ∆Ω ×R +
1
2
∆Ω∆Ω>R− 1

2
‖∆Ω‖2R + O(∆Ω)3,

(22)
where ‖u‖ denotes the norm of a vector u and
O(u, v, ...)k designates terms of order k or higher in the
elements of vectors u, v, ... . Replacing t by t + ∆t and
R by (22) in (19), and expanding it with respect to ∆t
and Ω, we obtain the following expression:

J + (∇tJ,∆t) + (∇RJ,∆Ω) +
1
2
(∆t,∇2

ttJ∆t)

+(∆t,∇2
tRJ∆Ω) +

1
2
(∆Ω,∇2

RRJ∆Ω)

+O(∆t,∆Ω)3. (23)

The explicit expressions of∇tJ ,∇RJ ,∇2
ttJ ,∇2

tRJ , and
∇2

RRJ are given in the appendix. Differentiating (23)
with respect to ∆t and ∆Ω, letting the resulting ex-
pressions equal zero, and ignoring terms of O(∆t, ∆Ω)3,
we obtain the following simultaneous linear equations:( ∇2

ttJ ∇2
tRJ

(∇2
tRJ)> ∇2

RRJ

)(
∆t
∆Ω

)
= −

( ∇tJ∇RJ

)
. (24)

Starting from an initial guess {t, R}, we solve (24) for
the increments {∆t, ∆Ω} and update the solution in the
form
t ← t + ∆t, R ←R(∆Ω)R, (25)
where R(∆Ω) designates the rotation matrix by angle
∆Ω (= ‖∆Ω‖) around axis l (= ∆Ω/∆Ω) in the follow-
ing form (the Rodrigues formula):

R(∆Ω) = cos ∆ΩI + (1− cos∆Ω)ll> + sin ∆Ωl× I.
(26)

We iterate this until ‖∆t‖ < εt and ‖∆Ω‖ < εR for
specified thresholds εt and εR.

After the iterations have converged, the matrix that
appears on the left-hand side of (24) divided by ε2 is
called the information matrix, whose inverse is shown to
coincide with the right-hand side of (12) if the true values
{x̄α} and {t̄, R̄} are replaced by their estimates {x̂α}
and {t̂, R̂} (Kanatani and Morris 2001). This means that
our scheme allows us to not only compute an optimal
solution but also evaluate its reliability at the same time.

We compute the initial guess {t, R} by a structure-
from-motion algorithm (Kanatani 1996; Hartley and Zis-
serman 2000). First, we hypothetically place a reference
camera coordinate system in a known position in the
world model and compute the image coordinates of the
feature points viewed from that position (we need not
actually generate a graphics image). From the correspon-
dence between this hypothetical image and the actually
observed image, we can reconstruct the 3-D motion of
the camera and the 3-D positions of the feature points
up to scale. Since we know the absolute positions of the
feature points, we can easily adjust the scale a poste-
riori. Here we adopt the statistically optimal algorithm
of Kanatani (Kanatani 1994) using a technique called
renormalization (Kanatani 1996).

Fig. 3. An image of a toy house

Fig. 4. Estimated current location

7 Example 1

Figure 3 is a 640 × 480-pixel image of a toy house. The
focal length was calibrated to be f = 955 pixels. We
manually selected the feature points marked by white
dots and assumed the noise model of (5). Their true 3-D
positions relative to the world coordinate system, which
was defined to coincide with the three orthogonal edges
of the toy house, were mannually measured using a rule.
The initial guess was computed by the optimal structure-
from-motion algorithm (Kanatani 1994). The optimiza-
tion converged after five iterations for thresholds εt =
0.01cm (the height of the toy house is 8cm) and εR =
0.01◦. According to this, the initial camera position was
displaced by about 16cm and rotated by about 4◦. Fig-
ure 4 displays the toy house and the estimated camera
coordinate axes viewed from above.

We evaluated the reliability of the computed solution
{t̂, R̂} in the following two ways: theoretical analysis and
random noise simulation. The former is straightforward:
since our method is known to attain the accuracy bound
(12) in the first order, we can evaluate the reliability of
the solution by approximating the true values by their
estimates in (12). This computation can be done in the
course of the minimization iterations as described earlier.
The noise level estimated by (20) is ε̂ = 1.08 × 10−3,
which translates to σ = 1.03 pixels.
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a b

Fig. 5. Bootstrap errors (our method): a translation; b rotation

An alternative method for reliability evaluation is
bootstrap (Efron and Tibshirani 1993). This computation
can be applied to any solution method without knowing
the ground truth. Tentatively assuming that the com-
puted solution is true, we correct the data so that they
are exactly compatible with that solution. Then we add
artificial noise to the modified data and observe how the
solution fluctuates around the original value.

The actual procedure goes as follows. We first opti-
mally correct the observed positions {xα} into {x̂α} in
such a way that constraint (7) exactly holds. From (17),
this correction is done as follows:

x̂α = xα − V0[xα]R̂
> (

(t̂− rα)× Ŵα × (t̂− rα)
)
R̂xα,

(27)

Ŵα =
(
(t̂− rα)× R̂V0[xα]R̂

> × (t̂− rα)
)−

2
. (28)

Estimating the noise level ε using (20), we generate ran-
dom Gaussian noise that has the estimated noise level
ε̂ and add it to the corrected positions independently.
Then we compute the motion parameters {t∗, R∗} and

the angle ∆Ω∗ and axis l∗ of the relative rotation R̂
∗
R̂
>

each time.
Figure 5a,b shows three-dimensional plots of the er-

ror vectors ∆t∗ = t∗−t̂ and ∆Ω∗ = ∆Ω∗l∗ for 100 trials.
The ellipsoids in the figures are respectively defined by

(∆t∗, V [̂t]−1∆t∗) = 1, (∆Ω∗, V [R̂]−1∆Ω∗) = 1, (29)

where V [̂t] and V [R̂] are computed by approximating
R̄, {x̄α}, and ε2 by R̂, {x̂α}, and ε̂2, respectively, on the
right-hand side of (12).

These ellipsoids indicate the lower bound on the
standard deviation of the errors in each orientation
(Kanatani 1996). The average diameter in the sense of
root mean squares is 0.1cm for the translation and 0.1◦
for the rotation. The cubes in the figures are displayed
as a reference; one edge of the cube is three times the
average diameter of the respective ellipsoid. In Fig. 5a,
the vertical edge is in the direction of the world X0-
axis taken to be perpendicular to the floor; in Fig. 5b,
the vertical edge corresponds to the rotation components
around the X0-axis.

We compared our method with the least-squares
method of (8). Figure 6a,b shows the result that cor-
responds to Fig. 5a,b (the ellipsoids and the cubes are
the same as in Fig. 5a,b). Comparing Figs. 5a,b and 6a,b,
we can confirm that our method improves the accuracy

a b

Fig. 6. Bootstrap errors (least squares): a translation; b rotation

Table 1. Bootstrap standard deviations and the theoretical lower
bounds for Example 1

Translation Rotation

Our method 0.16cm 0.16◦
Least squares 0.25cm 0.45◦
Lower bounds 0.16cm 0.15◦

of the solution over the least-squares method (see the
discussions in Sect. 10.6). We can also see that errors
for our method distribute around the ellipsoids which
correspond to the theoretical accuracy bound (12). This
means that our method indeed attains the theoretical
accuracy bound; no further improvement is possible.

The above visual observation can also be given quan-
titative measures. We define the bootstrap standard de-
viations by

S∗t =

√
1
B

∑B
b=1‖∆t∗b‖2, S∗R =

√
1
B

∑B
b=1(∆Ω∗

b )2, (30)

where B is the number of bootstrap samples and the sub-
script b labels each sample. The corresponding standard
deviations for the theoretical lower bound are

St =
√

trV [̂t], SR =
√

trV [R̂], (31)

respectively. Table 1 lists the values of S∗t and S∗R for
our method and the least-squares method (B = 1000)
together with their theoretical lower bounds St and SR.
We can see that our method is indeed superior to the
least-squares method and that the accuracy of our solu-
tion is very close to the theoretical lower bound.

This observation confirms that we can evaluate the
probability distribution of the estimated location by
evaluating the theoretical accuracy bound given by (12)
and using Gaussian approximation.

Table 2. Bootstrap standard deviations and the theoretical lower
bounds for Example 2

Translation Rotation

Our method 44.1cm 1.31◦
Least squares 47.3cm 1.39◦
Lower bounds 43.7cm 1.29◦
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Fig. 7. An image of a real building

Fig. 8. Estimated current location and its reliability

8 Example 2

Figure 7 is a 640× 480-pixel image of a real building for
which a design plan is available. The focal length was
calibrated to be f = 849 pixels. We manually selected
the feature points marked by white dots and assumed
the noise model of (5). The world coordinate system was
fixed to the building, and the 3-D coordinates of the
feature points were read from the design plan. The visi-
ble edge of this building is 13.4m long. The initial guess
was computed by the optimal structure-from-motion al-
gorithm (Kanatani 1994). The optimization converged
after four iterations for thresholds εt = 0.1cm and εR =
0.01◦. According to this, the initial camera position was
displaced by about 1.7m and rotated by about 4◦.

Figure 8 displays the building and the estimated cam-
era coordinate axes when viewed from above; the el-
lipse in the figure indicates the ellipsoid corresponding
to those in Figs. 5a and 6a except that it is now en-
larged by three times; its average diameter is about 3m.
We also evaluated the reliability of the solution by both
theoretical analysis and bootstrap. The noise level esti-
mated by (20) is ε̂ = 4.89× 10−3, which translates to σ
= 1.05 pixels. Table 2 shows the result corresponding to
Table 1. We can again confirm that our method is su-
perior to the least-squares method and that our method
almost attains the theoretical bound.

Fig. 9. An image of a city scene

9 Example 3

If the robot is constrained to be on a horizontal plane,
the computation is considerably simplified. Figure 9 is a
640 × 480-pixel image of a city scene. The focal length
was f = 849 pixels. We manually spotted nine features at
the bottoms of the white vertical lines in the figure and
computed the viewing location by matching the spot-
ted positions to their corresponding locations in a city
map (scaled by 1/10,000), out of which their coordinates
were read. We defined the world coordinate system based
on the latitude and longitude lines drawn in the map
(the origin is at lat. 36◦25′22′′N and long. 139◦21′22′′E).
The initial guess was computed by the method of cir-
cle geometry (Sugihara 1988; Sutherland and Thompson
1994). The optimization converged after five iterations
for thresholds εt = 0.01m and εR = 0.01◦. According to
this, the initial camera position was displaced by about
93m and rotated by 0.2◦.

Figure 10 shows the angle of view and the estimated
location superimposed on the city map; the locations
of the feature points are marked by white dots. Fig-
ure 11 shows the estimated camera location superim-
posed on the enlarged image of the city map. One pixel
corresponds to about 2.2m. The ellipse in the figure is
a two-dimensional version of the ellipsoids in Figs. 5a
and 6a; its longest and shortest radii are 36.7m and
6.8m, respectively. The white dot in the map indicates
the place where the picture of Fig. 9 was actually taken
(it is in the building shown in Fig.7; its horizontal size
is 13.4m×20m). We see that the true position is within
the ellipse. Its discrepancy from the estimate reads to be
about 14m.

Figures 12a,b shows 100 bootstrap errors in the es-
timated location, which are plotted in the same way as
Figs. 5a and 6a (we omit errors in rotation; they are very
small). Table 3 corresponds to Tables 1 and 2 (this time
B = 10000); our method is still superior to the least-
squares method, although the difference is not so marked
as in the three-dimensional case (see the discussions in
Sect. 10.6).
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Fig. 10. Estimated angle of
view

Fig. 11. Estimated current location

10 Discussions

10.1 Significance of theoretical approaches

Our approach appears to be excessively theoretical, but
it has recently been recognized more and more in the
computer vision community that for further advance-
ment a theoretical approach such as ours is indispens-
able and that the gains obtained by mere combinations
of existing methods and ad-hoc techniques are very much
limited (Kanatani 1996; Hartley and Zisserman 2000).

In the past, the performance of a system was usually
evaluated only a posteriori by experiments using real or
synthetic data. But this does not tell us anything about
situations that are not covered by the experiments. The
optimality of a system can be guaranteed only by a the-
oretical analysis, and such an analysis also reveals the
limitations of the system by telling us in what circum-
stances it performs well and in what circumstances not.
Our approach is a typical example in that direction.

a b

Fig. 12. Bootstrap errors in the estimated location: a our method;
b least squares

Table 3. Bootstrap standard deviations and the theoretical lower
bounds for Example 3

Translation Rotation

Our method 37.1cm 0.78◦
Least squares 37.9cm 0.79◦
Lower bounds 37.3cm 0.78◦

10.2 Theoretical background

The mathematical formulation used in this paper was
not created specifically for solving the robot localiza-
tion problem but rather given as a typical example of
a general statistical optimization theory for geometric
inference (Kanatani 1996). It can be proved that the so-
lution of the constrained optimization of (16) can at-
tain the theoretical accuracy bound in the first order,
and simulations have confirmed that the solution indeed
falls in the vicinity of the bound (Kanatani 1996, 2000;
Ohta and Kanatani 1998; Kanatani and Ohta 1999). It
has also been confirmed by simulations that the noise
level estimation in the form of (20) indeed gives a very
good estimate of the true noise level (Kanatani 1996;
Kanazawa and Kanatani 1996a,b).
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10.3 Feature matching procedure

In order to apply our localization scheme, we must first
match observed image features to known model features.
This can be done by first establishing the matching by
human interaction and then tracing the selected features
frame-by-frame in the course of the navigation (provided
they are always visible from the robot). Otherwise, the
robot hypothesizes a match based on known clues (e.g.,
brightness, color, shape) and then validates the resulting
3-D position, e.g., by comparing it with that obtained by
integrating the history of motion, examining the image
if features that should be observed from that position
actually exist (Yagi et al. 1995; Talluri and Aggarwal
1996).

Whatever strategy we adopt, the matching process
requires many stages of image processing, which are in its
own right a difficult research target beyond the scope of
this paper. We have therefore assumed that the match-
ing has already been established and focused on com-
putational schemes for localization. It should be noted,
however, that if we adopt the hypothesizing-validating
approach, the ability to compute the 3-D camera posi-
tion for a given match between the image and the model,
and to evaluate the reliability of the solution, is crucial
whether the match is correct or not. For example, we
hypothesize the matching, optimally estimate the robot
location, and evaluate the probability distribution of the
estimated location by the procedure we have described.
If the resulting distribution spreads out too widely, the
hypothesis may be incorrect.

10.4 Validity of the noise model

We modeled the deviations of the detected feature points
from their true positions as Gaussian noise. This is a rea-
sonable approximation, because we are assuming that
the deviations are within a few pixel magnitude. In fact,
this assumption can be confirmed a posteriori using (20),
as shown in our examples. If the estimated noise magni-
tude is unrealistically large, we must doubt the correct-
ness of the matching, as mentioned above.

We have also assumed that the normalized covariance
matrix is known. In fact, there are many methods for
estimating it from the variations of the gray levels of the
image (Förstner 1987; Singh 1990; Ohta 1991; Shi and
Tomasi 1994; Morris and Kanade 1998; Kanazawa and
Kanatani 2001). The result is generally different from
point to point.

However, it has been observed (Kanazawa and
Kanatani 2001) that it is sufficient to assume the
isotropic and identical model of (5) provided the feature
points are manually specified by humans or detected by a
feature-detection operator (e.g., those described in Har-
ris and Stephens 1988; Reisfeld et al. 1995; Smith and
Brady 1997). This is because humans and feature detec-
tors both implicitly evaluate the normalized covariance
matrix and output those features with almost isotropic
and identically distributed covariance. In contrast, the
computed normalized covariance varies from point to
point if the feature points are chosen randomly or inde-
pendently of the image content (Kanazawa and Kanatani
2001).

The robot localization application falls in the former
category as long as salient feature points are used for

matching. Hence, it is sufficient to use the isotropic and
homogeneous model of (5), as we did in our examples.
For the sake of generality, however, we have described
all equations using the notation V0[xα].

10.5 Calibration errors and image distortions

We have assumed that the camera has already been cal-
ibrated and image distortions due to lens aberration has
been corrected (e.g., by the procedure described in Weng
et al. 1992). However, the calibration may not be precise,
and the estimated focal length and the principal point
(the point that corresponds to the lens optical axis) may
not be correct. Also, the image distortion still exist. In
our formulation, such deviations are regarded as “noise”,
and the noise level ε̂ estimated by (20) measures the total
inaccuracies including such deviations.

Note that calibration errors and image distortions
affect the accuracy of the feature points systematically
with strong correlations among them. Hence, the a pos-
teriori covariance matrix given by (12), which was de-
rived on the assumption of independence of noise, may
underestimate the true covariance.

Nevertheless, our formalism is expected to serve an
approximate measure of the reliability of the solution in
practice. After all, a theory is an idealization of the real-
ity, and discrepancies of the theory from the reality must
be tolerated to some degree in practical applications.

10.6 Why is the least squares not optimal?

Comparing (8) and (19) reveals that the difference be-
tween the least-squares method and our optimal method
is in the weight matrix Wα given by (15). We can see
from (15) that the magnitude of Wα is inversely propor-
tional to ‖t− rα‖2.

Our optimal method minimizes the image feature dis-
crepancies uniformly over all the feature points in the
form of (16). In order to do so, we must weight the con-
straint discrepancies by Wα in the form of (19), giving
more weight on near features and less weight on remote
features.

The least-squares method, on the other hand, mini-
mizes constraint discrepancies uniformly over all the fea-
ture points in the form of (7). This means that the least
squares gives, in effect, more weight on remote features,
which are less sensitive to the camera position, and less
weight on near features, which are more sensitive to the
camera position. This is an intuitive explanation as to
why the least-squares method is not optimal.

This observation implies that the difference between
the least-squares method and our optimal method will
become most apparent when the observed features have
large depth variations, while not much difference will
be found when the depth variations are small. In fact,
the remote square pillar in Fig. 3 was placed to test
this observation, and Figs. 5 and 6 indeed confirm our
prediction.

In Examples 2 and 3, on the other hand, all the fea-
ture points have more or less similar depth magnitudes.
This explains that the gain of our optimal method over
the least squares is not so marked as in Example 1.
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10.7 Other applications

This localization scheme can also be applied if all the
feature points are coplanar in the scene. This situation
occurs, for example, in virtual studio applications, where
the position of a moving camera is computed frame-by-
frame real time by observing a reference pattern placed
in the scene (Matsunaga and Kanatani 2000; Seo et al.
2000). In such a situation, we can simplify the computa-
tion and calibrate the focal length as well by exploiting
the fact that the relationship between the reference pat-
tern and the observed image is a transformation called
homography (Hartley and Zisserman 2000). Using the
principle described here, we can optimally compute the
solution and evaluate its reliability in quantitative terms.
The theoretical predictions were confirmed by simula-
tions (Matsunaga and Kanatani 2000).

The two-dimensional version of our scheme used in
Example 3 can also be useful outside the domain of robot
localization. For instance, it can be used off-line in foren-
sic applications for estimating the location from which
a given photograph was taken. The estimation may not
be exact, as seen from Fig. 11, but we can also obtain
its covariance, which indicates where to search. For ex-
ample, the ellipse in Fig. 11 tells us that we need not
search all directions concentrically; rather, we only need
to search particular directions. Such information would
greatly save costs and efforts.

Application of the mathematical framework pre-
sented here is not limited to position estimation. It
can be applied to any problem of geometric estima-
tion including optimally fitting lines and conic sections
(Kanazawa and Kanatani 1996a,b), motion estimation
(Kanatani 2000), homography estimation (Kanatani and
Ohta 2000), and rotation estimation (Ohta and Kanatani
1998).

11 Concluding remarks

We have described optimal estimation of the current lo-
cation of a robot by matching an image of the scene taken
by the robot with the model of the environment. We first
derived a theoretical accuracy bound independently of
solution techniques and then presented a method that
attains it; our method is truly “optimal” in that sense.
We can view the bound as describing the probability
distribution of the estimated location by using Gaus-
sian approximation; this information does not require
any knowledge about the noise magnitude. Using real
images, we demonstrated that our method is superior
to the naive least-squares method. We also confirmed
the theoretical predictions of our theory by applying the
bootstrap procedure. Finally, we discussed various theo-
retical and practical issues for using our method.
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Appendix: Gradient and Hessian computation

The gradient terms ∇tJ and ∇RJ that appear in (22)
are computed as follows. First, compute the vectors pα
and qα, α = 1, ..., N , as follows:

pα = E(rα)xα, qα = WαE(rα)xα. (32)

Here E( · ) is a matrix function defined by

E(r) = (t− r)×R. (33)

Next, compute the matrices Pα and Qα, α = 1, ..., N ,
as follows:

Pα = Wα

(
A(xα)−A(V0[xα]E(rα)>qα)

− E(rα)V0[xα]C(qα)) , (34)

Qα = Wα

(
B(rα, xα)−B(rα, V0[xα]E(rα)>qα)

− E(rα)V0[xα]D(rα, qα)) . (35)

Here A( · ), B( · , · ), C( · ), and D( · , · ) are matrix func-
tions defined as follows:

A(x) = −(Rx)× I,

B(r,x) = (t− r,Rx)I−Rx(t− r)>,

C(x) = R>(x× I),

D(r, x) = R>((t− r)x> − x(t− r)>). (36)

Then ∇tJ and ∇RRJ are given by

∇tJ =
N∑

α=1

(
P>α pα + A(xα)>qα

)
,

∇RJ =
N∑

α=1

(
Q>

α pα + B(rα, xα)>qα

)
, (37)

where S[ · ] designate the symmetrization operation:
S[A] = (A + A>)/2.

In Newton iterations, the Hessian controls the speed
of convergence, not the accuracy of the solution. So,
we apply the Gauss-Newton approximation in comput-
ing the Hessian: we regard the matrix Wα in (19) as
constant. The resulting iterations are called the Gauss-
Newton iterations and are known to be almost as effec-
tive as Newton iterations in practice. The matrices∇2

ttJ ,
∇2

tRJ , and ∇2
RRJ in (22) are given as follows:

∇2
ttJ = 2

N∑
α=1

(Rxα)×Wα × (Rxα), (38)

∇2
tRJ = 2

N∑
α=1

(t− rα,Rxα)(Rxα)×Wα

−2
N∑

α=1

((Rxα)×WαRxα) (t− rα)>

+2
N∑

α=1

Rxα((t− rα)×Rxα)>Wα

−2
N∑

α=1

(Rxα,Wα ((t− rα)×Rxα))I, (39)
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∇2
RRJ = 2

N∑
α=1

(t− rα,Rxα)2Wα

−4
N∑

α=1

(t− rα,Rxα)S[WαRxα(t− rα)>]

+2
N∑

α=1

(Rxα,WαRxα)(t− rα)(t− rα)>

+2
N∑

α=1

S[(Rxα)(Rxα)> ((t− rα)×Wα × (t− rα)])

−2
N∑

α=1

((t− rα)×Rxα,Wα ((t− rα)×Rxα))I. (40)
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Fig. 1. Camera imaging geometry
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Fig. 2. The camera coordinate system and the world coordinate system

Fig. 3. An image of a toy house
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Fig. 4. Estimated current location

a b
Fig. 5ab. Bootstrap errors (our method): a translation; b rotation

a b
Fig. 6ab. Bootstrap errors (least squares): a translation; b rotation
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Fig. 7. An image of a real building

Fig. 8. Estimated current location and its reliability

Fig. 9. An image of a city scene
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Fig. 10. Estimated angle
of view

Fig. 11. Estimated current location
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a b
Fig. 12ab. Bootstrap errors in the estimated location: a our method; b least squares
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