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Abstract

We present a very robust and efficient scheme for 3-D re-
construction from point correspondences over multiple im-
ages taken by uncalibrated cameras. Our method is based
on iterative projective reconstruction followed by Euclidean
upgrading. We accelerate the time-consuming iterations for
projective reconstruction by using the power method for
eigenvalue computation, accelerating the power method it-
self, and introducing SOR for further acceleration. Using
simulated and real video images, we demonstrate that our
techniques dramatically speed up the computation, in some
cases about 8,000 times faster.

1. Introduction

Various techniques have been proposed in the past
for self-calibration: 3-D reconstruction from point cor-
respondences over multiple images taken by uncali-
brated cameras [1]. Here, we adopt the two-stage
method consisting of projective reconstruction for com-
puting a 3-D shape up to projectivity and Euclidean
upgrading that transforms it to a correct shape.

For projective reconstruction, we adopt the method
of Mahamud and Hebert [6] and the method of Heyden
et al. [4]. For the Euclidean upgrading, we modify the
method of Seo and Heyden [8], which is based on the
dual absolute quadratic constraint [10].

It turns out that the iterations of projective recon-
struction far exceed the Euclidean upgrading in compu-
tation time. In order to reduce the time, we introduce
the power method for eigenvalue computation. We also
accelerate the power method itself. In addition, we in-
troduce SOR for further acceleration. Using simulated
and real video images, we demonstrate that our tech-
niques dramatically speed up the computation, in some
cases about 8,000 times faster.

2. Projective Reconstruction

2.1 Notations and Terminologies

We observe N points over M image frames, and let
(xκα, yκα) be the position of the αth point in the κth
frame. Let its 3-D position be (Xα, Yα, Zα). We rep-
resent these by1
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where ' means that the definition is up to scale. The
camera imaging can be modeled by

zκαxκα = ΠκXα, (2)

where Πκ is a 3×4 camera matrix (unknown), and zκα

is a constant called the projective depth (unknown).
1The constant f0 is a scale factor for stabilizing numerical

computation [2]. In our experiments, we used the value f0 =
600 (pixels).

Projective reconstruction is to compute matrices Πκ

and vectors Xα that satisfy Eq. (2) [1].
2.2 Primal Method

We reformulate the method of Mahamud and Hebert
[6], which we call the primal method , as follows:

Input: xκα, κ = 1, ..., M , α = 1, ..., N ,
admissible reprojection error Emin (pixels).

Output: Πκ, κ = 1, ..., M , Xα, α = 1, ..., N .

Computation:

1. Initialize the projective depths to zκα = 1.
2. For α = 1, ..., N , compute the vector pα that

vertically aligns z1αx1α, ..., zMαxMα as its com-
ponents and normalize it into unit norm.

3. Compute the unit eigenvectors u1, ..., u4 of

M =
N∑

α=1

pαp>α , (3)

for the largest four eigenvalues.
4. Compute the matrix Πκ by

Πκ = ( u1κ u2κ u3κ u4κ ) , (4)

where ukκ is the 3-D vector consisting of the
3(κ− 1) + 1th, 3(κ− 1) + 2th, and 3(κ− 1) + 3th
components of uk.

5. Do the following computations for α = 1, ..., N .

(a) Compute the unit eigenvector ξα of the ma-
trix Aα = (Aα

κλ) defined by

Aα
κλ =

∑4
k=1(xκα, ukκ)(xλα, ukλ)

‖xκα‖ · ‖xλα‖ , (5)

for the largest eigenvalue, and choose the sign
so that

∑M
κ=1 ξκα ≥ 0.

(b) Determine the projective depths zκα by

zκα =
ξκα

‖xκα‖ . (6)

(c) Recompute the vector pα.
(d) Compute the 3-D positions Xα = (Xk

α) by

Xk
α = (pα, uk), k = 1 ∼ 4. (7)

6. Compute the following reprojection error E:

E = f0

√√√√ 1
MN

M∑
κ=1

N∑
α=1

‖xκα−Z[ΠκXα]‖2 (8)

7. If E < Emin, stop. Else, go back to Step 3.

The above iterations can be viewed as a special EM
algorithm, so the convergence is guaranteed.



2.3 Dual Method

Heyden et al. [4] proposed a different type of iter-
ative projective reconstruction, which we call the dual
method . We rewrite their method as follows:

Input: xκα, κ = 1, ..., M , α = 1, ..., N ,
admissible reprojection error Emin (pixels).

Output: Πκ, κ = 1, ..., M , Xα, α = 1, ..., N .

Computation:

1. Initialize the projective depths to zκα = 1.

2. Compute the vectors

q1
κ = (zκ1xκ1/f0, zκ2xκ2/f0, ..., zκ1xκ1/f0)>,

q2
κ = (zκ1yκ1/f0, zκ2yκ2/f0, ..., zκ1yκ1/f0)>,

q3
κ = (zκ1, zκ2, ..., zκ1)>, (9)

and normalize them so that

3∑

i=1

‖qi
κ‖2 =

N∑
α=1

z2
κα‖xκ‖2 = 1. (10)

3. Compute the unit eigenvectors v1, ..., v4 of

N =
M∑

κ=1

3∑

i=1

qi
κqi>

κ , (11)

for the largest four eigenvalues.

4. Compute the 3-D positions Xα = (Xk
α) by

Xk
α =(the αth component of vk), k=1 ∼ 4. (12)

5. Do the following computations for κ = 1, ..., M .

(a) Compute the unit eigenvector ξκ of the ma-
trix Bκ = (Bκ

αβ) defined by

Bκ
αβ =

(vα, vβ)(xκα, xκβ)
‖xκα‖ · ‖xκβ‖ , (13)

where vα is the 4-D vector consisting of the
αth components of the basis vectors v1, ...,
v4. Choose the sign of ξκα so that

∑N
α=1 ξκα

≥ 0.
(b) Determine the projective depths zκα accord-

ing to Eq. (6).
(c) Recompute the vectors qi

κ, i = 1, 2, 3.
(d) Compute the matrix Πκ by

Πκ(ij) = (qi
κ, vj). (14)

6. Compute the reprojection error E in Eq. (8).

7. If E < Emin, stop. Else, go back to Step 3.

3. Euclidean Upgrading

3.1 Dual Absolute Quadratic Constraint

The solution of Eq. (2) is not unique. In fact, if
we transform one solution {Πκ, Xα} by an arbitrary
nonsingular 4× 4 matrix H in the form

Π̃κ = ΠκH−1, X̃α = HXα, (15)

Eq. (2) is also satisfied. The second of Eqs. (15) im-
plies that the 3-D position Xα is determined only up
to an arbitrary homography (or projective transforma-
tion) defined by the matrix H.

The true camera matrix Π̄κ has the form

Π̄κ = Kκ ( Rκ tκ ) , (16)

where Rκ and tκ are, respectively, the orientation and
origin of the world coordinate system relative to the
κth camera, and Kκ is the matrix of intrinsic param-
eters, for which we assume the form

Kκ =

(
fκ 0 uκ0

0 fκ vκ0

0 0 1

)
, (17)

meaning that the skew is 0 and the aspect ratio is 1
with the principal point at (uκ0, vκ0) and the focal
length fκ. If the true camera matrix Π̄κ is obtained by
multiplying the current estimate Πκ by a homography
H in the form Π̄κ ≡ ΠκH, we have the dual absolute
quadratic constraint [10]

ΠκΩΠ>
κ ' KκK>

κ , (18)

where we define

Ω ≡ Hdiag(1, 1, 1, 0)H>. (19)

3.2 Computational Procedure

Computing Ω from Eq. (19), we can obtain the recti-
fying homography H. For this, we modify the method
of Seo and Heyden [8].

They iteratively updated only the principal point
(uκ0, vκ0) so that K−1

κ ΠκΩΠ>
κ K−1>

κ approaches a di-
agonal matrix; the focal length is given from its diago-
nal elements. We take a more systematic approach: we
update the focal length fκ as well so that it approaches
a scalar multiple of the unit matrix I (we omit the de-
tails). As a result, we do not explicitly compute Ω but
directly compute the rectifying homography H and the
intrinsic parameter matrix Kκ.

Seo and Heyden [8] stop the iterations when the
magnitude of the increment (δuκ0, δvκ0) is smaller than
a specified threshold (e.g., 0.2 pixels). According to our
experiments, however, the specified threshold is some-
times not reached in the presence of large noise, and it
is difficult to predict a reachable threshold in advance.
So, we introduced the weight Wκ that reflects the con-
sistency of the κth frame and computed the median
Jmed over all the frames so that inconsistent frames
are ignored (we omit the details). As a result, our
scheme is confirmed to always converge in the presence
of however large noise.

4. Acceleration Techniques

We ran the above algorithm and found that the iter-
ations of projective reconstruction far exceed the Eu-
clidean upgrading in computation time. In order to
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Figure 1: (a) Simulated image sequence (6 frames decimated), tracking 231 points through 11 frames. (b) Real video sequence (6
frames decimated), tracking 16 points through 200 frames.

reduce the computation time, we introduce the follow-
ing techniques.

To prevent confusion as to which computation we
are referring to, let us call, in both methods, Steps 3 ∼
7 the cycle of subspace fitting and the substeps (a)∼(d)
in Step 5 the adjustment of the projective depths2.
4.1 Power Method

In each cycle, we need to compute the eigenvectors of
the 3M×3M Aα N times for all α (primal) and of the
N ×N matrix Bκ M times for all κ (dual). However,
the computed eigenvectors should not be very different
from their values in the previous cycle, so we adopt
the power method, which is an iterative algorithm. The
computation becomes efficient if we start the iterations
from the value in the previous cycle. Such a technique
was used for efficiently computing the Tomasi-Kanade
factorization [3, 7, 11].

Moreover, our algorithms have double loops of itera-
tions, so as long as the iterations of the outer cycle have
not converged, the iterations of the inner adjustment
need not strictly converge. Hence, the overall compu-
tation time can reduce by relaxing the convergence of
the power method in each cycle.

In our experiment, we stopped the power method
iterations when the difference between the current and
the previous eigenvectors is less than 10−5 in norm.
4.2 Power Method Acceleration

The power method is an iterative algorithm. So,
it can also be accelerated. Suppose we compute the
unit eigenvector w1 of a positive semidefinite symmet-
ric matrix T for the largest eigenvalue λ1. If we start
from ξ0 and write ξk = N [T kξ0], where N [ · ] denotes
normalization to unit norm, we have for ξ0 close to w1

or for a large k

ξk ≈ w1 + Cγkw2, γ =
λ2

λ1
, (20)

where w2 is the eigenvector for the second largest
eigenvalue λ2, and C is a constant. Eliminating w2

from this and the same relation for k + 1, we obtain

w1 ≈ ξk+1 − γξk

1− γ
. (21)

If γ is given, this allows us to predict w1 from ξk+1

and ξk. From Eq. (20), we can estimate γ by

γ ≈ ‖ξk+1 − ξk‖
‖ξk − ξk−1‖ . (22)

2Our “cycle” and “adjustment” correspond, respectively, to
the “E-” and the “M-steps” of the EM algorithm.

Using this, we estimate γ from ξk−1, ξk, and ξk+1 and
replace ξk+1 by N [(ξk+1 − γξk)/(1− γ)], accelerating
the iterations every other step (from ξ0 and ξ1 to ξ2,
from ξ2 and ξ3 to ξ4, ...).

We applied this to the power method computation
of the projective depth vectors ξα and ξκ and stopped
when the difference between the current and the pre-
vious values is less than 0.1 in norm.
4.3 SOR

A well known method of convergence acceleration is
the SOR (successive overrelaxation): for a sequence ξ1,
ξ2, ..., we accelerate ξk in the form

ξk ← ξk−1 + ω(ξk − ξk−1), (23)

where ω (> 1) is called the acceleration constant . It has
empirically been known that this scheme works well in
many iterative problems, but an appropriate value of ω
is very difficult to find except for special types of linear
computation; it is usually set by experience.

We apply this scheme to accelerate the projective
depth vector ξ (= ξα or ξκ) in each cycle using the
value ξ′ in the previous cycle, replacing ξ by N [ξ′ +
ω(ξ − ξ′)]. I our experiments, we set ω = 1.9.

5. Examples

Figure 1(a) shows six frames from a 11 image se-
quence of size 600 pixels that simulates perspective
projection of a cylindrical surface with focal length 600
pixels. We used the 231 grid points for 3-D reconstruc-
tion.

Figure 1(b) shows six frames decimated from a 200
frame video sequence, tracking 16 points as indicated
there. They are specified by hand in the first frame
and tracked through the rest of the frames by the KLT
(Kanade-Lucus-Tomasi) algorithm [9]; we manually in-
tervened whenever the tracking failed.

Table 1 lists the computation time and the num-
ber of cycles for the sequence in Fig. 1(a) for different

Table 1: The computation time (sec) and the number of cycles
for the sequence in Fig. 1(a) until the reprojection error is 0.1
pixels.

primal dual
time cycles time cycles

prototype 3.84 89 7.15 3
power 2.24 90 1.25 3

accelerated power 2.37 90 0.51 3
SOR 1.12 47 10.76 21
both 1.27 47 5.73 31

efficiency index = 14
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Table 2: The computation time (sec) and the number of cycles
for the sequence in Fig. 1(b) until the reprojection error is 2.01
pixels.

primal dual
time cycles time cycles

prototype 2,153.3 300 0.26 5
power 82.8 315 0.87 8

accelerated power 81.3 314 0.26 5
SOR 43.4 165 1.85 15
both 42.6 165 1.48 31

efficiency index = 8,282

Figure 2: The 3-D shape reconstructed from the video sequence
of Fig. 1(b).

methods. We stopped the iterations of the outer cycle
when the reprojection error is 0.1 pixels. We used Pen-
tium 4 3.4GHz for the CPU with 2GB main memory
and Linux for the OS. The “efficiency index” means the
ratio of the longer computation time of the prototypes
to the shortest of all.

Since the number of points is large (M = 231) and
the number of frames is small (M = 11), the primal
method is more efficient than the dual method if the
prototype is used. Although the number of iterations is
very small for the dual method, the computational bur-
den of one iteration is so heavy that the overall conver-
gence lags behind. However, the power method relieves
this burden, making the dual method more efficient
than the primal. Acceleration of the power method
further reduces the computation time to about 0.7% of
the prototype (14 times faster).

Table 2 is the corresponding results for Fig. 1(b).
We stopped when the reprojection error is 2.01 pixels;
due to the tracking accuracy limitation of the KLT, it
did not reduce in further iterations.

Since the number of frame is large (M = 200), the
primal method takes a vast amount of time if the pro-
totype is used. The power method curtailed it to about
4% (26 times faster).

Nevertheless, all these cannot compare with the dual
method. Already, the prototype converges so quickly
that the use of the power method has an adverse effect.
However, acceleration of the power method recovers the
original efficiency, and the computation is about 8,000
times faster than the prototype primal method.

For both sequences in Fig. 1(a),(b), the power
method converges very quickly for the primal method,
its acceleration has little effect, while SOR can further
speed up the computation. However, SOR has an ad-
verse effect, and its combination with power method
acceleration gains only a little.

Figure 2 shows the reconstructed 3-D shape as a tex-
ture mapped polyhedron having the tracked points as
vertices; Euclidean upgrading took 0.58 sec. We used
the method of Nakatsuji et al. [5] for optimizing the
edges between the vertices so that they are compatible
with the true shape.

6. Conclusions

We presented a robust and efficient scheme for 3-D
reconstruction from point correspondences over multi-
ple images taken by uncalibrated cameras. The main
emphasis is on the acceleration of projective recon-
struction. We observed the following:

1. The use of the power method dramatically reduce
the computation time. This is especially conspic-
uous for the primal method.

2. Acceleration of the power method has little effect
on the primal method but has a significant impact
on the dual method.

3. SOR is effective for both the primal and the dual
methods, but the effect is relatively small for the
dual method.

4. The primal method is favorable for a very large
number of points over a small number of frames;
the dual method is preferable for a small number
of points over a very large number of frames.

5. In realistic situations, the best choice is the dual
method with power method acceleration.

However, the performance also depends on the termi-
nation condition of inner loop iterations and the choice
of the acceleration constant. Further investigation is
necessary for their optimal choice.
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