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Chapter 1

L ATEST PROGRESS OF3-D RECONSTRUCTION

FROM M ULTIPLE CAMERA I MAGES

Kenichi Kanatani

Abstract

This chapter summarizes recent progress of the theories and techniques for 3-D
reconstruction from multiple images taken by multiple cameras. We start with the
camera imaging geometry in terms of homogeneous coordinates and the intrinsic and
extrinsic parameters. Next, we describe the epipolar geometry for two, three, and
four cameras, introducing such concepts as the fundamental matrix, epipolar lines,
epipoles, the trifocal tensor, and the quadrifocal tensor. Then, we present the self-
calibration technique using the absolute dual quadric constraint. Finally, we give the
definition of the affine camera model and a procedure for 3-D reconstruction based on
it. The detailed algorithms are listed in the Appendix.

1. Introduction

Analyzing camera or video images for understanding the 3-D meaning of the captured scene
is generally known ascomputer vision(alsomachine vision, robot vision, or image under-
standing, depending on the emphasis of the researchers), which is one of the most crucial
elements of autonomous robotic operations. In general terms, the procedure consists of the
following three stages:

• Image processing for detecting, extracting, and matchingfeatures, which can be
points, lines, regions, or anything that is characteristic to that scene.

• Acquiring metric information such as locations, orientations, distances, sizes, and
motions of the objects in the scene.
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Figure 1.Perspective projection.

• Obtainingsemanticinformation such as classification, recognition, labeling, index-
ing, and retrieval of specific objects in the scene.

These three stages roughly correspond to what has historically been known asearly(or low-
level) vision, intermediate-level vision, andhigh-level vision, respectively [22]. However,
these are not necessarily treated separately. In fact, these stages are closely and interactively
interwoven in most real computer vision systems.

One of the essential techniques for the second stage is to compute the 3-D shape of
the scene or objects from multiple images, know as3-D reconstructionor structure from
motion(SFM). This computation critically depends on thecamera imaging geometry, i.e.,
the geometric relationship between a 3-D scene and its projection onto a 2-D image. In
contrast, analysis for the third stage crucially relies on thedomain knowledgespecific to
individual applications such as faces, gestures, gaits, traffic, aerial photographs, and medical
images.

Although the third stage is the ultimate goal of computer vision, it is still a very chal-
lenging task, and no universally satisfactory technologies have yet been established. How-
ever, the 3-D reconstruction technique for the second stage has been extensively studied in
the last few decades to arrive at almost definitive conclusions. The aim of this chapter is
to present thus established latest technologies of 3-D reconstruction from multiple images.
Standard textbooks on this subject are, for example, [4, 5, 6, 8, 13, 14, 15, 23, 44].

2. Camera Imaging Geometry

2.1. Perspective Projection

We identify an image, or a photograph, with a mapping from a 3-D scene onto a 2-D plane
and call this mapping thecamera model. The standard model isperspective projection
(Fig. 1): we imagine in the scene a pointOc, called theviewpoint, and a planeΠc, called the
image planeor retina, and assume that a pointP in the scene is mapped to the intersection
p of the image planeΠc with the lineOcP , called theline of sight. This models an ideal
pin-hole cameraand is known to describe real cameras with sufficient accuracy.
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Figure 2.Pixels and the image coordinate system.

The line starting from the viewpointOc and perpendicularly passing through the image
planeΠc is called theoptical axis. We define anXcYcZc coordinate system with the origin
at the viewpointOc and theZc-axis along the optical axis. The intersectiono of the optical
axis with the image planeΠc is called theprincipal point. We define anxy coordinate
system with the origin at the principal pointo and thex- and they-axes parallel to theXc-
and theYc-axes, respectively (Fig. 1). Then, a point(Xc, Yc, Zc) in the scene is projected
onto a point(x, y) in the image plane given by

x = fc
Xc

Zc
, y = fc

Yc

Zc
, (1)

wherefc, called thefocal length, is the distance from the viewpointOc to the image plane
Πc.

2.2. Pixel Coordinates

In real cameras, the image plane corresponds to the array of photo-cells, orpixels. The
physical photo-cell configuration, in particular the configuration of the R-G-B (red, green,
and blue) photocells, may differ depending on the type of the camera. Conceptually, how-
ever, we can think of pixels capable of perceiving R, G, and B placed in parallel rows at
equal intervals in horizontal and vertical directions, but the vertical columns of pixels are
not necessarily orthogonal to the horizontal rows. Also, the inter-pixel distance may not be
the same in horizontal and vertical directions. Labeling the upper-left pixel(u, v) = (0, 0),
we count the pixelsu = 1, 2, ... rightward andv = 1, 2, ... downward. Thus, the integer
pair (u, v) is identified with the position at the center of that pixel. Inter-pixel, orsubpixel,
positions are specified with real number pairs(u, v) by linear interpolation. This defines a
continuouspixel coordinate systemof the image plane (Fig. 2).

If thexy coordinate system is oriented so that thex-axis is directed rightward in parallel
to the horizontal pixel rows and they-axis downward, the pixel coordinates(u, v) and the
image coordinates(x, y) are related by

u =
x

α
+

y

α
tan θ + u0, v =

y

β
+ v0, (2)
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where(u0, v0) are the pixel coordinates of the principal pointo, andα andβ are, respec-
tively, the distances between consecutive pixels in the horizontal and vertical directions. We
define the angle between the horizontal and vertical pixel directions to beπ/2 + θ and call
θ theskew angle.

Remark 1 Thexy coordinate system as defined above is “reversed” as compared with the
usual sense. This convention originates from the human intuition that a hypotheticalz-axis
extends “away” from the viewer toward the scene, making thex-, y- andz-axes a right-
handed system.

Remark 2 In most textbooks, the angle between the horizontal and vertical pixel directions
is defined to beθ. Then, the first of Eqs. (2) becomesu = x/α + (y/β) cot θ + u0. We
prefer our convention, because the skewless camera corresponds toθ = 0 rather thanθ =
π/2.

2.3. Intrinsic Parameters

Combining Eqs. (1) and (2), we have



u
v
1


 ' K




Xc

Yc

Zc


 , (3)

where and throughout this chapter the symbol' means that one side is a multiple of the
other by a nonzero constant. The matrixK is defined by

K =




fγ fγ tan θ u0

0 f v0

0 0 1


 , (4)

where we putf = fc/β, the normalized focal length so that the vertical distance between
pixel rows is 1. Customarily, it is simply called the “focal length”. We also defineγ = β/α,
called theaspect ratio. The constantsf , γ, θ, u0, andv0 are called theintrinsic parameters
of the camera, and the matrixK the intrinsic parameter matrix.

Remark 3 For digital cameras today, we can expectγ ≈ 1 andθ ≈ 0 with high precision
and the principal point(u0, v0) is nearly at the center of the photo-cell array.

Remark 4 In some textbooks, the vertical intervalβ is defined not as the distance between
consecutive “rows” but as the distance between consecutive “pixels” in the vertical direc-
tion. In that case, the second of Eqs. (2) becomesv = y/β cos θ + v0, so the (22) element
of the matrixK in Eq. (4) isf/ cos θ. If we use the skew angle convention mentioned in
Remark 2,cos θ is replaced bysin θ. However, precise interpretation of the matrixK is not
essential. Many recent textbooks simply write

K =




f1 s u0

0 f2 v0

0 0 1


 , (5)

emphasizing the fact that it isan upper triangular matrix with 1 in the (33) element.
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Figure 3.The camera coordinate system and the world coordinate system.

2.4. Motion Parameters

Since theXcYcZc coordinate system is defined with respect to the camera (i.e., the view-
pointOc and the optical axis), it is called thecamera coordinate system. We also define an
XY Z coordinate system fixed to the scene and call it theworld coordinate system. Let t be
its origin described with respect to the camera coordinate system. If the world coordinate
system is rotated byR relative to the camera coordinate system, a point in the scene with
world coordinates(X, Y, Z) has the following camera coordinates(Xc, Yc, Zc) (Fig. 3):




Xc

Yc

Zc


 = R




X
Y
Z


 + t. (6)

We call{R, t} themotion parametersor theextrinsic parametersof the camera.

Remark 5 The above motion parameters{R, t} are a description with respect to thecamera
coordinate system. Alternatively, they can be described with respect to the world coordinate
system. Lettc be the origin of the camera coordinate system described with respect to the
world coordinate system. If the camera coordinate system is rotated byRc relative to the
world coordinate system, we obtain instead of Eq. (6)




X
Y
Z


 = Rc




Xc

Yc

Zc


 + tc, (7)

and the two descriptions{R, t} and{Rc, tc} are related by

R = R>
c , t = −R>

c tc. (8)

2.5. Projection Matrix

From Eqs. (3) and (6), we can see that the pixel coordinates(u, v) are related to the world
coordinates(X,Y, Z) in the form

u ' PX, (9)

where we put

u =




u,
v
1


 , X =




X
Y
Z
1


 , (10)
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and
P = K

(
R t

)
. (11)

This 3 × 4 matrix P is called theprojection matrixor thecamera matrix. The vectors in
Eqs. (10) represent thehomogeneous coordinatesof the point(u, v) in the image and the
point (X,Y, Z) in the scene. Hereafter, we refer to points represented by vectorsu andX
simply as “pointu” and “pointX”, respectively.

Remark 6 Homogeneous coordinates are used not only for points in 2-D and 3-D but also
for lines in 2-D and planes in 3-D, as we will see later. They are the description of points,
lines, and planes with a set of real numbers, not all zero, defined up to a nonzero multiplier.
For example, triplesx1, x2, x3 andcx1, cx2, cx3 for an arbitraryc 6= 0 describe the same
point in 2-D (the superscripts are indices, not powers). Ifx3 6= 0, the usual coordinates, or
the inhomogeneous coordinates, are

x =
x1

x3
, y =

x2

x3
. (12)

If x3 = 0, the point is interpreted to be at infinity; such a point is called anideal point.
Similarly, quadruplesX1, X2, X3, X4 andcX1, cX2, cX3, cX4 for an arbitraryc 6= 0
describe the same point in 3-D. IfX4 6= 0, its inhomogeneous coordinates are

X =
X1

X4
, Y =

X2

X4
, Z =

X3

X4
. (13)

If X4 = 0, the point is anideal pointat infinity. The symbol' in Eqs. (3) and (9) reflects
the indeterminacy of the absolute scale of homogeneous coordinates.

Remark 7 If we use the motion parameters{Rc, tc} described with respect to the world
coordinate system, Eq. (11) becomes

P = K
(
R>

c −R>
c t

)
= KR>

c

(
I −t

)
. (14)

(I denotes the unit matrix.) In this chapter, we adopt the description with respect to the
camera coordinate system. Generally, the expressions become simpler if described with
respect to the camera coordinate system, because the camera imaging geometry is usually
defined with respect to the camera.

2.6. Absolute Conic

Since Eq. (9) is a relationship between homogeneous coordinates, it also holds for ideal
points. In other words, Eq. (9) defines a mapping from the 3-Dprojective spaceP3 obtained
by adding all ideal points in 3-D toR3 onto the 2-Dprojective spaceP2 obtained by adding
all ideal points in 2-D toR2.

The setΠ∞ of pointsX1, X2, X3, X4 in P3 with X4 = 0 is called theideal plane. The
setΩ∞ of (imaginary) points inΠ∞ that satisfy

(X1)2 + (X2)2 + (X3)2 = 0 (15)
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Figure 4.The absolute conic and its projection.

is called theabsolute conic. It can be shown that any projectionu of a pointX ∈ Ω∞ in
the form of Eq. (9) satisfies,irrespectiveof the motion parameters{R, t},

u>ωu = 0, ω ≡ (K−1)>K−1. (16)

The set of (imaginary) pointsu that satisfy this equation is interpreted to be the camera
projection of the absolute conicΩ∞ (Fig. 4).

Remark 8 If we are given camera images of objects in the scene with known 3-D informa-
tion, we can determine the intrinsic parameters and the motion parameters of the camera
in many different ways, depending on the type of the available 3-D information about the
scene. Such a procedure is calledcamera calibration, and most known calibration proce-
dures can be given projective geometric interpretations in terms of the absolute conic [45].

3. Epipolar Geometry

3.1. Multilinear Constraints

When geometric primitives such as points, lines, and planes in the scene are viewed by
multiple cameras located in different positions, description of the relationships among their
projection images is calledepipolar geometry(typically for two cameras) ormultilinear
geometry(typically for more than two cameras).

Suppose we observe a pointX in the scene byM cameras. Letuκ be its projection
onto theκth image,κ = 1, ...,M , andP κ the projection matrix of theκth camera. For
each camera, the relationship of Eq. (9) holds. If we introduce an indeterminate nonzero
constantλκ instead of the relation', we have

λκuκ = P κX. (17)

The constantλκ is called theprojective depth. Rearranging all the equations of this form
for κ = 1, ...,M in a matrix form, we obtain




P 1 u1 0 · · · 0
P 2 0 u2 · · · 0
... 0 0

...
...

P M 0 0 · · · uM







X
−λ1

...
−λM


 =




0
0
...
0


 . (18)
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Since someX (6= 0) andλκ, κ = 1, ..., M , that satisfy this equation should exist, the
3M × (M + 4) matrix on the left-hand side has at most rankM + 3. Hence, all(M + 4)×
(M + 4) minors should vanish. This leads to constraints on projection images inM (= 2,
3, 4) images [12].

Remark 9 It is easy to see that unless the chosen(M + 4)× (M + 4) minor contains two
or more columns ofP κ, we cannot obtain a meaningful constraint on the projection in the
κth image. In fact, if only one column ofP κ is included, the resulting minor is linear in its
elements, so its vanishing does not give any information aboutP κ. Hence, ifM projection
matrices are to be constrained by the vanishing of a(M +4)×(M +4) minor, we need2M
≤M + 4, or M ≤ 4. Thus, we can obtain constraints on only two, three, and four images.

3.2. Fundamental Matrix

ForM = 2 (two images), the matrix on the left-hand side of Eq. (18) is6× 6, so we obtain
only one constraint: the matrix has determinant 0. This is rewritten as

u>1 Fu2 = 0, (19)

whereF is a3× 3 matrix called thefundamental matrix. Its (ij) element is

Fij =
3∑

k,l,m,n=1

εiklεjmn detP klmn
1122 , (20)

whereP klmn
1122 is the4×4 matrix consisting of thekth row ofP 1, thelth row ofP 1, themth

row of P 2, and thenth row of P 2. From Eq. (20), it can be shown that the fundamental
matrixF has rank 2.

Remark 10 The symbolεijk denotes the signature of the permutation(ijk). Namely, it
takes on 1 if(ijk) is an even permutation of (123),−1 if it is an odd permutation, and 0
otherwise. This symbol is called theLevi-Civita(or Eddington) epsilon.

3.3. Epipolar Constraint

The line starting from the viewpointO1 of the first camera and passing through the point
u1 in the image plane of the first camera is called theline of sightof u1. The line of sight
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of u2 is similarly defined. Geometrically, Eq. (19) describes the requirement that the line
of sight ofu1 and the line of sight ofu2 should intersect at a point (it may be at infinity) in
the scene. (Fig. 5). The set of pointsu that satisfyl>u = 0 for somel defines a line in the
image. The vectorl labels this line up to a nonzero multiplier (i.e.,l andcl defines the same
line for c 6= 0). The three components ofl define the homogeneous coordinates of this line.
Henceforth, we abbreviate the line represented by vectorl simply as “linel”.

Eq. (19) implies that the pointu1 is on the linel1 = Fu2, which is called theepipolar
line of point u2. Eq. (19) also implies that the pointu2 is on the linel2 = F>u1, called
theepipolar lineof point u1. Thus, Eq. (19) states thata point in one image should be on
the epipolar line of the corresponding point in the other image. This requirement is called
theepipolar constraint. If follows that if the fundamental matrixF is known, one can find
point correspondence by searching the other image along the epipolar line ofu (Fig. 5).

3.4. Epipoles

Since the fundamental matrixF has rank 2, it has a null vector. So doesF>, too. In other
words, there exist vectorse1 ande1 such thatF>e1 = 0 andFe2 = 0. Identifying e1

ande2 with homogeneous coordinates of points in the image, we call them theepipoles.
Geometrically, the epipolee1 is the projection of the viewpointO2 of the second camera
onto the first image, and the epipolee2 is the projection of the viewpointO1 of the first
camera onto the second image(Fig. 5). From Eq. (19), we can see that in the first image
the epipolar linel1 = Fu2 of any pointu2 passes through the epipolee1, i.e., l1>e1 = 0.
Similarly, in the second image, the epipolar linel2 = F>u1 of any pointu1 passes through
the epipolee2, i.e, l2>e2 = 0.

It follows that epipolar lines of all points in the other image pass through the epipole,
defining apencil of lines(Fig. 5). This is easily understood if we note that the epipolar
line of a pointu2 of the second image is nothing but the intersection of the first image
plane with the plane defined byu2 and the viewpointsO1 andO2 of the two cameras. This
plane is called theepipolar planeof u2 (and hence of the corresponding pointu1). The
line connecting the two viewpointsO1 andO2 is called thebaseline. All epipolar planes
contain the baseline, defining apencil of planes(Fig. 5).

3.5. Three-View Geometry

ForM = 3 (three images), we obtain from Eq. (18) the followingtrilinear constraint:

3∑

i,j,k,l,m=1

εjlpεkmqT
jk
i ui

1u
l
2u

m
3 = 0. (21)

Here,ui
κ denotes theith component ofuκ, and

T jk
i =

3∑

l,m=1

εilm det P lmjk
1123 (22)

is called thetrifocal tensor.
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Given a linel in the image plane, the planeΠl defined by the viewpointOc and the linel
is called theback projectionof the linel. LetΠl2 be the back projection of an arbitrary line
l2 passing throughu2 in the second image, andΠl3 the back projection of an arbitrary line
l3 passing throughu3 in the third image. Geometrically, Eq. (21) describes the requirement
that the line of sight ofu1 in the first image should meet the intersection of the two planes
Πl2 andΠl3 at a single point(it may be at infinity) (Fig. 6).

Remark 11 Take an arbitrary pointv2 ( 6= u2) in the second image and an arbitrary pointv3

(6= u3) in the third image. Multiplying Eq. (21) byvp
2v

q
3 and summing it overp andq, we

obtain
3∑

i,j,k=1

T jk
i ui

1

( 3∑

l,p=1

εjlpu
l
2v

p
2

)( 3∑

m,q=1

εkmqu
m
3 vq

3

)
= 0. (23)

If we define lines
l2 = u2 × v2, l3 = u3 × v3, (24)

Eq. (23) is rewritten as
3∑

i,j,k=1

T jk
i ui

1l
2
j l

3
k = 0, (25)

which describe the geometric relationship mentioned earlier.

3.6. Four-View Geometry

ForM = 4 (four images), we obtain from Eq. (18) thequadrilinear constraint

3∑

i,j,k,l,m,n,p,q=1

εimaεjnbεkpcεlqdQ
ijklum

1 un
2up

3u
q
4 = 0, (26)

where
Qijkl = det P ijkl

1234, (27)

is called thequadrifocal tensor. Geometrically. Eq. (26) describes the requirement that
the back projectionsΠl1 , ...,Πl4 of arbitrary linesl1, ..., l4 in each image passing through
pointsu1, ...,u4, respectively, should meet at a single point(Fig. 7).
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Remark 12 Take an arbitrary pointvκ (6= uκ) in theκth image,κ = 1, 2, 3, 4. Multiplying
Eq. (26) withva

1vb
2v

c
3v

d
4 and summing it overa, b, c, andd, we obtain

3∑

i,j,k,l=1

Qijkl
( 3∑

m,a=1

εimau
m
1 va

1

)( 3∑

n,b=1

εjnbu
n
2vb

2

)( 3∑

p,c=1

εkpcu
p
3v

c
3

)( 3∑

q,d=1

εlqdu
q
4v

d
4

)
= 0.

(28)
If we define lines

l1 = u1 × v1, l2 = u2 × v2,

l3 = u3 × v3, l4 = u4 × v4, (29)

Eq. (28) is rewritten as
3∑

i,j,k,l=1

Qijkll1i l
2
j l

3
kl

4
m = 0, (30)

which describe the geometric relationship mentioned earlier.

4. 3-D Reconstruction from Images

4.1. Classification of the Problem

Suppose we observeN pointsXα, α = 1, ...,N , in the scene byM cameras having pro-
jection matricesP κ, κ = 1, ...,M . Equivalently, we may move one camera, changing its
parameters and taking pictures atM different instances, which is also equivalent to fix the
camera position and move the scene relative to it. In whichever interpretation, letuκα the
projection of pointXα onto theκth image. For each point and each image, we have the
relationship described in the form of Eq. (9):

uκα ' P κXα. (31)

Given projection imagesuκα, κ = 1, ...,M , α = 1, ...,N , the task of computingXα,
α = 1, ...,N , is called3-D reconstructionor structure from motion(SFM). The problem
is classified into the following three cases (we adopt the multiple camera interpretation for
simplicity):
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(i) The projection matrixP of each camera is known.

(ii) The intrinsic parameter matrixK of each camera is known (but the motion parame-
ters{R, t} are not).

(iii) The projection matrixP of each camera is unknown.

In Case (i), Eq. (31) determines the 3-D coordinates(Xα, Yα, Zα) of pointXα up to one
degree of freedom, which corresponds to thedepthof the pointXα along the line of sight.
In order to determine it uniquely, we need to observer two or more images. Computing the
depths of points in the scene in this way is called (multi-camera) stereo vision.

In Case (ii), the cameras are said to becalibrated. In this case, we first compute the
fundamental matrixF from point correspondences between two images. Then, the motion
parameters{R, t} are determined by solving Eq. (20), and the problem reduces to stereo
vision of Case (ii).

In Case (iii), the cameras are said to beuncalibrated. 3-D reconstruction in this case is
calledself-calibrationor autocalibration.

Remark 13 In Cases (ii) and (iii), the positions of the points in the scene and the camera
motion parameters are determined only up to an unknown scale factor. This is because small
camera motions relative to a small object located nearby cannot be distinguished from large
camera motions relative to a large object located far away, as long as projection images are
the only available information.

Remark 14 For calibrated cameras (Case (ii)), the motion parameters computed from the
fundamental matrixF has ambiguity of “mirror image”. This is because we only require
the 3-D positions of observed points to be on the lines of sight that they defines. As a result,
the reconstructed shape can be a mirror image “behind” the camera. Mirror image solutions
can be removed by imposing the constraint that observed points be in front of the cameras,
which Hartley [7] calledcheirality (or chirality) (see [14, 15] for the actual procedure).

4.2. Self-calibration

In Case (iii) (self-calibration), the projection matricesP κ and the 3-D pointsXα in Eq. (31)
are both unknown. It is immediately seen from Eq. (31) that the solution is indeterminate if
there is no constraint on the cameras or the 3-D points. In fact, ifXα andP κ are a solution,
we have another solution

X̃α ' HXα, P̃ κ ' P κH−1 (32)

for an arbitrary nonsingular4× 4 matrixH.
The first of Eqs. (32) can be regarded as applying aprojective transformation(or aho-

mography) H to the 3-D projective spaceP3 (Fig. 8). Accordingly, the pointsXα andX̃α

have the sameprojective structure. For example, collinear points are mapped to collinear
points, coplanar points are mapped to coplanar points, and theirincidence relationships,
such as “on ...”, “passing through ...” and “meeting at ...”, are preserved. However,metric
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propertiessuch as lengths and angles are not preserved. 3-D reconstruction determined up
to an arbitrary projective transformation is calledprojective reconstruction.

In order to select a correct solution, one needs some constraint on either the cameras or
the points. Selecting a unique solution by imposing such constraint is termedupgradingof
projective reconstruction intoEuclidean(or metric) reconstruction.

Note that Eqs. (32) are rewritten as

Xα ' H−1X̃α, P κ ' P̃ κH. (33)

If, for example, we know the true 3-D positionsXα of five (or more) points in general po-
sition, we can uniquely determine the projective transformationH that maps, or “rectifies”,
the five pointsX̃α to their true positionsXα. Applying the computedH to the remaining
points, we obtain the Euclidean reconstructionXα of all points. If no such five points are
known, we need to assume some constraints on cameras and find an appropriate projective
transformationH such that the projection matricesP κ rectified by the second of Eqs. (33)
satisfy the assumed constraints. This approach is called thestratified reconstruction.

Remark 15 Points in 3-D are said to bein general positionif no three of them are coplanar.
If we are given five (or more) points in general position for which we only know their
relative configuration up to a scale factor, we can reconstruct the 3-D shape up to position,
orientation, and scale by arbitrarily normalizing the position, the orientation, and the scale.

Remark 16 If no 3-D information is given about the scene, the absolute scale cannot be de-
termined from images alone, as pointed out in Remark 13. Hence, all that can be obtained
is, strictly speaking, “similarity” reconstruction rather than “Euclidean” or “metric”. How-
ever, the terms “Euclidean” and “metric” are commonly used to mean “up to similarity”.

4.3. Stratified Reconstruction

Eliminating the rotationR from Eq. (11) by using the identityRR> = I, we obtain for
each image

P κdiag(1, 1, 1, 0)P>
κ = ω∗κ, (34)

wherediag(a, b, c, ...) denotes the diagonal matrix with diagonal elementsa, b, c, ... in that
order. The3× 3 matrixω∗κ is defined by

ω∗κ ≡ KκK>
κ . (35)

SubstitutingP κ in the second of Eqs. (33) into Eq. (34), we obtain

P̃ κΩ∗
∞P̃

>
κ ' ω∗κ, (36)
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where we define the4× 4 matrixΩ∗
∞ by

Ω∗
∞ ≡ Hdiag(1, 1, 1, 0)H>. (37)

If the intrinsic parameter matrixKκ is known (i.e., the camera is calibrated), we can
determineω∗κ from Eq. (35). Even ifω∗κ is not completely known, we can obtain constraints
on the elements ofΩ∗

∞ from Eq. (36) if we have some knowledge aboutω∗κ, such as a
particular element being 0 or two particular elements being equal (we are assuming thatP̃ κ

are given). If the numberM of images is sufficiently large to give a sufficient number of
such constraints onΩ∗

∞, we can determineΩ∗
∞. Frequently used assumptions about the

cameras are:

• All cameras have the same intrinsic parameters.

• The location of the principal point is known for all cameras.

• The skew angleθ is 0 for all cameras.

• The aspect ratioγ is 1 for all cameras.

For example, if all cameras have the same intrinsic parameters (i.e., one camera is
moved to take multiple pictures without changing its parameters), the unknown is one in-
trinsic parameter matrixK, soω∗1 = ... = ω∗M = ω∗ (≡ KK>). Hence, Eq. (36) gives
5(M −1) equations ofΩ∗

∞. If the principal point is known, we can translate the coordinate
system so thatu0 = v0 = 0. Then, the (13) and (23) elements ofK in Eq. (4) are 0, and
hence the (13) and (23) elements ofω∗κ = KκK>

κ are also 0. In this case, Eq. (36) gives
2M equations ofΩ∗

∞. If the skew angle is zero in addition, the (12) element ofω∗κ is also
zero, so we obtain3M equations ofΩ∗

∞. If furthermore the aspect ratioγ is 1, the (11)
element and the (22) element are equal, givingM additional equations. If we obtain nine or
more such equations, we can solve them forΩ∗

∞ up to a scale factor. IfΩ∗
∞ is determined,

ω∗κ is determined from Eq. (36). Then, the projective transformationH is determined from
Eq. (37). The intrinsic parameter matrixKκ is obtained by solving Eq. (35).

Remark 17 From Eq. (4), the matrixω∗κ in Eq. (35) has the form

ω∗κ =




f2
κγ2

κ + s2
κ + u2

0κ fκs2
κ + u0κv0κ u0κ

fκs2
κ + u0κv0κ f2

κ + v2
0κ v0κ

u0κ v0κ 1


 , (38)

where we putsκ = fκγκ tan θ. This is a3×3 symmetric matrix with six different elements.
Hence, if all the intrinsic parameters are known, Eq. (36) gives five constraints for each
κ (one degree of freedom is lost for the indeterminate scale factor). The unknown is the
4× 4 symmetric matrixΩ∗

∞ with ten independent elements, but it has scale indeterminacy.
Hence, two views are sufficient.

If the intrinsic parameters are all unknown but are the same for all cameras (or one
camera is moved), we need to observeM views such that5(M − 1) ≥ 9, or M ≥ 3. If
the principal point(u0κ, u0κ) is known but other parameters can vary from frame to frame,
the numberM of necessary views is such that2M ≥ 9, orM ≥ 5. If the skewsκ is 0 in
addition, this is relaxed to3M ≥ 9, orM ≥ 3 views. If furthermore the aspect ratioγκ is
1, this becomes4M ≥ 9, so we still need to observeM ≥ 3 views.
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Remark 18 If we have more equations than the number of unknowns, inconsistencies arise
among these equations in the presence of noise in the data. Theoretically, we can determine
the unknowns in a statistically optimal ways [15], but this is too complicated to carry out.
So, a simple least-squares minimization is conducted in practice. This, however, causes
another problem:Ω∗

∞ should have rank 3 from the definition of Eq. (37), but it has generally
rank 4 if computed by least squares. Ad-hoc treatments, such as computing the singular
value decomposition (SVD) of the obtainedΩ∗

∞ and replacing the smallest singular value
by 0, are widely employed.

Remark 19 If Ω∗
∞ is obtained, Eq. (37) does not completely determine the projective trans-

formationH: it has rotational ambiguity, and its fourth column is arbitrary. This corre-
sponds to the fact that the orientation and the location of the world coordinate system can
be arbitrarily defined. The details of the computation is given in Appendix A.

Remark 20 From the computedΩ∗
∞, Eq. (36) determinesω∗κ up to a scale factor. Then,

Eq. (35) must be solved forKκ, which should be an upper triangular matrix. A standard
procedure, called theCholesky factorization, is well known for decomposing a given pos-
itive semi-definite symmetric matrix into the product of an upper triangular matrix and its
transpose. The indeterminate scale ofKκ is fixed so that its (33) element becomes 1.

Remark 21 The stratified reconstruction approach was proposed by Faugeras [4] and oth-
ers. First, the constant camera constraint was used by many researchers. Later, Heyden
and Åström [9, 10] showed that Euclidean reconstruction is possible using as few con-
straints as zero skew alone if a sufficient number of images and point correspondences
are available. The constraint in the form of Eq. (36) was first formulated by Triggs [42].
Pollefeys et al. [28] demonstrated that accurate reconstruction is indeed possible by this
approach. Since then, various modifications and simplifications have been devised for im-
posing the constraint. Many researchers used nonlinear optimization in one form or another,
but later simple formulations using linear computations have been found in many forms; see
[30, 31, 32]. The actual procedure of one such approach is given in Appendix A.

4.4. Dual Absolute Quadric Constraint

Comparing the second of Eqs. (16) and Eq. (35), we can see that the matrixω∗κ is the inverse
of ωκ, which represents the projection, onto theκth image, of the absolute conicΩ∞. This
means that the set of linesl that satisfyl>ω∗κl = 0 is theenvelopeof, or the set of tangent
lines to, the (imaginary) conic defined by the first of Eqs. (16). In projective geometry, this
is called theline pencil of second classdual to the conicu>ωκu = 0.

Eq. (36) states that the line pencil of second class represented byω∗κ is the projection,
onto theκth image, of theplane pencil of second classrepresented byΩ∗

∞, i.e., the set of
planes with homogeneous coordinatesπ that satisfyπ>Ω∗

∞π = 0. This is the envelope of,
or the set of tangent planes to, the absolute conicΩ∞ regarded as a degenerate (imaginary)
quadric surface (a 2-D “disk”) (Fig. 9). This envelope is called thedual absolute quadric.
From this projective geometric interpretation, Eq. (36) is called thedual absolute quadric
constraint.
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Figure 9.Dual absolute quadric constraint.

Remark 22 The fact that the constraint for Euclidean reconstruction can be given a pro-
jective geometric interpretation in terms of the dual absolute quadric is one of the greatest
theoretical advances of 3-D reconstruction from images. For this reason, almost all papers,
articles and books on 3-D reconstruction now start with theorems of projective geometry in-
volving the absolute conic. At the cost of this elegance, however, this projective geometric
interpretation makes the reconstruction procedure incomprehensible to average computer
vision researchers, who tend to shy away from such mathematical sophistication involv-
ing imaginary quantities. In reality, the actual reconstruction procedure can be described
without any reference to projective geometry, as we showed in Section 4.3. It is still being
debated among researchers whether the projective geometric interpretation helps or pre-
vents people’s understanding of this method.

4.5. Projective Reconstruction

In order to start stratified reconstruction, we need an initial projective reconstruction. The
most frequently used method for it is calledfactorization. If the projective depthλκα is
introduced as in Eq. (17), Eq. (31) is rewritten as the following equality:

λκαuκα = P κXα. (39)

Let ũα be the3M -D vector obtained by vertically stackingλ1αu1α, λ2αu2α, ...,λMαuMα,
andp̃i the3M -D vector obtained by vertically stacking theith columns ofP 1, P 2, ...,P M .
Then, Eq. (39) is expressed in the form

ũα = X1
αp̃1 + X2

αp̃2 + X3
αp̃3 + X4

αp̃4, (40)

whereXi
α is theith component of the vectorXα. Eq. (40) states that theN vectorsũα are

all constrained to be in the4-D subspaceL ofR3M spanned by{p̃1, p̃2, p̃3, p̃4}. This fact
is called thesubspace constraint.

We can see that Eq. (39) holds if we multiply both the projective depthλκα and the
homogeneous coordinatesXα by a common nonzero constantcα. As a result, the vector
ũα is multiplied bycα. In order to remove this indeterminacy, we normalizeũα to be a unit
vector:‖ũα‖ = 1. Then, we obtain the following iterative procedure for computingXα:

1. Give initial values for the projective depthsλκα.
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2. Compute the3M -D vectorsũα and fit a 4-D subspaceL to the resulting̃uα by least
squares.

3. Adjust the projective depthsλκα so that the square distance from eachũα to the fitted
subspaceL is minimized.

4. Go back to Step 2, and repeat this until the computation converges.

5. Letting an arbitrary orthonormal basis of the converged subspaceL bep̃i, determine
Xα by expanding̃uα in the form of Eq. (40) by least squares.

Remark 23 In Step 1, the initial values of the projective depthsλκα can be set to 1. If all
the cameras are “affine cameras” (to be defined in the next section), it can be shown that a
solution such thatλκα = 1 exists.

Remark 24 The least-squares solution in Step 2 can be immediately obtained by solving an
eigenvalue problem. In fact, if we let

C =
N∑

α=1

ũαũ>α , (41)

the subspaceL is spanned by the eigenvectors ofC for the largest four (positive) eigenval-
ues; the rest of the eigenvalues should vanish if the solution is exact. Alternatively, we may
compute the singular value decomposition (SVD) in the form

(
ũ1 · · · ũN

)
= UΛV >, (42)

whereU is a 3M × 3M orthogonal matrix,V is a N × N orthogonal matrix, andΛ is
a diagonal matrix. The diagonal elements ofΛ consist of singular values in descending
order; only four are nonzero if the solution is exact. The basis of theL is given by the first
four columns ofU . Usually, the use of SVD is computationally more efficient than the
eigenvalue computation of Eq. (41).

Remark 25 The factorization approach to projective reconstruction was first introduced by
Sturm and Triggs [34] and Triggs [41] with the observation that Eq. (39) for allκ andα can
be rearranged in the form




λ11u11 · · · λ1Nu1N
...

...
...

λM1uM1 · · · λMNuMN


 =




P 1
...

P M




(
X1 · · · XN

)
. (43)

In our notation, the vector̃uα is theαth column of the matrix on the left-hand side, and
p̃i is theith column of the first matrix on the right-hand side. Sturm and Triggs [34] and
Triggs [41] determined the projective depthsλκα so that the matrix on the left-hand side of
Eq. (43) can be factorized into two matrices, hence the name “factorization”. To do this,
they determined the projective depthsλκα by using the epipolar constraints (Section 3.3)
on pairwise images, computing the fundamental matrices of image pairs in advance. See
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Deguchi [2] for more details. Ueshiba and Tomita [43] did direct numerical search forλκα

based on the perturbation theorem of SVD. It was Heyden et al. [11] who explicitly stated
the subspace constraint and reduced the problem to eigenvalue problem solving. However,
they considered the space of the vectors constructed from “all projected points in each
image”, rather than the vectors constructed from “each projected point in all images”, as in
the above formulation. In this sense, their method is “dual” to the above treatment, which
is based on Mahumud and Herbert [25]. Mahumud et al. [26] also presented an alternative
update strategy.

Remark 26 In Step 3, it is easy to see that the square distance is a quadratic form in
λκα [25]. So, the solution that minimizes this subject to the normalization‖ũα‖2 =∑M

κ=1 ‖uκα‖2λ2
κα = 1 is directly obtained by solving a generalized eigenvalue problem

[15]. In Appendix B, the detailed procedure of Steps 1 – 5 (“primal method”) is described
together with its dual form (“dual method”).

Remark 27 Iterations of Steps 2 – 4 are guaranteed to converge, because the sum of square
distances of̃uα to the fitted subspaceL monotonically decreases due to the minimization
in Step 3. This type of iteration is a special variant of theEM algorithm[3]. However, the
convergence is, though guaranteed, very slow in general.

5. 3-D Reconstruction from Affine Cameras

5.1. Affine Cameras

In terms of homogeneous coordinates, perspective projection can be written as a linear
equation in the form of Eq. (9), but this is in appearance only; the relationship is essentially
nonlinear, as can be seen from Eq. (3), which makes the subsequent analysis very difficult.
The analysis is made much easier if Eq. (3) is approximated by a linear relationship in the
form

(
u
v

)
= Π




Xc

Yc

Zc


 + π, (44)

whereΠ is a 2 × 3 matrix, π is a 2-D vector, and(Xc, Yc, Zc) is a point in the scene
described with respect to the camera coordinate system. This approximation holds up to
reasonable accuracy if

1. the object of our interest is localized around the world coordinate origint, and

2. the size of the object is small as compared with‖t‖.

The approximate imaging geometry in the form of Eq. (44) is called anaffine camera.
Unlike the perspective camera model, the elements of the matrixΠ and the vectorπ in
Eq. (44) are now some functions of the motion parameters{R, t}. In order that Eq. (44)
well mimic the perspective projection of Eq. (1), we require the following:

(i) The camera imaging is symmetric around theZ-axis.
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(ii) The camera imaging does not depend onR.

(iii) The frontal parallel plane passing through the world coordinate origin is projected as
if by perspective projection.

Requirement (i) states that if the scene is rotated around the optical axis by an angle
θ, the resulting image should also rotate around the image origin by the same angleθ,
a very natural requirement. Requirement (ii) is also natural, since the orientation of the
world coordinate system can be defined arbitrarily, and such indeterminate parameterization
should not affect the actual observation. Requirement (iii) corresponds to the assumption
that the object of our interest is small and localized around the world coordinate origint. It
can be shown that in order that Requirements (i) – (iii) be satisfied, Eq. (44) must have the
following form [20]:

(
u
v

)
=

1
ζ

((
Xc

Yc

)
+ β(tz − Zc)

(
tx
ty

))
. (45)

Here, tx, ty, andtz are the three components oft, and{ζ, β} are arbitrary functions of√
t2x + t2y andtz; functionζ determines the size of the projected image, while functionβ

describes the deformation of the projection image as the point moves away from the plane
Zc = tz. Typical examples are the following three (Fig. 10):

Orthographic projection

ζ = 1, β = 0. (46)

Weak perspective(or scaled orthographic) projection [27, 40]

ζ =
tz
fc

, β = 0. (47)

Paraperspective projection[27]

ζ =
tz
fc

, β =
1
tz

. (48)

Remark 28 The concept of affine camera and its epipolar geometry were presented by
Shapiro et al. [33]. It was also shown that any affine camera can be interpreted to be parap-
erspective projection by appropriately adjusting the scale, the position, and the orientation
of the world coordinate system [1]. This fact was exploited for object recognition from a
single image [39]. The weak perspective and paraperspective models were introduced by
Tomasi and Kanade [40] and Poelman and Kanade [27]. The generic form of Eq. (45) was
derived by Kanatani et al. [20].
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(c) Paraperspective projection.

Figure 10.Affine camera models.

5.2. Affine Space Constraint

If a point in the scene is represented by a vectorXα of homogeneous coordinates with
the fourth component 1, Eqs. (6) and (44) imply that its projection onto theκth image is
represented by a vectoruκα with the third component 1 in the form

uκα =
(

ΠκRκ Πκtκ+πκ

0 0 0 1

)
Xα, (49)

whereΠκ andπκ are, respectively, the values of the matrixΠ and the vectorπ in Eq. (44)
for the κth image, and{Rκ, tκ} are the motion parameters of theκth camera. Eq. (49)
shows that an affine camera is a special case of the general projection in the form of Eq. (39)
with the conditions that

• the third row of the projection matrixP κ is (0 0 0 1), and

• the projective depthsλκα are all 1 (Remark 23).

It follows that, corresponding to Eq. (40), the following relationship holds:

ũα = Xαp̃1 + Yαp̃2 + Zαp̃3 + p̃4. (50)

As in Section 4.5,̃uα is a vector, which we call thetrajectoryof theαth point, obtained by
vertically stackingu1α, u2α, ...,uMα, while p̃i is a vector obtained by vertically stacking
the ith columns of the matrix on the right-hand side of Eq. (49) forκ = 1, ...,M . We call
p̃1, ..., p̃4 themotion vectors. We can see that every third component of the vector equation
in Eq. (50) gives the identity 1 = 1, so they can be removed. As a result, all the trajectories
ũα and the motion vectors̃pi become2M -D vectors. Eq. (50) states that all the trajectories
ũα are constrained to be in the3-D affine spaceA ofR2M passing through̃p4 and spanned
by the motion vectors{p̃1, p̃2, p̃3}. This fact is called theaffine space constraint.

Remark 29 The affine space constraint is not only a basis for 3-D reconstruction from affine
camera images but also the core principle ofmultibody motion segmentationfrom images.
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This is because if we observe multiple objects that are moving independently in the scene,
the affine space constraint should hold for each rigid motion. Hence, if we track feature
points that belong to multiple objects, classifying them into different motions is equivalent
to classifying their trajectories, regarded as2M -D vectors, into different affine spaces in
R2M . See [16, 17, 18, 35, 36, 37, 38] for actual applications.

5.3. Affine Reconstruction and Metric Constraints

The standard procedure for 3-D reconstruction based on the affine space constraint is called
factorizationfor the reason explained shortly.

First, we fit a 3-D affine spaceA to the trajectories̃uα by least squares. It is specified
by a particular point̃pC ∈ A and orthonormal vectors{q̃1, q̃2, q̃3} that spanA at p̃C . If
we identify {q̃1, q̃2, q̃3} with {p̃1, p̃2, p̃3} in Eq. (50), we can determine(Xα, Yα, Zα)
by expanding each̃uα over them in the same way we did in Section 4.5. However,p̃C

can be anywhere inA, and{q̃1, q̃2, q̃3} can be any three linearly independent vectors,
not necessarily orthonormal. Hence, the 3-D shape reconstructed fromp̃C and{q̃1, q̃2,
q̃3} has ambiguity up to an affine transformation. Such a reconstruction is calledaffine
reconstruction. In order to upgrade the solution to Euclidean, we need to rectify the basis
correctly by an affine transformation in the form

p̃i =
3∑

j=1

Ajiq̃j . (51)

The translational ambiguity due to the arbitrariness ofp̃C has no effect on the reconstructed
3-D shape. The rectifying transformation matrixA = (Aij) is determined by the condition
that each̃pi consists of coordinates of points in the scene viewed by an affine camera that
has the form of Eq. (49). This condition, known as themetric constraint, is obtained, as
in the case of the dual absolute quadric constraint, by eliminatingRκ from the projection
relation of Eq. (49) by using the identityRκR>

κ = I.
Let Q be the2M × 3 matrix with columns̃q1, q̃2, andq̃3 in that order. Letq†κ(1) and

q†κ(2) be the(2κ − 1)th and the2κth columns ofQ>, respectively. We define the3 × 2

matrixQ†
κ by

Q†
κ =

(
q†κ(1) q†κ(2)

)
. (52)

It can be shown (see Appendix C for the derivation) that if we let

T = AA>, (53)

the metric constraint is written in the following form [20]:

Q†>
κ TQ†

κ = ΠκΠ>
κ . (54)

As in the stratified reconstruction, we can obtain from Eq. (54) a set of equations forT
from the knowledge about the camera model, i.e., the relationships among the elements of
the matrixΠκΠ>

κ on the right-hand side of Eq. (54). After that, we can obtain the rectifying
matrix A by decomposing the computedT in the form of Eq. (53). The computational
details for the typical models of Eqs. (46) – (48) and the general affine camera model of
Eq. (45) are described in Appendix C.
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Remark 30 As mentioned in Section 5.1, the affine camera model is a good approximation
when the object of our interest is localized around the world coordinate origin. In such a
situation, the world coordinate origin (which can be defined arbitrarily) can be located at
the centroid of points(Xα, Yα, Yα), which means

N∑

α=1

Xα =
N∑

α=1

Yα =
N∑

α=1

Zα = 0. (55)

Let ũC be the centroid of the trajectories̃uα:

ũC =
1
N

N∑

α=1

ũα. (56)

From Eqs. (50) and (55), we can see that the centroidũC coincide withp̃4: ũC = p̃4. As
in the case of stratified reconstruction, the basis of the affine spaceA that optimally fits
the trajectories̃uα and passes through their centroidũC is given by the eigenvectors of the
matrix

C =
N∑

α=1

(ũα − ũC)(ũα − ũC)>, (57)

for the largest three eigenvalues. Alternatively, we may compute the singular value decom-
position (SVD) in the form

(
ũ1 − ũC · · · ũN − ũC

)
= UΛV >, (58)

whereU is a2M × 2M orthogonal matrix,V is aN × N orthogonal matrix, andΛ is a
diagonal matrix. The basis of theA is given by the first three columnsU .

Remark 31 If we let ũ′α = ũ′α − ũC , Eq. (50) forα = 1, ...,N can be rearranged in the
following form:

(
ũ′1 · · · ũ′N

)
=

(
p̃1 p̃2 p̃3

)



X1 Y1 Z1
...

...
...

XN YN ZN


 . (59)

Hence, computing the solution{Xα, Yα, Zα} can be given the interpretation that we are
factorizingthemeasurement(or observation) matrixW =

(
ũ′1 · · · ũ′N

)
into the product

of two matrices: the first describes the motion; the second the shape. This is the origin of the
term factorization, named by Tomasi and Kanade [40], and the subsequent papers [24, 27]
adopt this interpretation. Sturm and Triggs [34] and Triggs [41] presented a projective
reconstruction procedure in a similar formalism, and this lead to the term “factorization”
also for the approach described in Section 4.5 (Remark 25).

Remark 32 Since the factorization gives the solution by linear computation alone without
any iterative search, it is widely used for many applications, such as object recognition
and classification, which do not require so very high accuracy of the 3-D shape. Also,
this method can be used to obtain a good initial guess of projective reconstruction for the
stratified reconstruction.
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Remark 33 When we say that we obtain “affine reconstruction” if the metric constraint is
not imposed, we must keep in mind that an affine camera is a hypothetical concept; it only
approximates existing cameras, which are modeled as perspective projection. Hence, if
we use perspectively projected images as input, the resulting shape is not exactly affine
reconstruction and is not exactly Euclidean even if the metric constraint is imposed.

Remark 34 The 3-D shape reconstructed by factorization is not unique, having the follow-
ing ambiguity:

(i) The absolute scale is indeterminate.

(ii) The orientation of the world coordinate system is indeterminate.

(iii) Mirror image ambiguity exists.

The absolute scale indeterminacy is unavoidable as long as images are only available infor-
mation (Remark 13). In fact, we can see from Eq. (50) that multiplying{p̃1, p̃2, p̃3} by a
nonzero constantc gives rise to the same effect as dividing{Xα, Yα, Zα} by c. The orien-
tation of the world coordinate system is indeterminate, because it can be arbitrarily defined
in the scene. The mirror image ambiguity arises from the fact that the rectifying matrixA
is determined by Eq. (53), which can be rewritten asT = (±AR)(±AR)> for an arbi-
trary rotation matrixR. The indeterminacy of the rotationR corresponds to the orientation
ambiguity; the indeterminacy of the sign corresponds to the mirror image ambiguity.

6. Concluding Remarks

This chapter has summarized recent advancements of the theories and techniques for 3-D
reconstruction from multiple images. We started with the description of the camera imag-
ing geometry as perspective projection in terms of homogeneous coordinates. We defined
the intrinsic and extrinsic (motion) parameters of the camera by introducing the camera
coordinate system and the world coordinate system.

It was shown that the camera imaging is regarded as a mapping from the 3-D projective
spaceP3 onto the 2-D projective spaceP2 and that the absolute conic is invariant to camera
motions, providing projective geometric interpretations to camera calibration procedures.
Next, we described the epipolar geometry for two, three, and four cameras, introducing
such concepts as the fundamental matrix, epipolar lines, epipoles, the trifocal tensor, and
the quadrifocal tensor.

We then described the self-calibration technique based on the stratified reconstruction
approach, using the absolute dual quadric constraint. We showed that an elegant projec-
tive geometric interpretation can be given but that it is not essential or even necessary for
actually doing 3-D reconstruction computations. We also described the procedure for com-
puting a projective reconstruction by the factorization based on the subspace constraint.

Finally, we gave the definition of the affine camera model and a procedure for 3-D
reconstruction based on it. We discussed possible forms of the affine camera, described the
affine space constraint, and introduced the metric constraint that is necessary for Euclidean
reconstruction. The detailed procedures for 3-D reconstruction are given in the Appendix.
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A. Euclidean Upgrading from Projective Reconstruction

Here, we describe the computational procedure for computingΩ∗
∞ in Eq. (35) andH in

Eq. (37), given the projection matrices̃P κ of projective reconstruction (the projective re-
construction procedure is given in Appendix B). We then give the procedure for computing
the 3-D shapeXα and the motion parameters{Rκ, tκ} using the computed projective
transformationH.

The following is a modification of the scheme proposed by the method of Seo and
Heyden [31], to which several techniques are introduced for increasing robustness. The
basic assumption here is that the skew anglesθκ are all 0 and the aspect ratiosγκ are all 1
(Sections 2.2 and 2.3). Hence, unknown camera parameters are the focal lengthsfκ and the
principal points(uκ0, vκ0) for M frames.

A.1. Computation of Ω

Substituting Eq. (35) into Eq. (36), we have

P̃ κΩ∗
∞P̃

>
κ ' KκK>

κ . (60)

Suppose we have an estimatefκ of the focal length and an estimate(uκ0, vκ0) of the prin-
cipal point for each frame. We tentatively let

Kκ =




fκ 0 uκ0

0 fκ vκ0

0 0 1


 . (61)

(See Eq. (4). Keep in mind that we are assuming that the skew angle is 0 and the aspect
ratio is 1). Multiplying Eq. (60) byK−1

κ from left andK−1>
κ from right, we have

QκΩ
∗
∞Q>

κ ≈ scalar× I, (62)

where we define
Qκ ≡ K−1

κ P̃ κ. (63)

Eq. (62) implies that the (11) and (22) elements ofQκΩ
∗
∞Q>

κ are approximately equal, and
its (12), (23), and (31) elements are approximately 0. Namely,

4∑

i,j=1

Qκ(1i)Qκ(1j)Ω
∗
∞(ij) −

4∑

i,j=1

Qκ(2i)Qκ(2j)Ω
∗
∞(ij) ≈ 0, (64)

4∑

i,j=1

Qκ(1i)Qκ(2j)Ω
∗
∞(ij) ≈ 0, (65)

4∑

i,j=1

Qκ(2i)Qκ(3j)Ω
∗
∞(ij) ≈ 0, (66)



Latest Progress of 3-D Reconstruction from Multiple Camera Images 57

4∑

i,j=1

Qκ(3i)Qκ(1j)Ω
∗
∞(ij) ≈ 0, (67)

whereQκ(ij) andΩ∗∞(ij) are the(ij) elements of the matricesQκ andΩ∗
∞, respectively.

We determineΩ∗
∞ by minimizing

K =
M∑

κ=1

Wκ

(
(Eq. (64))2 + (Eq. (65))2 + (Eq. (66))2 + (Eq. (64))2

)

=
4∑

i,j,k,l=1

AijklΩ∗∞(ij)Ω
∗
∞(kl), (68)

whereWκ is an appropriate weight (initially we setWκ = 1). The3× 3× 3× 3 tensorA =
(Aijkl) has the form

Aijkl =
M∑

κ=1

Wκ

(
Qκ(1i)Qκ(1j)Qκ(1k)Qκ(1l) −Qκ(1i)Qκ(1j)Qκ(2k)Qκ(2l)

−Qκ(2i)Qκ(2j)Qκ(1k)Qκ(1l) + Qκ(2i)Qκ(2j)Qκ(2k)Qκ(2l) +
1
4
(Qκ(1i)Qκ(2j)Qκ(1k)Qκ(2l)

+Qκ(2i)Qκ(1j)Qκ(1k)Qκ(2l) + Qκ(1i)Qκ(2j)Qκ(2k)Qκ(1l) + Qκ(2i)Qκ(1j)Qκ(2k)Qκ(1l))

+
1
4
(Qκ(2i)Qκ(3j)Qκ(2k)Qκ(3l) + Qκ(3i)Qκ(2j)Qκ(2k)Qκ(3l) + Qκ(2i)Qκ(3j)Qκ(3k)Qκ(2l)

+Qκ(3i)Qκ(2j)Qκ(3k)Qκ(2l)) +
1
4
(Qκ(3i)Qκ(1j)Qκ(3k)Qκ(1l) + Qκ(1i)Qκ(3j)Qκ(3k)Qκ(1l)

+Qκ(3i)Qκ(1j)Qκ(1k)Qκ(3l) + Qκ(1i)Qκ(3j)Qκ(1k)Qκ(3l))
)
. (69)

The absolute scale ofΩ∗
∞ cannot be determined from Eq. (62), so we tentatively adopt

normalization
∑4

i,j=1 Ω∗2∞(ij) = 1. SinceΩ∗
∞ is a symmetric matrix, we can write

Ω∗
∞ =




w1 w5/
√

2 w6/
√

2 w7/
√

2
w5/

√
2 w2 w8/

√
2 w9/

√
2

w6/
√

2 w8/
√

2 w3 w10/
√

2
w7/

√
2 w9/

√
2 w10/

√
2 w4


 . (70)

Then, the normalization
∑4

i,j=1 Ω∗2∞(ij) = 1 is equivalent to
∑10

i=1 w2
i = 1. If we define the

10× 10 matrix

A† =




A1111 A1122 A1133 A1144

√
2A1112

A2211 A2222 A2233 A2244

√
2A2212

A3311 A3322 A3333 A3344

√
2A3312

A4411 A4422 A4433 A4444

√
2A4412√

2A1211

√
2A1222

√
2A1233

√
2A1244 2A1212√

2A1311

√
2A1322

√
2A1333

√
2A1344 2A1312√

2A1411

√
2A1422

√
2A1433

√
2A1444 2A1412√

2A2311

√
2A2322

√
2A2333

√
2A2344 2A2312√

2A2411

√
2A2422

√
2A2433

√
2A2444 2A2412√

2A3411

√
2A3422

√
2A3433

√
2A3444 2A3412
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√

2A1113

√
2A1114

√
2A1123

√
2A1124

√
2A1134√

2A2213

√
2A2214

√
2A2223

√
2A2224

√
2A2234√

2A3313

√
2A3314

√
2A3323

√
2A3324

√
2A3334√

2A4413

√
2A4414

√
2A4423

√
2A4424

√
2A4434

2A1213 2A1214 2A1223 2A1224 2A1234

2A1313 2A1314 2A1323 2A1324 2A1334

2A1413 2A1414 2A1423 2A1424 2A1434

2A2313 2A2314 2A2323 2A2324 2A2334

2A2413 2A2414 2A2423 2A2424 2A2434

2A3413 2A3414 2A3423 2A3424 2A3434




, (71)

Eq. (68) is written as

K =
10∑

i,j=1

A†ijwiwj . (72)

Hence, minimization of Eq. (68) subject to
∑4

i,j=1 Ω∗2∞(ij) = 1 reduces to minimization

of Eq. (72) subject to
∑10

i=1 w2
i = 1. The solution is given by the unit eigenvectorw =

(wi) of the matrixA† = (A†ij) (alternatively, we can use SVD, but explicit expressions
are cumbersome to write down). The computedw = (wi) is then converted to a4 × 4
matrix in the form of Eq. (70). However, the sign of the eigenvectorw, hence ofΩ∗

∞, is
indeterminate. Also,Ω∗

∞ must be positive-semi definite with rank 3. So, we redefineΩ∗
∞

as follows. Letσ1 ≥ · · · ≥ σ4 be the eigenvalues ofΩ∗
∞, andu1, ...,u4 the corresponding

unit eigenvectors. We let

Ω∗
∞ =

{
σ1u1u

>
1 + σ2u2u

>
2 + σ3u3u

>
3 σ3 > 0

−σ4u4u
>
4 − σ3u3u

>
3 − σ2u2u

>
2 σ2 < 0

. (73)

A.2. Update ofKκ

Suppose the left-hand side of Eq. (62) for the computedΩ∗
∞ has the form

QκΩ
∗
∞Q>

κ =




cκ(11) cκ(12) cκ(13)

cκ(21) cκ(22) cκ(23)

cκ(31) cκ(32) cκ(33)


 . (74)

If this is not a scalar multiple of the unit matrixI, we updateKκ in the form ofKκ ←
δKκKκ, where we let

δKκ =




δfκ 0 δuκ0

0 δfκ δvκ0

0 0 1


 . (75)

The incrementδKκ is determined in such a way that Eq. (74) is approximated by
δKκδK>

κ . From Eqs. (74) and (75), we find that

δuκ0 =
cκ(13)

cκ(33)
, δvκ0 =

cκ(23)

cκ(33)
,
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δfκ =

√
1
2

(cκ(11) + cκ(22)

cκ(33)
− δu2

κ0 − δv2
κ0

)
. (76)

Since the projection matrix̃P κ can be defined only up to scalar multiplication (see
Eq. (31)), the matrixQκ in Eq. (63) also has scale indeterminacy. So, we normalizeQκ

by dividing it by√cκ(33) so that Eq. (74) has approximately the same scale asI for all κ.
However,cκ(33) can be negative in the presence of extremely large noise, and the inside
of the square root in Eqs. (76) may also become negative. In such a case, we skip that
frame in the computation. To do this systematically, we make the weightWκ reflect the
closeness of Eq. (74) to a scalar multiple ofI. We also measure the goodness of estimation
not by totaling the goodness measures of individual frames but by their “median” so that
exceptional frames are not counted (see Section A.4).

A.3. Computation of H

SinceΩ∗
∞ has the form of Eq. (73), a4× 4 matrixH that satisfies Eq. (37) is given up to a

rotation by
(√

σ1u1
√

σ2u2
√

σ3u3 v
)

for σ3 > 0 and
(√−σ4u4

√−σ3u3
√−σ2u2 v

)
for σ2 < 0, wherev is an arbitrary vector. The indeterminate freedom of rotation and the
arbitrariness of the vectorv correspond to the fact that the orientation and the location of the
world coordinate system are arbitrary. However, the matrixH must be nonsingular, which
means thatv must be linearly independent of the first, the second, and the third columns of
H. So, we choose asv a unit vector orthogonal to them. This means that we can take asv
the remaining unit eigenvector ofΩ∗

∞.

A.4. Computational Procedure

The above computation is summarized as follows:

Input:

• Approximate principal points(uκ0, vκ0) and the focal lengthsfκ, κ = 1, ...,M .

• Projection matrices̃P κ, κ = 1, ...,M .

Output:

• Rectifying projective transformationH.

• Intrinsic parameter matricesKκ, κ = 1, ...,M .

Computation:

1. Let
Ĥ = I4×4, K̂ = I3×3, Ĵmed = ∞, (77)

where the subscript ofI denotes its size (omitted if understood), and∞ means a
sufficiently large number.

2. InitializeKκ in the form of Eq. (61), and letWκ = 1 andγκ = 1.
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3. Let
Qκ = γκK−1

κ P̃ κ. (78)

4. Compute the tensorA = (Aijkl) in Eq. (69).

5. Compute the 10-D unit eigenvectorw of the10 × 10 matrix A in Eq. (71) for the
smallest eigenvalue.

6. Compute the tentative matrixΩ∗
∞ in Eq. (70).

7. Compute the eigenvaluesσ1 ≥ · · · ≥ σ4 of Ω∗
∞ and the corresponding unit eigenvec-

torsu1, ...,u4.

8. Compute

H =
{ (√

σ1u1
√

σ2u2
√

σ3u3 u4

)
σ3 > 0(√−σ4u4

√−σ3u3
√−σ2u2 u1

)
σ2 < 0

. (79)

9. Do the following computation forκ = 1, ...,M :

(a) Computecκ(ij) by Eq. (74), and let

Fκ =
cκ(11) + cκ(22)

cκ(33)
−

(cκ(13)

cκ(33)

)2
−

(cκ(23)

cκ(33)

)2
. (80)

(b) If cκ(33) > 0 andFκ > 0, computeδuκ0, δvκ0, andδfκ in Eqs. (76) and let

Jκ =
(cκ(11)

cκ(33)
− 1

)2
+

(cκ(22)

cκ(33)
− 1

)2
+ 2

c2
κ(12) + c2

κ(23) + c2
κ(31)

c2
κ(33)

. (81)

Then, updateKκ andγκ as follows:

Kκ ← KκδKκ, γκ ← γκ√
cκ(33)

. (82)

(c) Else, letJκ =∞.

10. Compute the following median:

Jmed = medM
κ=1Jκ. (83)

11. If Jmed ≈ 0, returnH andKκ and stop.

12. If Jmed ≥ Ĵmed, returnĤ andK̂κ asH andKκ and stop.

13. Go back to Step 3 after letting

Ĵmed ← Jmed, Ĥ ← H, K̂κ ← Kκ, Wκ ← e−Jκ/Jmed . (84)

Note that this algorithm does not compute the matrixΩ∗
∞ in Eq. (73); it directly outputs the

rectifying projective transformationH and the intrinsic parameter matrixKκ.
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A.5. 3-D Positions and Motion Parameters

Using the computedH, we can rectify the projection matrices̃P κ and the 3-D positions
Xα as follows:

P̄ κ = P κH, X̄α = H−1Xα. (85)

The 3-D coordinates(Xα, Yα, Zα) are given by Eqs. (13). From the computedKκ, the
motion parameters{Rκ, tκ} are to be determined such that

K−1
κ P̄ κ '

(
Rκ tκ

)
. (86)

So, we adjust the scale ofK−1
κ P̄ κ so that its first three columns are all unit vectors (in

practice, their average norm is made 1). We choose the sign ofK−1
κ P̄ κ so that its first

three columns define a rotation matrixRκ of determinant 1. Then, the fourth column gives
the translationtκ. The resultingRκ may not be strictly orthonormal in the presence of
noise, so we enforce the orthonormality by computing the singular value decomposition

Rκ = Udiag(λ1, λ2, λ3)V >, (87)

and lettingRκ = UV > [15].

A.6. Mirror Image Solution Removal

Now, we remove the mirror image solution (Remark 14). If a point is at(Xα, Yα, Zα), its
coordinates(Xc

κα, Y c
κα, Zc

κα) with respect to theκth camera coordinate system are given by



Xc
κα

Y c
κα

Zc
κα


 = tκ + Rκ




Xα

Yα

Zα


 . (88)

We can judge that it is in front of the camera if

N∑

α=1

sgn(Zc
1α) > 0, (89)

wheresgn(x) returns 1, 0, and−1 for x > 0, x = 0, andx < 0, respectively. If Eq. (89) is
not satisfied, we reverse the signs ofXα, Yα, Zα, andtκ. We introducesgn(x) because if
we require

∑N
α=1 Zc

1α > 0, the judgment may be reversed when a very large depthZc
1α ≈

∞ may be computed to beZc
1α ≈ −∞ in the presence of noise. Theoretically, we should

require
∑M

κ=1

∑N
α=1 sgn(Zc

κα) > 0, but considering the first camera alone is sufficient in
practice.

B. Procedure for Projective Reconstruction

Here, we give two algorithms for projective reconstruction. One is the method of Mahamud
and Hebert [25], which we call theprimal method. The other, which we call thedual
method, is based on Heyden et al. [11]. We modify these, using corresponding symbols and
notations so that their mutual relationships become clear.
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∼

∼

Figure 11. Orthogonal projection of̃uα ontoL.

B.1. Primal Method

Eq. (40) indicates that vectors̃uα (= the columns of the matrix on the left-hand side of
Eq. (43)) are constrained to be in the 4-D subspaceL spanned by{p̃1, p̃2, p̃3, p̃4} if the
projective depthszκα are all correct. This does not hold ifzκα are not correct, so we update
zκα so that each̃uα is as close toL as possible, identifying{p̃1, p̃2, p̃3, p̃4} with the unit
eigenvectors ofC in Eq. (41) for the largest four eigenvalues (or the first four columns of
U in Eq. (42)). The orthogonal projection ofũα ontoL is (Fig. 11)

ûα =
4∑

i=1

(ũα, p̃i)p̃i, (90)

where and hereafter we denote the inner product of vectorsa andb by (a, b). Sinceũα is
normalized to unit norm (Section 4.5), the distance ofũα from the subspaceL is

√
‖ũα‖2 − ‖ûα‖2 =

√√√√1−
4∑

i=1

(ũα, p̃i)2. (91)

Minimizing this is equivalent to maximizing

Jα =
4∑

i=1

(ũα, p̃i)
2 =

4∑

i=1

( M∑

κ=1

(zκαxκα, piκ)
)2

=
M∑

κ,λ=1

( 4∑

i=1

(xκα, piκ)(xλα,piλ)
)
zκαzλα, (92)

wherepiκ is the 3-D vector consisting of the3(κ−1)+1th,3(κ−1)+2th, and3(κ−1)+3th
components of̃pi. Thus, Eq. (92) is to be maximized subject to

‖ũα‖2 =
M∑

κ=1

z2
κα‖xκα‖2 = 1. (93)

Define new variablesξκα by

ξκα = ‖xκα‖zκα, (94)
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and consider theM -D vectorξα with componentsξ1α, ...,ξMα. Then, Eq. (93) means‖ξα‖
= 1, and Eq. (92) is rewritten as

Jα =
M∑

κ,λ=1

Aα
κλξκαξλα = (ξα,Aαξα), (95)

where we define theM ×M matrixAα = (Aα
κλ) by

Aα
κλ =

∑4
i=1(xκα, piκ)(xλα,piλ)
‖xκα‖ · ‖xλα‖ . (96)

Eq. (95) is maximized by the unit eigenvectorξα of the matrixAα for the largest eigenvalue.
The sign is chosen so that

M∑

κ=1

ξκα ≥ 0. (97)

The corresponding projective depthszκα are determined from Eq. (94). The procedure is
summarized as follows:

Input: xκα, κ = 1, ...,M , α = 1, ...,N .

Output: P κ, κ = 1, ...,M , Xα, α = 1, ...,N .

Computation:

1. Initialize the projective depths tozκα = 1 (Remark 23).

2. Computẽuα and normalize them into unit norm.

3. Fit a 4-D subspaceL to ũα by least squares (Remark 24).

4. Do the following computations forα = 1, ...,N .

(a) Compute the unit eigenvectorξα of the matrixAα defined by Eq. (96) for the
largest eigenvalue, and choose the sign as in Eq. (97).

(b) Determine the projective depthszκα according to Eq. (94).

(c) Recompute the vector̃uα.

5. Go back to Step 3, and repeat this until the iterations converge.

6. ComputeXα = (Xi
α) by

Xi
α = (ũα, p̃i). (98)

7. Determine the projection matrixP κ by

P κ =
(
p̃1κ p̃2κ p̃3κ p̃4κ

)
, (99)

wherep̃iκ is a 3-D vector whose first, second, and third components are, respectively,
the(3(κ− 1) + 1)st,(3(κ− 1) + 2)nd, and(3(κ− 1) + 3)rd components of̃pi.
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Figure 12. Orthogonal projection ofṽ
(i)
κ ontoL∗.

B.2. Dual Method

Consider the followingN -D vectors:

ṽ(1)
κ =




zκ1xκ1

zκ2xκ2
...

zκ1xκ1


 , ṽ(2)

κ =




zκ1yκ1

zκ2yκ2
...

zκ1yκ1


 , ṽ(3)

κ =




zκ1

zκ2
...

zκ1


 . (100)

Note that the transposẽv(i)>
κ is the(3(κ−1)+i)th row of the matrix on the left-hand side of

Eq. (43)), which is written as
(

ṽ
(1)
1 ṽ

(2)
1 ṽ

(3)
1 ṽ

(1)
2 · · · ṽ(3)

M

)>
. For the scale normalization,

we impose
3∑

i=1

‖ṽ(i)
κ ‖2 =

N∑

α=1

z2
κα‖xκ‖2 = 1. (101)

If we take out theith component of Eq. (39) and vertically align it forα = 1, ...,N , we
obtain

ṽ(i)
κ = Pκ(i1)X

1 + Pκ(i2)X
2 + Pκ(i3)X

3 + Pκ(i4)X
4,

(102)

wherePκ(ij) is the(ij) element ofP κ, andXk is theN -D vector consisting ofXk
α (= the

kth component ofXα), α = 1, ...,N . Eq. (102) implies that the3M vectorsṽ(i)
κ belong

to the 4-D subspaceL∗ spanned byX1, X2, X3, andX4. The orthonormal basis{q̃1, ...,
q̃4} of the subspaceL∗ is given by the first four columns of the matrixV in Eq. (42). The

orthogonal projection of̃v(i)
κ ontoL∗ is (Fig. 12)

v̂(i)
κ =

4∑

k=1

(ṽ(i)
κ , q̃k)q̃k. (103)

We updatezκα so that the sum of squares of the distances ofṽ
(1)
κ , ṽ

(2)
κ , andṽ

(3)
κ from the

subspaceL∗
3∑

i=1

(
‖ṽ(i)

κ ‖2 − ‖v̂(i)
κ ‖2

)
=

3∑

i=1

‖ṽ(i)
κ ‖2 −

3∑

i=1

4∑

k=1

(ṽ(i)
κ , q̃k)

2

(104)
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is minimized for eachα. Consider theN -D vectorξκ with componentsξκ1, ...,ξκN defined
by Eq. (94). Then, minimizing Eq. (104) is equivalent to maximizing

J∗κ =
3∑

i=1

4∑

k=1

(ṽ(i)
κ , q̃k)

2 = (ξκ, Bκξκ), (105)

where we define theN ×N matrixBκ = (Bκ
αβ) by

Bκ
αβ =

(qα, qβ)(xκα, xκβ)
‖xκα‖ · ‖xκβ‖ . (106)

Here,qα is the 4-D vector consisting of theαth components of the basis vectorsq̃1, ...,
q̃4. Eq. (105) is maximized by the unit eigenvectorξκ of the matrixBκ for the largest
eigenvalue. The sign is chosen so that

N∑

α=1

ξκα ≥ 0, (107)

and the corresponding projective depthszκα are determined from Eq. (94). The procedure
is summarized as follows:

Input: xκα, κ = 1, ...,M , α = 1, ...,N .

Output: P κ, κ = 1, ...,M , Xα, α = 1, ...,N .

Computation:

1. Initialize the projective depths tozκα = 1.

2. Compute the vectors̃v(i)
κ in Eqs. (100), and normalize them as in Eqs. (101).

3. Fit a 4-D subspaceL∗ to ṽ
(i)
κ by least squares.

4. Do the following computations forκ = 1, ...,M .

(a) Compute the unit eigenvectorξκ of the matrixBα defined by Eq. (106) for the
largest eigenvalue, and choose the sign as in Eq. (107).

(b) Determine the projective depthszκα according to Eq. (107).

(c) Recompute the vectors̃v(i)
κ .

5. Go back to Step 3, and repeat this until the iterations converge.

6. ComputeXα = (Xi
α) by

Xi
α = (theαth component of̃qi). (108)

7. Determine the projection matrixP κ = (Pκ(ij)) by

Pκ(ij) = (ṽ(i)
κ , q̃j). (109)
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C. Affine Camera Factorization

Here, we give the details of the 3-D reconstruction procedure described in Section 5.3. The
actual computation depends on what affine camera model we use, so we first describe the
general framework that does not depend on specific camera models and then add details that
depend on individual models, for which we consider (i) orthographic projection of Eqs. (46)
(Fig. 10(a)), (ii) weak perspective projection of Eqs. (47) (Fig. 10(b)), (iii) paraperspective
projection of Eqs. (48) (Fig. 10(c)), and (iv) the generic model of Eq. (45). Whichever
model we use, we obtain “two” solutions that are mirror images of each other, which cannot
be distinguished as long as we use affine camera modeling.

C.1. General Framework

Suppose we trackN points overM frames. Let(xκα, yκα) be the image coordinates of
theαth point in theκth image. The algorithm for affine camera 3-D reconstruction has the
following structure [19, 20]. Items with∗ depend on the camera model we use. The detailed
procedure for them is given later.

Input:

• 2M -D trajectory vectors

ũα =
(
x1α y1α x2α y2α · · · xMα yMα

)>
, α = 1, ..., N. (110)

• Focal lengthsfκ, κ = 1, ...,M (arbitrary if unknown).

Output:
• Translationstκ (= the world coordinate origin for theκth view).

• Shape vectors, i.e., 3-D positionssα ands′α (mirror images of each other) of the
points relative to the world coordinate system centered on their centroid.

• Corresponding rotationsRκ andR′
κ that specify the world coordinate axis orienta-

tions.

Computation:

1. Compute the centroid̃uC of the trajectory vectors̃uα by Eq. (56).

2. Let t̃xκ and t̃yκ be the(2(κ − 1) + 1)th and(2(κ − 1) + 2)th components of̃uC ,
respectively.

3. Fit a 3-D affine space to the trajectory vectorsũα, and let{q̃1, q̃2, q̃3} be its basis.

4. LetQ be the2M × 3 matrix havingq̃1, q̃2, andq̃3 as its columns, and letq†κ(a) be

the(2(κ− 1) + a)th column ofQ>, κ = 1, ...,M , a = 1, 2.

5. ∗Compute the3× 3 metric matrixT .
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6. Compute the eigenvalues{λ1, λ2, λ3} of T and the corresponding orthonormal sys-
tem{v1, v2, v3} of unit eigenvectors.

7. ∗Compute the translation vectorstκ = (txκ, tyκ, tzκ)>.

8. Compute the following2M -D vectors:

mi =
√

λi




(q†1(1),vi)

(q†1(2),vi)

(q†2(1),vi)
...

(q†M(2), vi)




, i = 1, 2, 3. (111)

9. LetM be the2M × 3 motion matrix havingm1, m2, andm3 as its columns, and
let m†

κ(a) be the the(2(κ− 1) + a)th column ofM>, κ = 1, ...,M , a = 1, 2.

10. ∗Compute the rotationsRκ.

11. ∗Recompute the motion matrixM by

M =
M∑

κ=1

Π>κ Rκ, (112)

whereΠκ = (Πκ(ij)) is a3× 2M matrix that depends on the assumed camera model.

12. Compute the 3-D shape vectorssα by

sα = (M>M)−1M>(ũα − ũC). (113)

13. ∗Computes′α andR′
κ by

s′α = −sα, R′
κ = ΩκRκ, (114)

whereΩκ is a rotation matrix that depends on the assumed camera model.

C.2. Metric Constraint

The metric constraint of Eq. (54) is derived as follows. By definition, the three columns
iκ, jκ, andkκ of the rotationRκ are the world coordinate axis directions for theκth view.
Their homogeneous coordinate representations are(1 0 0 0)>, (0 1 0 0)>, and(0 0 1 0)>,
respectively (they define “orientations” in the projective spaceP3). Hence, according to
Eq. (49), their image projections are represented by the first, the second, and the third
columns ofΠκRκ, respectively, if the third components are removed, i.e., if expressed in
inhomogeneous (or usual) coordinates. From Eq. (50), on the other hand, these vectors are,
respectively,

(
p̃1(3(κ−1)+1)

p̃1(3(κ−1)+2)

)
,

(
p̃2(3(κ−1)+1)

p̃2(3(κ−1)+2)

)
,

(
p̃3(3(κ−1)+1)

p̃3(3(κ−1)+2)

)
, (115)
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wherep̃i(j) is thejth component of̃pi. Thus, we have

ΠκRκ =
(

p̃1(3(κ−1)+1) p̃2(3(κ−1)+1) p̃3(3(κ−1)+1)

p̃1(3(κ−1)+2) p̃2(3(κ−1)+2) p̃3(3(κ−1)+2)

)
. (116)

The right-hand side equalsQ†>
κ A from the definition ofA in Eq. (51) andQ†

κ in Eq. (52).
Hence, we have

ΠκRκ = Q†>
κ A. (117)

It follows that
Q†>

κ AA>Q†
κ = ΠκRκR>

κ Π>
κ = ΠκΠ>

κ , (118)

or Eq. (54) if the metric matrixT is defined by Eq. (53).

C.3. Orthographic Projection

If the orthographic projection model of Eqs. (46) is assumed, (Fig. 10(a)), the metric con-
straint of Eq. (54) takes the following form [19]:

(q†κ(1), Tq†κ(1)) = (q†κ(2),Tq†κ(2)) = 1, (q†κ(1), Tq†κ(2)) = 0. (119)

From these, we determine the metric matrixT by least squares. The computation of Step 5
goes as follows [19]. First, we define the3× 3× 3× 3 tensorB = (Bijkl) by

Bijkl =
M∑

κ=1

[
(q†κ(1))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(2))j(q

†
κ(2))k(q

†
κ(2))l

+
1
4

(
(q†κ(1))i(q

†
κ(2))j + (q†κ(2))i(q

†
κ(1))j

)(
(q†κ(1))k(q

†
κ(2))l + (q†κ(2))k(q

†
κ(1))l)

)]
, (120)

where(q†κ(a))i denotes theith component of the 3-D vectorq†κ(a). We define the6 × 6
symmetric matrixB and the 6-D vectorc by

B =




B1111 B1122 B1133

√
2B1123

√
2B1131

√
2B1112

B2211 B2222 B2233

√
2B2223

√
2B2231

√
2B2212

B3311 B3322 B3333

√
2B3323

√
2B3331

√
2B3312√

2B2311

√
2B2322

√
2B2333 2B2323 2B2331 2B2312√

2B3111

√
2B3122

√
2B3133 2B3123 2B3131 2B3112√

2B1211

√
2B1222

√
2B1233 2B1223 2B1231 2B1212




, (121)

c =
(
1 1 1 0 0 0

)>
, (122)

and solve the following simultaneous linear equations forτ = (τi):

Bτ = c. (123)

The metric matrixT is given by

T =




τ1 τ6/
√

2 τ5/
√

2
τ6/
√

2 τ2 τ4/
√

2
τ5/
√

2 τ4/
√

2 τ3


 . (124)
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For the translation computation in Step 5, we simply lettxκ = t̃xκ andtyκ = t̃yκ, κ = 1, ...,
2M . The third componentstzκ are left indeterminate. For the rotation computation in Step
10, we compute the SVD

(
m†

κ(1) m†
κ(2) 0

)
= V κΛκU>

κ . (125)

Then, theRκ is given by

Rκ = Uκdiag(1, 1, det(V κU>
κ ))V >

κ . (126)

The matrixΠκ in Step 11 is given by

Πκ =




0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1
0
0

(2κ)

0
1
0

0
0
0

· · ·
· · ·
· · ·

0
0
0


 . (127)

and the matrixΩκ in Step 13 is simplyΩκ = diag(−1,−1, 1).

C.4. Weak Perspective Projection

If the weak perspective projection model of Eqs. (47) is assumed (Fig. 10(b)), the metric
constraint of Eq. (54) takes the following form [19]:

(q†κ(1),Tq†κ(1)) = (q†κ(2), Tq†κ(2)) =
f2

κ

t2zκ

, (q†κ(1),Tq†κ(2)) = 0. (128)

Dropping the termf2
κ/t2zκ, we determine the metric matrixT from the resulting two equa-

tions by least squares. The computation of Step 5 goes as follows [19]. We define the
3× 3× 3× 3 tensorB = (Bijkl) by

Bijkl =
M∑

κ=1

[
(q†κ(1))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(1))l − (q†κ(1))i(q

†
κ(1))j(q

†
κ(2))k(q

†
κ(2))l

−(q†κ(2))i(q
†
κ(2))j(q

†
κ(1))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(2))j(q

†
κ(2))k(q

†
κ(2))l

+
1
4

(
(q†κ(1))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(2))l + (q†κ(2))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(2))l

+(q†κ(1))i(q
†
κ(2))j(q

†
κ(2))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(1))j(q

†
κ(2))k(q

†
κ(1))l

)]
, (129)

and compute the6×6 symmetric matrixB in Eq. (121). Letτ = (τi) be the 6-D unit eigen-
vector ofB for the smallest eigenvalue. Then, the metric matrixT is given by Eq. (124) if
det T ≥ 0. If det T < 0, we change the sing ofT . For the translation computation in Step
5, we first compute

tzκ = fκ

√
2

(q†κ(1), Tq†κ(1)) + (q†κ(2), Tq†κ(2))
. (130)
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Next, we let

txκ =
tzκ

fκ
t̃xκ, tyκ =

tzκ

fκ
t̃yκ. (131)

For the rotation computation in Step 10, we compute the SVD

tzκ

fκ

(
m†

κ(1) m†
κ(2) 0

)
= V κΛκU>

κ , (132)

and determineRκ by Eq. (126). The matrixΠκ in Step 11 is given by

Πκ =
fκ

tzκ




0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1
0
0

(2κ)

0
1
0

0
0
0

· · ·
· · ·
· · ·

0
0
0


 , (133)

and the matrixΩκ in Step 13 is simplyΩκ = diag(−1,−1, 1).

C.5. Paraperspective Projection

If the weak paraperspective projection model of Eqs. (48) is assumed (Fig. 10(c)), the metric
constraint of Eq. (54) takes the following form [19]:

(q†κ(1), Tq†κ(1)) =
f2

κ

ακt2zκ

, (q†κ(2), Tq†κ(2)) =
f2

κ

βκt2zκ

, (q†κ(1),Tq†κ(2)) =
γκf2

κ

t2zκ

,

(134)
where

ακ =
1

1 + t̃2xκ/f2
κ

, βκ =
1

1 + t̃2yκ/f2
κ

, γκ =
t̃xκt̃yκ

f2
κ

. (135)

We eliminatef2
κ/t2zκ from Eqs. (134) and determine the metric matrixT from the resulting

two equations by least squares. The computation of Step 5 goes as follows [19]. We define
the3× 3× 3× 3 tensorB = (Bijkl) by

Bijkl =
M∑

κ=1

[
(γ2

κ + 1)α2
κ(q†κ(1))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(1))l

+(γ2
κ + 1)β2

κ(q†κ(2))i(q
†
κ(2))j(q

†
κ(2))k(q

†
κ(2))l + (q†κ(1))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(2))l

+(q†κ(1))i(q
†
κ(2))j(q

†
κ(2))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(2))l

+(q†κ(2))i(q
†
κ(1))j(q

†
κ(2))k(q

†
κ(1))l − ακγκ(q†κ(1))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(2))l

−ακγκ(q†κ(1))i(q
†
κ(1))j(q

†
κ(2))k(q

†
κ(1))l − ακγκ(q†κ(1))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(1))l

−ακγκ(q†κ(2))i(q
†
κ(1))j(q

†
κ(1))k(q

†
κ(1))l − βκγκ(q†κ(2))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(2))l

−βκγκ(q†κ(2))i(q
†
κ(2))j(q

†
κ(2))k(q

†
κ(1))l − βκγκ(q†κ(1))i(q

†
κ(2))j(q

†
κ(2))k(q

†
κ(2))l

−βκγκ(q†κ(2))i(q
†
κ(1))j(q

†
κ(2))k(q

†
κ(2))l

+(γ2
κ − 1)ακγκ(q†κ(1))i(q

†
κ(1))j(q

†
κ(2))k(q

†
κ(2))l

+(γ2
κ − 1)ακγκ(q†κ(2))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(1))l

]
. (136)
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Then, we compute the6× 6 symmetric matrixB in Eq. (121), and letτ = (τi) be the 6-D
unit eigenvector ofB for the smallest eigenvalue. The metric matrixT is given by Eq. (124)
if detT ≥ 0. If det T < 0, we change the sing ofT . For the translation computation in
Step 5, we first compute

tzκ = fκ

√
2

ακ(q†κ(1), Tq†κ(1)) + βκ(q†κ(2), Tq†κ(2))
. (137)

Next, we computetxκ andtyκ by Eqs. (131). For the rotation computation in Step 10, we
compute

r†κ(3) =
tzκ/fκ

1 + (txκ/tzκ)2 + (tyκ/tzκ)2
( tzκ

fκ
m†

κ(1) ×m†
κ(2) −

txκ

tzκ
m†

κ(1) −
tyκ

tzκ
m†

κ(2)

)
,

r†κ(1) =
tzκ

fκ
m†

κ(1) +
txκ

tzκ
r†κ(3), r†κ(2) =

tzκ

fκ
m†

κ(2) +
tyκ

tzκ
r†κ(3). (138)

Then, we compute the SVD

(
r†κ(1) r†κ(2) r†κ(3)

)
= V κΛκU>

κ . (139)

The rotation matricesRκ are given by Eq. (126). The matrixΠκ in Step 11 is given by

Πκ =
fκ

tzκ




0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1
0

−txκ/tzκ

(2κ)

0
1

−tyκ/tzκ

0
0
0

· · ·
· · ·
· · ·

0
0
0


 , (140)

and the matrixΩκ in Step 13 is given by

Ωκ =
2tκt>κ
‖tκ‖2

− I. (141)

C.6. Generic Model

If the generic model of Eqs. (45) is assumed, the metric constraint of Eq. (54) takes the
following form [20]:

(q†κ(1),Tq†κ(1)) =
1
ζ2
κ

+ β2
κt̃2xκ, (q†κ(2), Tq†κ(2)) =

1
ζ2
κ

+ β2
κt̃2yκ,

(q†κ(1), Tq†κ(2)) = β2
κt̃xκt̃yκ, (142)

We eliminate1/ζ2
κ andβ2

κ from Eqs. (142) and determine the metric matrixT from the
resulting two equations by least squares. The computation of Step 5 goes as follows [20].
We let

Aκ = t̃xκt̃yκ, Cκ = t̃2xκ − t̃2yκ, (143)
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and define the3× 3× 3× 3 tensorB = (Bijkl) by

Bijkl =
M∑

κ=1

[
A2

κ

(
(q†κ(1))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(2))j(q

†
κ(2))k(q

†
κ(2))l

−(q†κ(1))i(q
†
κ(1))j(q

†
κ(2))k(q

†
κ(2))l − (q†κ(2))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(1))l

)

+
1
4
C2

κ

(
(q†κ(1))i(q

†
κ(2))j(q

†
κ(1))k(q

†
κ(2))l + (q†κ(2))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(2))l

+(q†κ(1))i(q
†
κ(2))j(q

†
κ(2))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(1))j(q

†
κ(2))k(q

†
κ(1))l

)

−1
2
AκCκ

(
(q†κ(1))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(2))l + (q†κ(1))i(q

†
κ(1))j(q

†
κ(2))k(q

†
κ(1))l

+(q†κ(1))i(q
†
κ(2))j(q

†
κ(1))k(q

†
κ(1))l + (q†κ(2))i(q

†
κ(1))j(q

†
κ(1))k(q

†
κ(1))l

−(q†κ(1))i(q
†
κ(2))j(q

†
κ(2))k(q

†
κ(2))l − (q†κ(2))i(q

†
κ(1))j(q

†
κ(2))k(q

†
κ(2))l

−(q†κ(2))i(q
†
κ(2))j(q

†
κ(1))k(q

†
κ(2))l − (q†κ(2))i(q

†
κ(2))j(q

†
κ(2))k(q

†
κ(1))l

)]
. (144)

Then, we compute the6× 6 symmetric matrixB in Eq. (121), and letτ = (τi) be the 6-D
unit eigenvector ofB for the smallest eigenvalue. The metric matrixT is given by Eq. (124)
if detT ≥ 0. If det T < 0, we change the sing ofT . For the translation computation in
Step 5, we solve the following simultaneous linear equations for1/ζκ andβ2

κ:

(
2 t̃2xκ + t̃2yκ

t̃2xκ + t̃2yκ t̃4xκ + t̃4yκ + t̃2xκt̃2yκ

)(
1/ζ2

κ

β2
κ

)

=

(
(q†κ(1), Tq†κ(1)) + (q†κ(2), Tq†κ(2))

t̃2xκ(q†κ(1),Tq†κ(1)) + t̃2yκ(q†κ(2),Tq†κ(2)) + t̃xκt̃yκ(q†κ(1),Tq†κ(2))

)
. (145)

Next, we let (
txκ

tyκ

)
= ζκ

(
t̃xκ

t̃yκ

)
. (146)

The third componentstzκ are left indeterminate. For the rotation computation in Step 10,
we compute

r†κ(3) = ζκ

(ζκm†
κ(1) ×m†

κ(2) − βκ(txκm†
κ(1) + tyκm†

κ(2))

1 + β2
κ(t2xκ + t2yκ)

)
,

r†κ(1) = ζκm†
κ(1) + βκtxκr†κ(3), r†κ(2) = ζκm†

κ(2) + βκtyκr†κ(3). (147)

Then, we compute the SVD of Eq. (139), andRκ are given by Eq. (126). The matrixΠκ in
Step 11 is given by

Πκ =




0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1/ζκ

0
−βκtxκ/ζκ

(2κ)

0
1/ζκ

−βκtyκ/ζκ

0
0
0

· · ·
· · ·
· · ·

0
0
0


 , (148)
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and the matrixΩκ in Step 13 is given by

Ωκ =
2nκn>κ
‖nκ‖2

− I, nκ =




1
0

−βκtxκ


×




0
1

−βκtyκ


 . (149)
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[21] Ma, Y.; Soatto, S.; Kǒsecḱa, J.; Sastry, S. S.An Invitation to 3-D Vision: From Images
to Geometric Models; Springer, New York, NY, 2004.

[22] Marr, D. Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information; W. H. Freeman, San Francisco, CA, 1982.

[23] Medioni, G.; Kang, S. B.; Eds.Emerging Topics in Computer Vision, Prentice Hall,
Upper Saddle River, NJ, 2004.

[24] Morita, M.;. Kanade, T.IEEE Trans. Patt. Anal. Mach. Intell.1997,19-8, 858–867.

[25] Mahamud, S.; Hebert, M.; InProc. IEEE Conf. Comput. Vision Patt. Recog.; June
2000, Hilton Head Island, SC, Vol. 2, pp. 430–437.

[26] Mahamud, S.; Hebert, H.; Omori, Y.; Ponce, J. InProc. IEEE Conf. Comput. Vision
Patt. Recog.; December 2001, Kauai, HI, Vol. 1, pp. 1018–1025.

[27] Poelman, C. J.; and Kanade, T.IEEE Trans. Patt. Anal. Mach. Intell.1997, 19,
206–218.

[28] Pollefeys, M.; Koch, R.; Van Gool, L.Int. J. Comput. Vision1999, 32, 145–150.

[29] Quan, L.Int. J. Comput. Vision1996, 19, 93–105.

[30] Seo, Y.; Heyden, A. InProc. 15th Int. Conf. Patt. Recog.; September 2000, Barcelona,
Spain, Vol. 1, pp. 69–71.

[31] Seo Y.; Heyden, H.Image and Vision Computing2004, 22, 919–926.

[32] Seo, Y.; K.-S. Hong, K.-S.IEICE Trans. Inf. & Syst.2001, E84-D, 1626–1632.

[33] Shapiro, L. S.; Zisserman, A.; Brady, M.Int. J. Comput. Vision1995, 16, 147–182.

[34] Sturm, P.; Triggs, B. InProc. 4th Euro. Conf. Comput. Vision; April 1996, Cambridge,
Vol. 2, pp. 709–720.

[35] Sugaya Y.; Kanatani, K.IEICE Trans. Inf. & Syst.2003, E86-D, 1095–1102.

[36] Sugaya, Y.; Kanatani, K.IEICE Trans. Inf. & Syst.2004, E87-D, 1031–1038.

[37] Sugaya, Y.; Kanatani, K.IEICE Trans. Inf. & Syst.2004, E87-D, 1935–1942.

[38] Sugaya, Y.; Kanatani, K.Mem. Fac. Eng. Okayama Univ.2005, 39, 56–62.

[39] Sugimoto, A.Int. J. Comput. Vision1996, 19, 181–201.

[40] Tomasi, C.; Kanade, T.Int. J. Comput. Vision1992, 9, 137–154.

[41] Triggs, B. InProc. IEEE Conf. Comput. Vision Patt. Recog.; June 1996, San Francisco,
CA, pp. 845–851.

[42] Triggs, B. In Proc. IEEE Conf. Compt. Vision Patt. Recog.; June 1997, San Juan,
Puerto Rico, pp. 609–614.

[43] Ueshiba, T.; Tomita, F.Proc. 5th Euro. Conf. Comput. Vision; June 1998, Freiburg,
Germany, Vol. 1, pp. 296–310.



Latest Progress of 3-D Reconstruction from Multiple Camera Images 75

[44] Xu, B.; Zhang, Z.Epipolar Geometry in Stereo, Motion and Object Recognition;
Kluwer, Dordrecht, The Netherlands, 1996.

[45] Zhang, Z. InEmerging Topics in Computer Vision, Medioni, G.; Kang, S. B.; Eds.;
Prentice Hall, Upper Saddle River, NJ, pp. 4–40.


