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Chapter 1

L ATEST PROGRESS OF3-D RECONSTRUCTION
FROM MULTIPLE CAMERA | MAGES

Kenichi Kanatani

Abstract

This chapter summarizes recent progress of the theories and techniques for 3-D
reconstruction from multiple images taken by multiple cameras. We start with the
camera imaging geometry in terms of homogeneous coordinates and the intrinsic and
extrinsic parameters. Next, we describe the epipolar geometry for two, three, and
four cameras, introducing such concepts as the fundamental matrix, epipolar lines,
epipoles, the trifocal tensor, and the quadrifocal tensor. Then, we present the self-
calibration technique using the absolute dual quadric constraint. Finally, we give the
definition of the affine camera model and a procedure for 3-D reconstruction based on
it. The detailed algorithms are listed in the Appendix.

1. Introduction

Analyzing camera or video images for understanding the 3-D meaning of the captured scene
is generally known asomputer visior{alsomachine visioprobot vision orimage under-
standing depending on the emphasis of the researchers), which is one of the most crucial
elements of autonomous robotic operations. In general terms, the procedure consists of the
following three stages:

e Image processing for detecting, extracting, and matchéagures which can be
points, lines, regions, or anything that is characteristic to that scene.

e Acquiring metric information such as locations, orientations, distances, sizes, and
motions of the objects in the scene.
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Figure 1.Perspective projection.

e Obtainingsemantidnformation such as classification, recognition, labeling, index-
ing, and retrieval of specific objects in the scene.

These three stages roughly correspond to what has historically been kneanyder low-

leve) vision intermediate-level visigrandhigh-level vision respectively [22]. However,

these are not necessarily treated separately. In fact, these stages are closely and interactively
interwoven in most real computer vision systems.

One of the essential techniques for the second stage is to compute the 3-D shape of
the scene or objects from multiple images, knowsd3 reconstructioror structure from
motion(SFM). This computation critically depends on tbamera imaging geometrice.,
the geometric relationship between a 3-D scene and its projection onto a 2-D image. In
contrast, analysis for the third stage crucially relies ondbmain knowledgspecific to
individual applications such as faces, gestures, gaits, traffic, aerial photographs, and medical
images.

Although the third stage is the ultimate goal of computer vision, it is still a very chal-
lenging task, and no universally satisfactory technologies have yet been established. How-
ever, the 3-D reconstruction technigue for the second stage has been extensively studied in
the last few decades to arrive at almost definitive conclusions. The aim of this chapter is
to present thus established latest technologies of 3-D reconstruction from multiple images.
Standard textbooks on this subject are, for example, [4, 5, 6, 8, 13, 14, 15, 23, 44].

2. Camera Imaging Geometry

2.1. Perspective Projection

We identify an image, or a photograph, with a mapping from a 3-D scene onto a 2-D plane
and call this mapping theamera model The standard model igerspective projection
(Fig. 1): we imagine in the scene a point, called theviewpoint and a planél., called the
image planeor retina, and assume that a poifitin the scene is mapped to the intersection

p of the image planél. with the lineO.P, called theline of sight This models an ideal
pin-hole camerand is known to describe real cameras with sufficient accuracy.
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Figure 2.Pixels and the image coordinate system.

The line starting from the viewpoirt®, and perpendicularly passing through the image
planell. is called theoptical axis We define anX.Y.Z. coordinate system with the origin
at the viewpoinO, and theZ.-axis along the optical axis. The intersectioof the optical
axis with the image planél. is called theprincipal point We define ancy coordinate
system with the origin at the principal pointand thez- and they-axes parallel to th& .-
and theY,-axes, respectively (Fig. 1). Then, a po{X., Y., Z.) in the scene is projected
onto a point(z, y) in the image plane given by

X R
x_fCZa y_fczca (1)

wheref., called thefocal length is the distance from the viewpoiat. to the image plane
1I..

2.2. Pixel Coordinates

In real cameras, the image plane corresponds to the array of photo-cqligels The
physical photo-cell configuration, in particular the configuration of the R-G-B (red, green,
and blue) photocells, may differ depending on the type of the camera. Conceptually, how-
ever, we can think of pixels capable of perceiving R, G, and B placed in parallel rows at
equal intervals in horizontal and vertical directions, but the vertical columns of pixels are
not necessarily orthogonal to the horizontal rows. Also, the inter-pixel distance may not be
the same in horizontal and vertical directions. Labeling the upper-left pixel) = (0, 0),
we count the pixels = 1, 2, ... rightward and = 1, 2, ... downward. Thus, the integer
pair (u, v) is identified with the position at the center of that pixel. Inter-pixelsaopixe)
positions are specified with real number pditsv) by linear interpolation. This defines a
continuouspixel coordinate systewf the image plane (Fig. 2).

If the zy coordinate system is oriented so thatihaxis is directed rightward in parallel
to the horizontal pixel rows and theaxis downward, the pixel coordinatés, v) and the
image coordinatege, y) are related by

uzz—{—gtanﬂ—i—uo, U:g—kvo, (2)
a o« I6]
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where(ug, v9) are the pixel coordinates of the principal pointanda and 3 are, respec-
tively, the distances between consecutive pixels in the horizontal and vertical directions. We
define the angle between the horizontal and vertical pixel directionstg®be- ¢ and call

6 theskew angle

Remark 1 Thezy coordinate system as defined above is “reversed” as compared with the
usual sense. This convention originates from the human intuition that a hypothegicisl
extends “away” from the viewer toward the scene, makingathey- and z-axes a right-
handed system.

Remark 2 In most textbooks, the angle between the horizontal and vertical pixel directions
is defined to be&). Then, the first of Egs. (2) becomes= z/a + (y/3) cot 6 + ug. We
prefer our convention, because the skewless camera correspotfdsGaather thard =

/2.

2.3. Intrinsic Parameters

Combining Egs. (1) and (2), we have

U X,
v | 2K | Y. |, (3)
1 Z,.

where and throughout this chapter the symizaineans that one side is a multiple of the
other by a nonzero constant. The matkxis defined by

fv frytanf wug
K=|0 f v |, (4)
0 0 1

where we putf = f./3, the normalized focal length so that the vertical distance between
pixel rows is 1. Customarily, it is simply called the “focal length”. We also defires/«,
called theaspect ratio The constantg, v, 6, ug, andvg are called théntrinsic parameters

of the camera, and the matrK theintrinsic parameter matrix

Remark 3 For digital cameras today, we can expgct 1 andéd ~ 0 with high precision
and the principal pointug, vo) is nearly at the center of the photo-cell array.

Remark 4 In some textbooks, the vertical intervalis defined not as the distance between
consecutive “rows” but as the distance between consecutive “pixels” in the vertical direc-
tion. In that case, the second of Egs. (2) becomesy/3 cos 6 + v, so the (22) element

of the matrixK in Eq. (4) isf/ cosf. If we use the skew angle convention mentioned in
Remark 2cos 6 is replaced byin 6. However, precise interpretation of the matfXis not
essential. Many recent textbooks simply write

fi s wo
K = 0 fg Vo s (5)
0O 0 1

emphasizing the fact that it & upper triangular matrix with 1 in the (33) element
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Figure 3.The camera coordinate system and the world coordinate system.

2.4. Motion Parameters

Since theX_Y,.Z. coordinate system is defined with respect to the camera (i.e., the view-
point O, and the optical axis), it is called tlamera coordinate systerie also define an

XY Z coordinate system fixed to the scene and call ittbdd coordinate systeniett be

its origin described with respect to the camera coordinate system. If the world coordinate
system is rotated by relative to the camera coordinate system, a point in the scene with
world coordinateg X, Y, Z) has the following camera coordinates., Y., Z.) (Fig. 3):

X, X
Y, |=R|Y | +t. (6)
Ze Z

We call{ R, t} themotion parametersr theextrinsic parametersf the camera.

Remark 5 The above motion paramete[R, ¢} are a description with respect to ttemera
coordinate system. Alternatively, they can be described with respect to the world coordinate
system. Let, be the origin of the camera coordinate system described with respect to the
world coordinate system. If the camera coordinate system is rotatdl. bglative to the

world coordinate system, we obtain instead of Eq. (6)

X X,
Y|=R. | Y, | +t., (7)
A Z.

and the two descriptiongR, t} and{ R., t.} are related by
R=R/, t=—Rt. (8)

2.5. Projection Matrix

From Egs. (3) and (6), we can see that the pixel coordinates are related to the world
coordinates X, Y, Z) in the form
u~PX, 9

where we put

; (10)

=N
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and
P=K(R t). (11)

This 3 x 4 matrix P is called theprojection matrixor thecamera matrix The vectors in
Egs. (10) represent tteomogeneous coordinates the point(u, v) in the image and the
point (X, Y, Z) in the scene. Hereafter, we refer to points represented by vactms X
simply as “pointu” and “point X, respectively.

Remark 6 Homogeneous coordinates are used not only for points in 2-D and 3-D but also
for lines in 2-D and planes in 3-D, as we will see later. They are the description of points,
lines, and planes with a set of real numbers, not all zero, defined up to a nonzero multiplier.
For example, triples:!, z2, 22 andcz!, cz?, ca? for an arbitraryc # 0 describe the same
point in 2-D (the superscripts are indices, not powers)21#£ 0, the usual coordinates, or
theinhomogeneous coordinatese

T =— y=—. (12)

If 23 = 0, the point is interpreted to be at infinity; such a point is calleddaal point
Similarly, quadruplesX!, X2, X3, X% andcX?!, cX?, cX3, cX* for an arbitraryc # 0
describe the same point in 3-D. X £ 0, its inhomogeneous coordinates are

X1 X2 X3

X = X1 Xi

If X4 =0, the point is andeal pointat infinity. The symbok- in Egs. (3) and (9) reflects
the indeterminacy of the absolute scale of homogeneous coordinates.

Remark 7 If we use the motion paramete{®,., t.} described with respect to the world
coordinate system, Eq. (11) becomes

P=K(R! -R/t)=KR/ (I -t). (14)

(I denotes the unit matrix.) In this chapter, we adopt the description with respect to the
camera coordinate system. Generally, the expressions become simpler if described with
respect to the camera coordinate system, because the camera imaging geometry is usually
defined with respect to the camera.

2.6. Absolute Conic

Since Eq. (9) is a relationship between homogeneous coordinates, it also holds for ideal
points. In other words, Eq. (9) defines a mapping from the@djective spacé? obtained
by adding all ideal points in 3-D tR? onto the 2-Dprojective spacé? obtained by adding
all ideal points in 2-D tdR?.
The sefll,, of pointsX*', X2, X3, X%in P3 with X% =0 s called thedeal plane The
set2,, of (imaginary) points idl, that satisfy

(X1 + (X% + (X% =0 (15)



Latest Progress of 3-D Reconstruction from Multiple Camera Images 39

(Xl)é+.(x2)2+ (X3)2 =0
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Figure 4.The absolute conic and its projection.

is called theabsolute conic It can be shown that any projectianof a point X € Q. in
the form of Eq. (9) satisfiesrespectiveof the motion parametersR, ¢},

u'wu =0, w=(KHTKL (16)
The set of (imaginary) pointa that satisfy this equation is interpreted to be the camera
projection of the absolute conie., (Fig. 4).

Remark 8 If we are given camera images of objects in the scene with known 3-D informa-
tion, we can determine the intrinsic parameters and the motion parameters of the camera
in many different ways, depending on the type of the available 3-D information about the
scene. Such a procedure is caltsinera calibration and most known calibration proce-
dures can be given projective geometric interpretations in terms of the absolute conic [45].

3. Epipolar Geometry

3.1. Multilinear Constraints

When geometric primitives such as points, lines, and planes in the scene are viewed by
multiple cameras located in different positions, description of the relationships among their
projection images is calledpipolar geometnytypically for two cameras) omultilinear
geometrytypically for more than two cameras).

Suppose we observe a poiit in the scene byl cameras. Let, be its projection
onto thexth image,x = 1, ..., M, and P, the projection matrix of theth camera. For
each camera, the relationship of Eq. (9) holds. If we introduce an indeterminate nonzero
constant\, instead of the relatiorr, we have

At = P X (17)

The constanf\,; is called theprojective depth Rearranging all the equations of this form
for k =1, ...,M in a matrix form, we obtain

P1 u1 0 0 X 0

P2 0 Uz - 0 —>\1 0
= | (18)

0 O :

PM 0 0 e UM _)\M 0
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Figure 5.Epipolar lines and epipoles.

Since someX (# 0) and A\, x = 1, ..., M, that satisfy this equation should exist, the
3M x (M +4) matrix on the left-hand side has at most ravkt- 3. Hence, al( M + 4) x
(M + 4) minors should vanish. This leads to constraints on projection imagks (n 2,

3, 4) images [12].

Remark 9 It is easy to see that unless the chos&h+ 4) x (M + 4) minor contains two

or more columns of?,;, we cannot obtain a meaningful constraint on the projection in the
xth image. In fact, if only one column d?, is included, the resulting minor is linear in its
elements, so its vanishing does not give any information aBputHence, ifAM projection
matrices are to be constrained by the vanishing(@ffa+ 4) x (M +4) minor, we nee@M

< M + 4, or M < 4. Thus, we can obtain constraints on only two, three, and four images.

3.2. Fundamental Matrix

For M = 2 (two images), the matrix on the left-hand side of Eq. (18)¥s6, so we obtain
only one constraint: the matrix has determinant 0. This is rewritten as

ulTFug =0, (19)

whereF is a3 x 3 matrix called thdundamental matrixlts (ij) element is

3
Fij= Y €ixijmn det PY3T, (20)

k,lmmn=1

whereP{lu is the4 x 4 matrix consisting of théth row of Py, thelth row of Py, themth
row of P,, and thenth row of P,. From Eq. (20), it can be shown that the fundamental
matrix F' has rank 2.

Remark 10 The symbole;;, denotes the signature of the permutati@yk). Namely, it
takes on 1 if(ijk) is an even permutation of (123)}1 if it is an odd permutation, and 0
otherwise. This symbol is called thevi-Civita(or Eddingtor) epsilon

3.3. Epipolar Constraint

The line starting from the viewpoir@®; of the first camera and passing through the point
u in the image plane of the first camera is calledlthe of sightof w;. The line of sight
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of us is similarly defined. Geometrically, Eq. (19) describes the requirement that the line
of sight ofu; and the line of sight ofi» should intersect at a point (it may be at infinity) in
the scene. (Fig. 5). The set of poinighat satisfyl "« = 0 for somel defines a line in the
image. The vectaklabels this line up to a nonzero multiplier (i.eandcl defines the same
line for ¢ # 0). The three components bilefine the homogeneous coordinates of this line.
Henceforth, we abbreviate the line represented by védionply as “linel”.

Eq. (19) implies that the point, is on the linel' = Fu,, which is called thespipolar
line of pointus. Eq. (19) also implies that the point is on the linel? = F w4, called
the epipolar lineof pointw,;. Thus, Eg. (19) states thatpoint in one image should be on
the epipolar line of the corresponding point in the other imagkis requirement is called
theepipolar constraint If follows that if the fundamental matri¥" is known, one can find
point correspondence by searching the other image along the epipolar tingmf. 5).

3.4. Epipoles

Since the fundamental matrik has rank 2, it has a null vector. So dag$, too. In other
words, there exist vectors; ande; such thatF"e; = 0 and Fe, = 0. Identifying ey
and e, with homogeneous coordinates of points in the image, we call therapipoles
Geometrically, the epipole; is the projection of the viewpoir®, of the second camera
onto the first imageand the epipole is the projection of the viewpoir®; of the first
camera onto the second imafféig. 5). From Eg. (19), we can see that in the first image
the epipolar lind! = Fu, of any pointus passes through the epipadg, i.e.,l' "e; = 0.
Similarly, in the second image, the epipolar life= F'" u; of any pointu; passes through
the epipolees, i.e, 1> e, = 0.

It follows that epipolar lines of all points in the other image pass through the epipole,
defining apencil of lines(Fig. 5). This is easily understood if we note that the epipolar
line of a pointus of the second image is nothing but the intersection of the first image
plane with the plane defined ly, and the viewpoint$); andO, of the two cameras. This
plane is called thepipolar planeof us (and hence of the corresponding point). The
line connecting the two viewpoint®; and O is called thebaseline All epipolar planes
contain the baseline, definingoancil of planegFig. 5).

3.5. Three-View Geometry

For M = 3 (three images), we obtain from Eq. (18) the followtngnear constraint

3
2 : gk i 1 m __
Ejlpfk-mqjji U1U2U3 —O (21)
irjik,l,m=1

Here,ug denotes théth component ot:,,, and
3
ik Imjk
T = 3" ey det PSS (22)
I,m=1

is called therifocal tensor
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Figure 6.Trifocal constraint.

Given alindl in the image plane, the plahg defined by the viewpoin®,. and the lind
is called theback projectiorof the linel. LetIl;> be the back projection of an arbitrary line
12 passing through, in the second image, ari}s the back projection of an arbitrary line
13 passing throughes in the third image. Geometrically, Eq. (21) describes the requirement
thatthe line of sight o, in the first image should meet the intersection of the two planes
IT,2 andIl;s at a single poin{it may be at infinity) (Fig. 6).

Remark 11 Take an arbitrary points (# u2) in the second image and an arbitrary paipt
(# ws) in the third image. Multiplying Eq. (21) bybv4 and summing it ovep andg, we

obtain
3 3 3
Z lekuzl(z ejlpulzvg)< Z ekmqugnvg> =0. (23)
1

i,5,k=1 l,p=1 m,q=
If we define lines

l2 = Ug X V2, l3 = us X v3, (24)
Eq. (23) is rewritten as
3
> Tl =0, (25)
i,5,k=1

which describe the geometric relationship mentioned earlier.

3.6. Four-View Geometry

For M = 4 (four images), we obtain from Eq. (18) thaadrilinear constraint

3
ijkl, m, n_ D q __
Z 6imaEjnbekpcelqu) J U UgUgUy = 0, (26)

is4 ke lmm,p,g=1
where

QM = det P, (27)
is called thequadrifocal tensor Geometrically. Eq. (26) describes the requirement that

the back projectionsl;s, ..., I« of arbitrary linesl!, ...,1* in each image passing through
pointsu, ..., u4, respectively, should meet at a single pdifg. 7).
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Figure 7.Quadrifocal constraint.

Remark 12 Take an arbitrary poind, (# wu,) in thexth image,x =1, 2, 3, 4. Multiplying
Eq. (26) withv§vbvsvd and summing it oved, b, ¢, andd, we obtain

3 3 3 3 3
ikl b p q,d\ _
g QY < g eimaugnv?) < E ejnbung) ( E ekpcu3v§> < E elqdu4v4) =0.

i,5,k,0=1 m,a=1 n,b=1 p,c=1 q,d=1
(28)
If we define lines
llzulxvl, l2:u2><'U2,
l3 = U3 X v3, l4 = Uy X Vg4, (29)
Eq. (28) is rewritten as
3
> QUMLERL, =0, (30)

i,j,k =1
which describe the geometric relationship mentioned earlier.

4. 3-D Reconstruction from Images

4.1. Classification of the Problem

Suppose we obserw¥ points X, « =1, ..., N, in the scene by cameras having pro-
jection matricesP,, « = 1, ..., M. Equivalently, we may move one camera, changing its
parameters and taking picturesidtdifferent instances, which is also equivalent to fix the
camera position and move the scene relative to it. In whichever interpretatian,,le¢he
projection of pointX . onto thexth image. For each point and each image, we have the
relationship described in the form of Eq. (9):

Upo ~ P X . (31)

Given projection imagesi.., < =1, ..., M, a = 1, ..., N, the task of computingX ,,
a =1, ...,N, is called3-D reconstructioror structure from motior{SFM). The problem
is classified into the following three cases (we adopt the multiple camera interpretation for
simplicity):
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() The projection matrixP of each camera is known.

(ii) The intrinsic parameter matri¥ of each camera is known (but the motion parame-
ters{R, t} are not).

(iii) The projection matrixP of each camera is unknown.

In Case (i), Eq. (31) determines the 3-D coordin&f€s, Y., Z,) of point X ,, up to one
degree of freedom, which corresponds todlepthof the pointX ., along the line of sight.
In order to determine it uniquely, we need to observer two or more images. Computing the
depths of points in the scene in this way is calledilti-camerd stereo vision

In Case (ii), the cameras are said todatibrated In this case, we first compute the
fundamental matrid¥’ from point correspondences between two images. Then, the motion
parameter§ R, t} are determined by solving Eq. (20), and the problem reduces to stereo
vision of Case (ii).

In Case (iii), the cameras are said tourealibrated 3-D reconstruction in this case is
calledself-calibrationor autocalibration

Remark 13 In Cases (ii) and (iii), the positions of the points in the scene and the camera
motion parameters are determined only up to an unknown scale factor. This is because small
camera motions relative to a small object located nearby cannot be distinguished from large
camera motions relative to a large object located far away, as long as projection images are
the only available information.

Remark 14 For calibrated cameras (Case (ii)), the motion parameters computed from the
fundamental matrix# has ambiguity of “mirror image”. This is because we only require
the 3-D positions of observed points to be on the lines of sight that they defines. As a result,
the reconstructed shape can be a mirror image “behind” the camera. Mirror image solutions
can be removed by imposing the constraint that observed points be in front of the cameras,
which Hartley [7] calleccheirality (or chirality) (see [14, 15] for the actual procedure).

4.2. Self-calibration

In Case (iii) (self-calibration), the projection matricBg and the 3-D pointX ,, in Eq. (31)

are both unknown. It is immediately seen from Eq. (31) that the solution is indeterminate if
there is no constraint on the cameras or the 3-D points. In fakt,ind P, are a solution,

we have another solution

Xo~HX,, P.~P.H™! (32)

for an arbitrary nonsingulat x 4 matrix H.

The first of Egs. (32) can be regarded as applyipgogective transformatiorfor aho-
mography H to the 3-D projective space? (Fig. 8). Accordingly, the pointX , and X ,
have the samprojective structure For example, collinear points are mapped to collinear
points, coplanar points are mapped to coplanar points, andittegilience relationships

such as “on ...", “passing through ...” and “meeting at ...”, are preserved. Howeggic
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]

Figure 8.Projective transformation.

Xq H

R ———

propertiessuch as lengths and angles are not preserved. 3-D reconstruction determined up
to an arbitrary projective transformation is call@jective reconstruction

In order to select a correct solution, one needs some constraint on either the cameras or
the points. Selecting a unique solution by imposing such constraint is tempgeddingof
projective reconstruction intBuclidean(or metric) reconstruction

Note that Egs. (32) are rewritten as

X,~H 'X,, P.~P.H. (33)

If, for example, we know the true 3-D positiod§,, of five (or more) points in general po-

sition, we can uniquely determine the projective transformakibthat maps, or “rectifies”,

the five pointsX ,, to their true positionsX .. Applying the computedd to the remaining

points, we obtain the Euclidean reconstructiip, of all points. If no such five points are
known, we need to assume some constraints on cameras and find an appropriate projective
transformationd such that the projection matric#, rectified by the second of Egs. (33)
satisfy the assumed constraints. This approach is callestridwified reconstruction

Remark 15 Points in 3-D are said to kia general positionf no three of them are coplanar.

If we are given five (or more) points in general position for which we only know their
relative configuration up to a scale factor, we can reconstruct the 3-D shape up to position,
orientation, and scale by arbitrarily normalizing the position, the orientation, and the scale.

Remark 16 If no 3-D information is given about the scene, the absolute scale cannot be de-
termined from images alone, as pointed out in Remark 13. Hence, all that can be obtained
is, strictly speaking, “similarity” reconstruction rather than “Euclidean” or “metric”. How-
ever, the terms “Euclidean” and “metric” are commonly used to mean “up to similarity”.

4.3. Stratified Reconstruction

Eliminating the rotationR from Eq. (11) by using the identitRR" = I, we obtain for
each image
P.diag(1,1,1,0)P,] = w?, (34)

wherediag(a, b, ¢, ...) denotes the diagonal matrix with diagonal elements c, ... in that
order. The3 x 3 matrixw;, is defined by

wt =K. K, . (35)
SubstitutingP, in the second of Egs. (33) into Eq. (34), we obtain
IN-",.@Q’O‘OIN:’,—_Cr ~ wy

K

(36)
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where we define thé x 4 matrix Q7 by
Q' = Hdiag(1,1,1,0)H . (37)

If the intrinsic parameter matri¥(,; is known (i.e., the camera is calibrated), we can
determinev’, from Eq. (35). Even itv}; is not completely known, we can obtain constraints
on the elements of2’_ from Eq. (36) if we have some knowledge abajt, such as a
particular element being 0 or two particular elements being equal (we are assumii that
are given). If the numbeb/ of images is sufficiently large to give a sufficient number of
such constraints of2’_, we can determin€’ . Frequently used assumptions about the
cameras are:

e All cameras have the same intrinsic parameters.
e The location of the principal point is known for all cameras.
e The skew angl@ is O for all cameras.

e The aspect ratig is 1 for all cameras.

For example, if all cameras have the same intrinsic parameters (i.e., one camera is
moved to take multiple pictures without changing its parameters), the unknown is one in-
trinsic parameter matrid, sow] = ... =w}, = wW* (= KKT). Hence, Eq. (36) gives
5(M —1) equations of2_. If the principal point is known, we can translate the coordinate
system so thaty = vp = 0. Then, the (13) and (23) elementsH&fin Eq. (4) are 0, and
hence the (13) and (23) elementsugf = K. K, are also 0. In this case, Eq. (36) gives
2M equations of2_. If the skew angle is zero in addition, the (12) elemenudfis also
zero, so we obtaiBM equations of2’_. If furthermore the aspect ratipis 1, the (11)
element and the (22) element are equal, givihgdditional equations. If we obtain nine or
more such equations, we can solve them(¥jr up to a scale factor. 27 is determined,

w is determined from Eq. (36). Then, the projective transformalibis determined from
Eqg. (37). The intrinsic parameter mati,, is obtained by solving Eg. (35).

Remark 17 From Eq. (4), the matriw}, in Eq. (35) has the form

2.2 2 2 2
fnlyn + Sk + UOK) fﬁsn + UokVok U0k
* 2 2 2
wn = fl‘isn + uOHUOH f,‘i + UOH UOH 9 (38)
U0k Vok 1

where we pus,, = f.7, tan 8. Thisis a3 x 3 symmetric matrix with six different elements.
Hence, if all the intrinsic parameters are known, Eq. (36) gives five constraints for each
k (one degree of freedom is lost for the indeterminate scale factor). The unknown is the
4 x 4 symmetric matriX2’_ with ten independent elements, but it has scale indeterminacy.
Hence, two views are sufficient.

If the intrinsic parameters are all unknown but are the same for all cameras (or one
camera is moved), we need to obsefeviews such thab(M — 1) > 9, orM > 3. If
the principal poin{(uo,, uo, ) is known but other parameters can vary from frame to frame,
the numberM of necessary views is such tiiat/ > 9, or M > 5. If the skews,; is 0 in
addition, this is relaxed t8M > 9, or M > 3 views. If furthermore the aspect ratjq is
1, this becomed M > 9, so we still need to obsend > 3 views.
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Remark 18 If we have more equations than the number of unknowns, inconsistencies arise
among these equations in the presence of noise in the data. Theoretically, we can determine
the unknowns in a statistically optimal ways [15], but this is too complicated to carry out.
So, a simple least-squares minimization is conducted in practice. This, however, causes
another problem€2”_ should have rank 3 from the definition of Eq. (37), but it has generally
rank 4 if computed by least squares. Ad-hoc treatments, such as computing the singular
value decomposition (SVD) of the obtain€Xf_ and replacing the smallest singular value

by 0, are widely employed.

Remark 19 If Q7 is obtained, Eq. (37) does not completely determine the projective trans-
formation H: it has rotational ambiguity, and its fourth column is arbitrary. This corre-
sponds to the fact that the orientation and the location of the world coordinate system can
be arbitrarily defined. The details of the computation is given in Appendix A.

Remark 20 From the compute®?’_, Eq. (36) determines}, up to a scale factor. Then,
Eqg. (35) must be solved faK ,;, which should be an upper triangular matrix. A standard
procedure, called th€holesky factorizations well known for decomposing a given pos-
itive semi-definite symmetric matrix into the product of an upper triangular matrix and its
transpose. The indeterminate scaldof is fixed so that its (33) element becomes 1.

Remark 21 The stratified reconstruction approach was proposed by Faugeras [4] and oth-
ers. First, the constant camera constraint was used by many researchers. Later, Heyden
and Astrom [9, 10] showed that Euclidean reconstruction is possible using as few con-
straints as zero skew alone if a sufficient number of images and point correspondences
are available. The constraint in the form of Eq. (36) was first formulated by Triggs [42].
Pollefeys et al. [28] demonstrated that accurate reconstruction is indeed possible by this
approach. Since then, various modifications and simplifications have been devised for im-
posing the constraint. Many researchers used nonlinear optimization in one form or another,
but later simple formulations using linear computations have been found in many forms; see
[30, 31, 32]. The actual procedure of one such approach is given in Appendix A.

4.4. Dual Absolute Quadric Constraint

Comparing the second of Egs. (16) and Eq. (35), we can see that the wiatsithe inverse

of w,, which represents the projection, onto #th image, of the absolute corft,,. This
means that the set of linéghat satisflewj;l = 0 is theenvelopeof, or the set of tangent
lines to, the (imaginary) conic defined by the first of Egs. (16). In projective geometry, this
is called thdine pencil of second clastual to the conia: ' w,u = 0.

Eq. (36) states that the line pencil of second class represented [s/the projection,
onto thexth image, of theplane pencil of second classpresented bf2’_, i.e., the set of
planes with homogeneous coordinatethat satisfyr ' Q* 7 = 0. This is the envelope of,
or the set of tangent planes to, the absolute cOnjcregarded as a degenerate (imaginary)
guadric surface (a 2-D “disk”) (Fig. 9). This envelope is calleddhal absolute quadric
From this projective geometric interpretation, Eq. (36) is calleddilned absolute quadric
constraint
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Figure 9.Dual absolute quadric constraint.

Remark 22 The fact that the constraint for Euclidean reconstruction can be given a pro-
jective geometric interpretation in terms of the dual absolute quadric is one of the greatest
theoretical advances of 3-D reconstruction from images. For this reason, almost all papers,
articles and books on 3-D reconstruction now start with theorems of projective geometry in-
volving the absolute conic. At the cost of this elegance, however, this projective geometric
interpretation makes the reconstruction procedure incomprehensible to average computer
vision researchers, who tend to shy away from such mathematical sophistication involv-
ing imaginary quantities. In reality, the actual reconstruction procedure can be described
without any reference to projective geometry, as we showed in Section 4.3. Itis still being
debated among researchers whether the projective geometric interpretation helps or pre-
vents people’s understanding of this method.

4.5. Projective Reconstruction

In order to start stratified reconstruction, we need an initial projective reconstruction. The
most frequently used method for it is calléattorization If the projective depth\,,, is
introduced as in Eq. (17), Eq. (31) is rewritten as the following equality:

)\nauna = PnXa- (39)

Letu, be the3 M -D vector obtained by vertically stacking t1a, A2aW2a, s AMaUMa,
andp, the3 M -D vector obtained by vertically stacking tita columns ofPy, P, ..., P),.
Then, Eq. (39) is expressed in the form

Uo = XoP1 + X2Py + X2Ps + X by, (40)

whereX! is theith component of the vectaX . Eq. (40) states that th¥ vectorsa,, are
all constrained to be in thé-D subspace of R*M spanned by{p,, p,, P3, P4} This fact
is called thesubspace constraint

We can see that Eg. (39) holds if we multiply both the projective depthand the
homogeneous coordinat@§,, by a common nonzero constaft. As a result, the vector
L, IS multiplied byc,,. In order to remove this indeterminacy, we normailizgeto be a unit
vector: ||u,|| = 1. Then, we obtain the following iterative procedure for compufiig:

1. Give initial values for the projective depthg,,.
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2. Compute th&M-D vectorsu,, and fit a 4-D subspace to the resultingu,, by least
squares.

3. Adjust the projective depths,, so that the square distance from eaghto the fitted
subspace is minimized.

4. Go back to Step 2, and repeat this until the computation converges.

5. Letting an arbitrary orthonormal basis of the converged subspaesp,, determine
X, by expandingz,, in the form of Eq. (40) by least squares.

Remark 23 In Step 1, the initial values of the projective depths, can be set to 1. If all
the cameras are “affine cameras” (to be defined in the next section), it can be shown that a
solution such thak,., = 1 exists.

Remark 24 The least-squares solution in Step 2 can be immediately obtained by solving an
eigenvalue problem. In fact, if we let

N
C=> i, (41)
a=1

the subspacég is spanned by the eigenvectors@ffor the largest four (positive) eigenval-
ues; the rest of the eigenvalues should vanish if the solution is exact. Alternatively, we may
compute the singular value decomposition (SVD) in the form

(@1 - ay)=UAVT, (42)

whereU is a3M x 3M orthogonal matrix,V is aN x N orthogonal matrix, and\ is

a diagonal matrix. The diagonal elementsfofconsist of singular values in descending
order; only four are nonzero if the solution is exact. The basis oftisegiven by the first
four columns ofU. Usually, the use of SVD is computationally more efficient than the
eigenvalue computation of Eq. (41).

Remark 25 The factorization approach to projective reconstruction was first introduced by
Sturm and Triggs [34] and Triggs [41] with the observation that Eq. (39) for alida can
be rearranged in the form

Aiuwir 0 AMNuIN P,

AMIUMT -+ AMNUMN Py

In our notation, the vectoit,, is the ath column of the matrix on the left-hand side, and

p; is theith column of the first matrix on the right-hand side. Sturm and Triggs [34] and
Triggs [41] determined the projective depths, so that the matrix on the left-hand side of

Eqg. (43) can be factorized into two matrices, hence the name “factorization”. To do this,
they determined the projective depthg, by using the epipolar constraints (Section 3.3)

on pairwise images, computing the fundamental matrices of image pairs in advance. See
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Deguchi [2] for more details. Ueshiba and Tomita [43] did direct numerical search,.for
based on the perturbation theorem of SVD. It was Heyden et al. [11] who explicitly stated
the subspace constraint and reduced the problem to eigenvalue problem solving. However,
they considered the space of the vectors constructed from “all projected points in each
image”, rather than the vectors constructed from “each projected point in all images”, as in
the above formulation. In this sense, their method is “dual” to the above treatment, which
is based on Mahumud and Herbert [25]. Mahumud et al. [26] also presented an alternative
update strategy.

Remark 26 In Step 3, it is easy to see that the square distance is a quadratic form in
Awa [25]. So, the solution that minimizes this subject to the normalizatigg||?> =
Zfil lusa?A2, = 1 is directly obtained by solving a generalized eigenvalue problem
[15]. In Appendix B, the detailed procedure of Steps 1 — 5 (“primal method”) is described
together with its dual form (“dual method”).

Remark 27 Iterations of Steps 2 — 4 are guaranteed to converge, because the sum of square
distances ofi,, to the fitted subspac€ monotonically decreases due to the minimization

in Step 3. This type of iteration is a special variant of B algorithm[3]. However, the
convergence is, though guaranteed, very slow in general.

5. 3-D Reconstruction from Affine Cameras

5.1. Affine Cameras

In terms of homogeneous coordinates, perspective projection can be written as a linear
equation in the form of EqQ. (9), but this is in appearance only; the relationship is essentially
nonlinear, as can be seen from Eq. (3), which makes the subsequent analysis very difficult.
The analysis is made much easier if Eq. (3) is approximated by a linear relationship in the
form
Xe
(“) (v, |+mw (44)
v Zc

wherelIl is a2 x 3 matrix, 7 is a 2-D vector, and X, Y., Z.) is a point in the scene
described with respect to the camera coordinate system. This approximation holds up to
reasonable accuracy if

1. the object of our interest is localized around the world coordinate aotjgind
2. the size of the object is small as compared With

The approximate imaging geometry in the form of Eq. (44) is calledffine camera
Unlike the perspective camera model, the elements of the nilirand the vectorr in
Eq. (44) are now some functions of the motion paramef&st}. In order that Eq. (44)
well mimic the perspective projection of Eq. (1), we require the following:

(i) The camera imaging is symmetric around fhaxis.
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(i) The camera imaging does not dependi®n

(i) The frontal parallel plane passing through the world coordinate origin is projected as
if by perspective projection.

Requirement (i) states that if the scene is rotated around the optical axis by an angle
6, the resulting image should also rotate around the image origin by the samefangle
a very natural requirement. Requirement (ii) is also natural, since the orientation of the
world coordinate system can be defined arbitrarily, and such indeterminate parameterization
should not affect the actual observation. Requirement (iii) corresponds to the assumption
that the object of our interest is small and localized around the world coordinate trlgin
can be shown that in order that Requirements (i) — (iii) be satisfied, Eq. (44) must have the

following form [20]:
(O)-HE) () e

Here,t,, t,, andt. are the three components ofand{(, 3} are arbitrary functions of
t2 + tg andt,; function ¢ determines the size of the projected image, while funcfion

describes the deformation of the projection image as the point moves away from the plane
Z. =t,. Typical examples are the following three (Fig. 10):

Orthographic projection
¢=1, B =0. (46)

Weak perspectivir scaled orthographicprojection [27, 40]

=2 =0. 47
¢ T g (47)
Paraperspective projectioli27]
t. 1

Remark 28 The concept of affine camera and its epipolar geometry were presented by
Shapiro et al. [33]. It was also shown that any affine camera can be interpreted to be parap-
erspective projection by appropriately adjusting the scale, the position, and the orientation
of the world coordinate system [1]. This fact was exploited for object recognition from a
single image [39]. The weak perspective and paraperspective models were introduced by
Tomasi and Kanade [40] and Poelman and Kanade [27]. The generic form of Eq. (45) was
derived by Kanatani et al. [20].
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(a) Orthographic projection. (b) Weak perspective projection.

(c) Paraperspective projection.

Figure 10.Affine camera models.

5.2. Affine Space Constraint

If a point in the scene is represented by a vecXqy of homogeneous coordinates with
the fourth component 1, Egs. (6) and (44) imply that its projection ontaithémage is
represented by a vectar,, with the third component 1 in the form

. II.R, Il.t.+m,

wherell,, andr,, are, respectively, the values of the mafilxand the vectotr in Eq. (44)

for the xth image, and Ry, t..} are the motion parameters of théh camera. Eq. (49)
shows that an affine camera is a special case of the general projection in the form of Eq. (39)
with the conditions that

e the third row of the projection matri®,. is (0 0 0 1), and
¢ the projective depths,,, are all 1 (Remark 23).

It follows that, corresponding to Eq. (40), the following relationship holds:
'&/a = Xai)l + Yoai)2 + Zai)?, + i)4' (50)

As in Section 4.511,, is a vector, which we call thiajectory of the ath point, obtained by
vertically stackinguiq, ©2a, ..., wnrq, While p; is a vector obtained by vertically stacking
theith columns of the matrix on the right-hand side of Eq. (49)dor 1, ..., M. We call

P, .-, P4 themotion vectorsWe can see that every third component of the vector equation
in Eq. (50) gives the identity 1 = 1, so they can be removed. As a result, all the trajectories
u,, and the motion vectors;, become M -D vectors. Eq. (50) states that all the trajectories
i, are constrained to be in tieD affine spaced of R?M passing througlp, and spanned

by the motion vector$p,, p,, p3}. This fact is called thaffine space constraint

Remark 29 The affine space constraint is not only a basis for 3-D reconstruction from affine
camera images but also the core principlemafitibody motion segmentatidrom images.
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This is because if we observe multiple objects that are moving independently in the scene,
the affine space constraint should hold for each rigid motion. Hence, if we track feature
points that belong to multiple objects, classifying them into different motions is equivalent
to classifying their trajectories, regarded2d¥-D vectors, into different affine spaces in
R2M  See [16, 17, 18, 35, 36, 37, 38] for actual applications.

5.3. Affine Reconstruction and Metric Constraints

The standard procedure for 3-D reconstruction based on the affine space constraint is called
factorizationfor the reason explained shortly.

First, we fit a 3-D affine spacd to the trajectories:,, by least squares. It is specified
by a particular poinp. € A and orthonormal vectorsg, q-, g5} that spand atp.. If
we identify {q,, q,, g3} with {p;, P, p3} in Eq. (50), we can determingX,, Y, Z,)
by expanding eaclx, over them in the same way we did in Section 4.5. Howeper,
can be anywhere itd, and{q,, g,, g3} can be any three linearly independent vectors,
not necessarily orthonormal. Hence, the 3-D shape reconstructedpfroamd {q;, q,,
g} has ambiguity up to an affine transformation. Such a reconstruction is cdfled
reconstruction In order to upgrade the solution to Euclidean, we need to rectify the basis
correctly by an affine transformation in the form

3
p; = Z Ajiq;. (51)
j=1

The translational ambiguity due to the arbitrarinespghas no effect on the reconstructed
3-D shape. The rectifying transformation matex= (A;;) is determined by the condition
that eachp, consists of coordinates of points in the scene viewed by an affine camera that
has the form of Eq. (49). This condition, known as thetric constraintis obtained, as
in the case of the dual absolute quadric constraint, by elimind@ndrom the projection
relation of Eq. (49) by using the identi#g,. R, = I.

Let Q be the2M x 3 matrix with columnsg,, g,, andgs in that order. Let;L(l) and

qL(Z) be the(2x — 1)th and the2xth columns ofQ ', respectively. We define the x 2
matrix Q' by

T T
QL= (aly ale)- (52)
It can be shown (see Appendix C for the derivation) that if we let
T=AA", (53)

the metric constraint is written in the following form [20]:
QL'TQ] = ILIL,. (54)

As in the stratified reconstruction, we can obtain from Eq. (54) a set of equatiofis for
from the knowledge about the camera model, i.e., the relationships among the elements of
the matrixII.II on the right-hand side of Eq. (54). After that, we can obtain the rectifying
matrix A by decomposing the computdd in the form of Eqg. (53). The computational
details for the typical models of Egs. (46) — (48) and the general affine camera model of
Eq. (45) are described in Appendix C.



54 Kenichi Kanatani

Remark 30 As mentioned in Section 5.1, the affine camera model is a good approximation
when the object of our interest is localized around the world coordinate origin. In such a
situation, the world coordinate origin (which can be defined arbitrarily) can be located at
the centroid of point$X,,, Y,, Y, ), which means

N N N
D Xa=D> Ya=) Zu=0, (55)
a=1 a=1 a=1

Let ¢ be the centroid of the trajectoriés,
1 N
Uuc = N Z:l Uq- (56)

From Egs. (50) and (55), we can see that the centigictoincide withp,: uc = p,. As

in the case of stratified reconstruction, the basis of the affine spabat optimally fits
the trajectoriedi, and passes through their centraig is given by the eigenvectors of the
matrix

N
C=> (it — @) (B —ic) (57)
a=1

for the largest three eigenvalues. Alternatively, we may compute the singular value decom-
position (SVD) in the form

(@1 —@c - ay—uc)=UAV', (58)

whereU is a2M x 2M orthogonal matrixV is aN x N orthogonal matrix, and is a
diagonal matrix. The basis of th4 is given by the first three columig.

Remark 31 If we let u,, = u), — uc, Eq. (50) fora = 1, ..., N can be rearranged in the
following form:

X1 W Z
(all UN):(f’1 Do 153) : : : (59)
XN Yy Zn
Hence, computing the solutiohX,, Y., Z,} can be given the interpretation that we are
factorizingthemeasuremenr(br observatiopmatrix W = (f&’l ‘e &§V) into the product

of two matrices: the first describes the motion; the second the shape. This is the origin of the
termfactorization named by Tomasi and Kanade [40], and the subsequent papers [24, 27]
adopt this interpretation. Sturm and Triggs [34] and Triggs [41] presented a projective
reconstruction procedure in a similar formalism, and this lead to the term “factorization”
also for the approach described in Section 4.5 (Remark 25).

Remark 32 Since the factorization gives the solution by linear computation alone without
any iterative search, it is widely used for many applications, such as object recognition
and classification, which do not require so very high accuracy of the 3-D shape. Also,
this method can be used to obtain a good initial guess of projective reconstruction for the
stratified reconstruction.



Latest Progress of 3-D Reconstruction from Multiple Camera Images 55

Remark 33 When we say that we obtain “affine reconstruction” if the metric constraint is
not imposed, we must keep in mind that an affine camera is a hypothetical concept; it only
approximates existing cameras, which are modeled as perspective projection. Hence, if
we use perspectively projected images as input, the resulting shape is not exactly affine
reconstruction and is not exactly Euclidean even if the metric constraint is imposed.

Remark 34 The 3-D shape reconstructed by factorization is not unique, having the follow-
ing ambiguity:

() The absolute scale is indeterminate.
(ii) The orientation of the world coordinate system is indeterminate.
(i) Mirror image ambiguity exists.

The absolute scale indeterminacy is unavoidable as long as images are only available infor-
mation (Remark 13). In fact, we can see from Eq. (50) that multiplyipg py, p3} by a
nonzero constantgives rise to the same effect as dividifg ., Y., Z.} by c¢. The orien-

tation of the world coordinate system is indeterminate, because it can be arbitrarily defined
in the scene. The mirror image ambiguity arises from the fact that the rectifying raatrix

is determined by Eq. (53), which can be rewrittenfas (+AR)(+AR) ' for an arbi-

trary rotation matrixR. The indeterminacy of the rotatiadR? corresponds to the orientation
ambiguity; the indeterminacy of the sign corresponds to the mirror image ambiguity.

6. Concluding Remarks

This chapter has summarized recent advancements of the theories and techniques for 3-D
reconstruction from multiple images. We started with the description of the camera imag-
ing geometry as perspective projection in terms of homogeneous coordinates. We defined
the intrinsic and extrinsic (motion) parameters of the camera by introducing the camera
coordinate system and the world coordinate system.

It was shown that the camera imaging is regarded as a mapping from the 3-D projective
spaceP? onto the 2-D projective spad@? and that the absolute conic is invariant to camera
motions, providing projective geometric interpretations to camera calibration procedures.
Next, we described the epipolar geometry for two, three, and four cameras, introducing
such concepts as the fundamental matrix, epipolar lines, epipoles, the trifocal tensor, and
the quadrifocal tensor.

We then described the self-calibration technique based on the stratified reconstruction
approach, using the absolute dual quadric constraint. We showed that an elegant projec-
tive geometric interpretation can be given but that it is not essential or even necessary for
actually doing 3-D reconstruction computations. We also described the procedure for com-
puting a projective reconstruction by the factorization based on the subspace constraint.

Finally, we gave the definition of the affine camera model and a procedure for 3-D
reconstruction based on it. We discussed possible forms of the affine camera, described the
affine space constraint, and introduced the metric constraint that is necessary for Euclidean
reconstruction. The detailed procedures for 3-D reconstruction are given in the Appendix.
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A. Euclidean Upgrading from Projective Reconstruction

Here, we describe the computational procedure for comp@#ifygin Eq. (35) andH in

Eq. (37), given the projection matricd®, of projective reconstruction (the projective re-
construction procedure is given in Appendix B). We then give the procedure for computing
the 3-D shapeX, and the motion parametefsR,, t.} using the computed projective
transformationH .

The following is a modification of the scheme proposed by the method of Seo and
Heyden [31], to which several techniques are introduced for increasing robustness. The
basic assumption here is that the skew ang@leare all 0 and the aspect ratigs are all 1
(Sections 2.2 and 2.3). Hence, unknown camera parameters are the focal feragttishe
principal points(u,, v«o) for M frames.

A.1. Computation of Q
Substituting Eqg. (35) into Eqg. (36), we have
PP ~K.K]. (60)

Suppose we have an estimgteof the focal length and an estimate., v.o) of the prin-
cipal point for each frame. We tentatively let

fH 0 uko
= 0 fe wvwo |- (61)
0 O 1

(See Eq. (4). Keep in mind that we are assuming that the skew angle is 0 and the aspect
ratio is 1). Multiplying Eq. (60) byK ! from left andK ;" from right, we have

Q. Q.Q. ~ scalarx I, (62)

where we define
Q.=K.'P,. (63)

Eq. (62) implies that the (11) and (22) element€oi2* Q. are approximately equal, and
its (12), (23), and (31) elements are approximately 0. Namely,

Z Que(1) Que(1) Looig) — Z Qn(20)@Qu(27)Vio(is) = 0, (64)
,5=1 i,j=1
4
Z Q15 @r(25) Yoo (i) & 0, (65)
ij=1
4
Z Qr(2i) @ (35) oo (i) = 0, (66)

ij=1



Latest Progress of 3-D Reconstruction from Multiple Camera Images 57

4
Z @30 @r(15) oo (i) = 0, (67)
ij=1
whereQ,;;) and QOO( ;) are the(ij) elements of the matricaQ,. and€2_, respectively.
We determlneﬂ* by minimizing

K= ZW(Eq (64)2 + (Eq. (65)° + (Eq. (66)2 + (Eq. (64))2)

4
Z AijleZo(ij)on(kz)a (68)
ik, 0=1
wherelV,; is an appropriate weight (initially we s&t,, = 1). The3 x 3 x 3 x 3 tensorA =
(Ajjri) has the form

zyk:l Z W (Qn 14) Q/-c (15) Qn 1k) Qn 11) Qn(li)Qn(lj)Qn(Qk)Qﬁ(Zl)

1
—Qr20)@r(2)) @r(1k) @r(11) T Qr(20)@r(2)) @r(2x) @r(21) T+ 1(Qn(li)Q/{(Qj)@/@(lk)@ﬁ(ﬂ)
+Q (20 Qre(15) Qr(1k) @r(20) + Qre(16) Qr(2) @r(2k) Qre(11) T Qre(20) Qre(1) @re2k) @re11))

1
+Z(Qﬁ(2i)Qn(3j)Qn(2k)Qn(Sl) + Qr(30)Qr(25) @r(2k) @r(31) T Qr(20)@r(35) @r(3k) @i (21)
1
HQn(30) @n(29) (3 @re(20)) + 7 (Qu30) Qu(1) @r(3m) Q1) + @re(10) @(37) @rs(3m) 1)
+Qu(30) Qr(15) @r(1k) @r(31) + Qn(li)Qn(?)j)Qn(lk)Qn(Sl)))‘ (69)

The absolute scale &’ cannot be determined from Eq. (62), so we tentatively adopt
normalizationzijz1 Q;Q)(ij) = 1. SinceQ?}_ is a symmetric matrix, we can write

w1 11)5/\/§ ws/\@ w?/\f
0 — w5/\/§ w2 wg/\/5 w9/\f (70)
> we/V2 ws/V2  ws wlO/\f

w7/ﬂ w9/\/§ wlo/ﬂ

Then, the normalizatiod; ,_, 025 = 1is equivalent o2, w? = 1. If we define the
10 x 10 matrix

A1 A1122 A1133 Aniaa V2A1112
Aom Agzo Az233 Asoas V2A215
Aszzn A3z320 A3333 Aszas V2As310
Agam Aya20 Aya33 Agaas V2Auno
V241011 V2A1220 V2A1933 V2A1001 241912
V2Ai311 V2A1320 V2A1333 V2A1314 241312
V2Ai1 V2A1a0 V2Auzs V2Aiua 241
V242311 V2A2300 V2Ass33 V2Assus  2As310
V242411 V2As190 V2Asuzs V2Asuus  2Aos1o
V2A3111 V2Asu0 V2Asz133 V2Asua 243110
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V2A1113 V2A1114 V2A1103 V2A11214 V241134
V2A2913 V2A2914 V2A2093 V2A9001 V2A2934
V2A3313 V2As314 V2As303 V2As300 V2As334

V2Aus V2Au1s V2Asie3 V2Au01 V2Au3s
2A1213 2A1214 2A1223 2A1204 2A1234

, 71
241313  2A1314  2A1323  2Ai324  2A4334 (1)
24113 2Aua1a 2Awa23 2A1a2a 2A1a3
249313  2A2314  2A303  2Ag324  2A2334
242413 2Asa1a 242493 2Aguoq 2Ao43s
2A3413  2A3414  2A3403  2A3424  2A3434
Eq. (68) is written as
10
K=>" Alwuw;. (72)

1,j=1

Hence, minimization of Eq. (68) subject E?,j:l Qﬁ

) = 1 reduces to minimization
of Eq. (72) subject tozg1 w? = 1. The solution is given by the unit eigenvector=
(w;) of the matrix AT = (Ajj) (alternatively, we can use SVD, but explicit expressions
are cumbersome to write down). The compuied= (w;) is then converted to & x 4
matrix in the form of Eq. (70). However, the sign of the eigenveatothence of2’_, is
indeterminate. Alsof2;, must be positive-semi definite with rank 3. So, we redef¥ig
as follows. Leto; > --- > o4 be the eigenvalues &2’ , andu, ..., u4 the corresponding
unit eigenvectors. We let

O — { alululT + Uguzuér -+ 0311,3’11,; o3>0

o = T T T : (73)
—04U U, — O3U3U3 — O2U2Uy 02 <0

A.2. Update of K,
Suppose the left-hand side of Eq. (62) for the comp®&édhas the form

(11)
QI{Q?;OQ—K)F: Cr(21) Cr(22) Ck(23) | - (74)

If this is not a scalar multiple of the unit matrik we updatek , in the form of K, «—
0K, K., where we let

5fn 0 dUko
SKe=| 0 6f. oveo | (75)
0 0 1

The incrementd K, is determined in such a way that Eq. (74) is approximated by
6K 0K . From Egs. (74) and (75), we find that

ko = Cﬁ(lg), OVk0 = CH(QB),
Cr(33) Ck(33)
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1 /Ck11) + Cr(22) 9 9
PR B (i O B C B 1 S . 76
5f \/2 ( 05(33) UHO 51}“0) ( )

Since the projection matri®,. can be defined only up to scalar multiplication (see
Eqg. (31)), the matrix@,. in Eqg. (63) also has scale indeterminacy. So, we norméjize
by dividing it by , /c;33) so that Eq. (74) has approximately the same scalefasall «.
However,c, 33y can be negative in the presence of extremely large noise, and the inside
of the square root in Egs. (76) may also become negative. In such a case, we skip that
frame in the computation. To do this systematically, we make the wéighteflect the
closeness of Eq. (74) to a scalar multiplelofWe also measure the goodness of estimation
not by totaling the goodness measures of individual frames but by their “median” so that
exceptional frames are not counted (see Section A.4).

A.3. Computation of H

Since2}_ has the form of Eq. (73), 4 x 4 matrix H that satisfies Eq. (37) is given up to a
rotation by(\/aTul Vo2us \/o3u3 v) foroz >0 and(\/—a4u4 V—osus \/—oaus 'v)

for o9 < 0, wherew is an arbitrary vector. The indeterminate freedom of rotation and the
arbitrariness of the vectarcorrespond to the fact that the orientation and the location of the
world coordinate system are arbitrary. However, the mafixust be nonsingular, which
means that must be linearly independent of the first, the second, and the third columns of
H. So, we choose asa unit vector orthogonal to them. This means that we can take as
the remaining unit eigenvector 6F_.

A.4. Computational Procedure

The above computation is summarized as follows:
Input:

e Approximate principal pointu,, v.o) and the focal lengthg., < = 1, ..., M.

e Projection matrice®,., s = 1, ..., M.

Output:

¢ Rectifying projective transformatiofl .

e Intrinsic parameter matricek ., k = 1, ..., M.

Computation:

1. Let
H = 1I,44, K = I3.3, Jmed = 00, (77)

where the subscript of denotes its size (omitted if understood), ardmeans a
sufficiently large number.

2. Initialize K ; in the form of Eq. (61), and lét/, = 1 and,, = 1.
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3. Let .
Q. =K 'P,. (78)
4. Compute the tensot = (A4;;1;) in Eq. (69).
5. Compute the 10-D unit eigenvectar of the 10 x 10 matrix A in Eq. (71) for the
smallest eigenvalue.
6. Compute the tentative matrfX’_ in Eq. (70).
7. Compute the eigenvalues > - - - > o4 of 27 and the corresponding unit eigenvec-
torsuq, ..., u4.
8. Compute
H:{ (Vorur J/oous \/ozus uy) o3>0 (79)
( —04U4 +/—03U3 +/—02U9 ul) o9 <0 '
9. Do the following computation fat =1, ...,M:
(@) Computer,(;;) by Eq. (74), and let
K + K K 2 K 2
F, = Cr(11) T Cr(22) (C (13)> _ (C (23)> ‘ (80)
Ck(33) Ck(33) Ck(33)
(b) If c33) > 0 andF,; > 0, computeiuyg, dvko, andd f,; in Egs. (76) and let
Cr(11) 2 Cr(22) 2 Ci(m) + 63(23) + Ci(:ﬂ)
Jﬁz(iq) +(—f1) 42 - . (@8
Cr(33) Cr(33) C(33)
Then, updatek ,, and~,; as follows:
K, « K.K,, e (82)
Ck(33)
(c) Else, letJ,; = 0.
10. Compute the following median:
Jimea = med?, J,.. (83)
11. If Jheqa = 0, returnH and K, and stop.
12. If Jyed > Jumed, returnH and K .. asH and K ,. and stop.
13. Go back to Step 3 after letting

Jmed < Jmed; ﬂ — H, Kn — K, Wi e_JN/Jmed- (84)

Note that this algorithm does not compute the mafizf in Eq. (73); it directly outputs the
rectifying projective transformatiokhf and the intrinsic parameter matrl ..
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A.5. 3-D Positions and Motion Parameters

Using the computedd, we can rectify the projection matricd®,, and the 3-D positions
X ., as follows:

P.=P,H, X,=H'X,. (85)

The 3-D coordinate$X,, Y., Z,) are given by Eqgs. (13). From the computhd;, the
motion parameter§R,, t,. } are to be determined such that

K. 'P,~ (R, t.). (86)

So, we adjust the scale df ! P, so that its first three columns are all unit vectors (in
practice, their average norm is made 1). We choose the sidii dfP,, so that its first

three columns define a rotation mat#i, of determinant 1. Then, the fourth column gives
the translatiort,,. The resultingR, may not be strictly orthonormal in the presence of
noise, so we enforce the orthonormality by computing the singular value decomposition

R, = Udiag(\, X2, A3)V T, (87)

and lettingR, =UV ' [15].

A.6. Mirror Image Solution Removal

Now, we remove the mirror image solution (Remark 14). If a point i&t, Y,,, Z,,), its
coordinates X ¢, Y., Z¢,,) with respect to theth camera coordinate system are given by

ro rQ
X¢, Xo
Yo, | =te+R. | Ya |- (88)
ze, Zo

We can judge that it is in front of the camera if

N
> sen(Zf,) > 0, (89)
a=1

wheresgn(x) returns 1, 0, and-1 for z > 0, z = 0, andx < 0, respectively. If Eq. (89) is
not satisfied, we reverse the signsXyf, Y., Z,, andt,.. We introducesgn(z) because if
we requirezgf:1 Z5,, > 0, the judgment may be reversed when a very large déph~

oo may be computed to b&f_, ~ —oo in the presence of noise. Theoretically, we should
require" M SN sen(Z¢,) > 0, but considering the first camera alone is sufficient in

practice.

B. Procedure for Projective Reconstruction

Here, we give two algorithms for projective reconstruction. One is the method of Mahamud
and Hebert [25], which we call thprimal method The other, which we call thdual
method is based on Heyden et al. [11]. We modify these, using corresponding symbols and
notations so that their mutual relationships become clear.
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Figure 11. Orthogonal projection af, onto L.

B.1. Primal Method

Eqg. (40) indicates that vectous, (= the columns of the matrix on the left-hand side of
Eq. (43)) are constrained to be in the 4-D subspaapanned by{p,, p,, ps, P4} if the
projective depths,,, are all correct. This does not hold:f, are not correct, so we update
zra SO that eachy,, is as close tdC as possible, identifyindp,, p,, p3, P4} with the unit
eigenvectors o€ in Eq. (41) for the largest four eigenvalues (or the first four columns of
U in Eq. (42)). The orthogonal projection &f, onto £ is (Fig. 11)

4
Go = Y (T, P))Di; (90)

i=1

where and hereafter we denote the inner product of veatarsdb by (a, b). Sincea,, is
normalized to unit norm (Section 4.5), the distance.gffrom the subspacg is

4
V Hﬂ’aHQ - Huoz | = J Z uaapz . (91)
=1

Minimizing this is equivalent to maximizing

4 4 M )
Ja = Z 'Urompl Z (Z Z,{o‘m,{a,pm))
l:]\i[ \ i=1 k=1
= Z <Z(‘1«’m,pm)(CCAa,Pz‘A>)ZnaZ>\a, (92)

KA=1 i=1

wherep,,. is the 3-D vector consisting of ti#x —1)+1th, 3(x—1)+2th, and3(k—1)+3th
components op,. Thus, Eqg. (92) is to be maximized subject to

‘uaHQ ZznanHaHQ =1L (93)

Define new variableg,, by
§ka = ||mﬂa||znaa (94)
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and consider thé/-D vector§ , with components,, ...,£aq- Then, Eq. (93) mearjg,, ||
=1, and Eqg. (92) is rewritten as

M
Jo= 3 Albwabra = (€q, AE,), (95)

KA=1

where we define tha/ x M matrix A* = (A2, ) by

4
a i= LTrar Pik )\ Lras Py
o _ > i ( )( A (96)
[Zrall - [|Exall

Eq. (95) is maximized by the unit eigenvectgrof the matrixA* for the largest eigenvalue.

The sign is chosen so that

M
D ra > 0. (97)
k=1

63

The corresponding projective depths, are determined from Eq. (94). The procedure is

summarized as follows:

Input: xxa,x=1,...M,a=1,...,N.
Output: P.,k=1,...M,X,,a=1,..,N.
Computation:

1. Initialize the projective depths tq,, = 1 (Remark 23).

2. Computet,, and normalize them into unit norm.

3. Fita 4-D subspacg to u,, by least squares (Remark 24).
4

. Do the following computations far = 1, ..., V.

(a) Compute the unit eigenvectgy, of the matrixA* defined by Eq. (96) for the
largest eigenvalue, and choose the sign as in Eq. (97).

(b) Determine the projective depths, according to Eq. (94).
(c) Recompute the vecta,,.

5. Go back to Step 3, and repeat this until the iterations converge.

6. ComputeX ,, = (X?) by A
Xo = (Ua, P;).- (98)

7. Determine the projection matriR,, by

PH = (ﬁln IN)QH 13314 134.%)7 (99)

wherep,,. is a 3-D vector whose first, second, and third components are, respectively,

the(3(k — 1) + 1)st, (3(k — 1) + 2)nd, and(3(x — 1) + 3)rd components op;.
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@

Figure 12. Orthogonal projection 6@ ontoL*.

B.2. Dual Method

Consider the followingV-D vectors:

Zk1Tk1 ZKk1Yk1 2kl
Z2Kk2L K2 Zr2YK2 ZK2

~(1) _ ~(2) _ 5(3) —

S N e D e B (100)
ZKk1TK1 Zr1Yk1 2Kl

Note that the transposﬁéf)T is the( ( 1)+1)th row of the matrix on the left-hand side of

—I— . .
Eq. (43)), which is written aé 253 @5@’) . For the scale normalization,
we impose

Z 1802 = szuwﬁw = 1. (101)

If we take out theith component of Eq. (39) and vertically align it far=1, ..., N, we
obtain

o) = Py X" + Py X + Poin X° + P“(i4)X4’

K

(102)

whereP, ;) is the(ij) element ofP,,, and X* is the N-D vector consisting oX* (= the

kth component ofX ), « = 1, ..., N. Eq. (102) implies that th8 vectorsi:,(f) belong
to the 4-D subspacé* spanned byX!, X2, X3, andX*. The orthonormal basi&g;, ...,
q,} of the subspacg€* is given by the first four columns of the matiX in Eq. (42). The

orthogonal projection of),(f) ontoL* is (Fig. 12)
4 .
=Y @Y, qn)a.- (103)
k=1

We updatez,,, so that the sum of squares of the dlstances,b)f o, andv(ﬂ) from the
subspac&*

3 3 4
S0 = 19912) = S 1801 = > > (50, a,)?
i =1 =1 k=1
(104)
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is minimized for eaclwr. Consider theéV-D vectorg,. with components,.s, ...,y defined
by Eqg. (94). Then, minimizing Eq. (104) is equivalent to maximizing

3 4
=33 Y, q,)* = (&,. B"¢,), (105)
i=1 k=1

where we define the/ x N matrix B" = (B, ;) by

Ko (qouqﬂ)(mfia,wnﬁ)
Bzl - [#es]

(106)

Here, q,, is the 4-D vector consisting of theth components of the basis vectgs, ...,
q4- EQ. (105) is maximized by the unit eigenvecyr of the matrix B” for the largest
eigenvalue. The sign is chosen so that

N
D e >0, (107)
a=1

and the corresponding projective depths are determined from Eq. (94). The procedure

is summarized as follows:

Input: xxo,x=1,...M,a=1,...,N.

Output: P.,k=1,...M,X,,a=1, .., N.

Computation:
1. Initialize the projective depths tg., = 1.

2. Compute the vectors,(f) in Egs. (100), and normalize them as in Egs. (101).
3. Fita 4-D subspacgé* to fb,(.f) by least squares.

4. Do the following computations for =1, ..., M.

(a) Compute the unit eigenvect®y of the matrix B* defined by Eq. (106) for the
largest eigenvalue, and choose the sign as in Eq. (107).

(b) Determine the projective depthg, according to Eq. (107).
(c) Recompute the vectoiéf).

5. Go back to Step 3, and repeat this until the iterations converge.
6. ComputeX,, = (X?) by

X! = (theath component ofj;). (108)
7. Determine the projection matriR,, = (P ;) by

= (®",q;). (109)
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C. Affine Camera Factorization

Here, we give the details of the 3-D reconstruction procedure described in Section 5.3. The
actual computation depends on what affine camera model we use, so we first describe the
general framework that does not depend on specific camera models and then add details that
depend on individual models, for which we consider (i) orthographic projection of Egs. (46)
(Fig. 10(a)), (ii) weak perspective projection of Eqgs. (47) (Fig. 10(b)), (iii) paraperspective
projection of Eqgs. (48) (Fig. 10(c)), and (iv) the generic model of Eq. (45). Whichever
model we use, we obtain “two” solutions that are mirror images of each other, which cannot
be distinguished as long as we use affine camera modeling.

C.1. General Framework

Suppose we track points overM frames. Let(x.q,yxo) b€ the image coordinates of
the ath point in thexth image. The algorithm for affine camera 3-D reconstruction has the
following structure [19, 20]. Items with depend on the camera model we use. The detailed
procedure for them is given later.

Input:
e 2M-D trajectory vectors

~ T
Uq = (xloz Yla T2a Y2a " " TMa yMa) ) a=1,..,N. (110)

e Focal lengthsf,, < =1, ..., M (arbitrary if unknown).

Output:
e Translationg, (= the world coordinate origin for theth view).

e Shape vectors, i.e., 3-D positiogs and s/, (mirror images of each other) of the
points relative to the world coordinate system centered on their centroid.

e Corresponding rotationR,, and R/, that specify the world coordinate axis orienta-
tions.

Computation:

1. Compute the centroido of the trajectory vectorg,, by Eqg. (56).

2. Lett,, andt,, be the(2(x — 1) + 1)th and(2(x — 1) + 2)th components ofic,
respectively.

3. Fit a 3-D affine space to the trajectory vectars and let{q;, g,, g5} be its basis.

4. LetQ be the2M x 3 matrix havingq,, q,, andqs; as its columns, and IejL be

the(2(k — 1) + a)thcolumn ofQ", k=1, ...,M,a =1, 2.

(a)

5. *Compute thed x 3 metric matrixT'.
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6. Compute the eigenvalué¢s;, A2, A3} of T' and the corresponding orthonormal sys-
tem{v1, vo, v3} of unit eigenvectors.

7. *Compute the translation vectats = (tu, tys, o) |

8. Compute the followin@ M -D vectors:

qI(Q),'vl)
mi =\ | (dh) o) |, i=1,2,3. (111)
(qR[(2)’vi)

9. Let M be the2M x 3 motion matrix havingn, mo, andms as its columns, and
let mL(a) be the thg2(x — 1) + a)th column ofM ", k=1, ...M,a =1, 2.

10. *Compute the rotationR,.

11. *Recompute the motion matrix by
M
M =) TR, (112)
k=1

wherell,, = (IL,(;;) is a3 x 2M matrix that depends on the assumed camera model.
12. Compute the 3-D shape vectagsby
Sa = (M "M)'M" (i1, — uc). (113)

13. *Computes!, and R, by
sl, = —Sa, R = Q.R,, (114)

«

wherefl,, is a rotation matrix that depends on the assumed camera model.

C.2. Metric Constraint

The metric constraint of Eq. (54) is derived as follows. By definition, the three columns
i, J ., andk, of the rotationR,, are the world coordinate axis directions for ttid view.

Their homogeneous coordinate representationgladed 0)", (0 1 0 0)",and(0 01 0) ",
respectively (they define “orientations” in the projective sp&§. Hence, according to

Eqg. (49), their image projections are represented by the first, the second, and the third
columns ofIl, R, respectively, if the third components are removed, i.e., if expressed in
inhomogeneous (or usual) coordinates. From Eq. (50), on the other hand, these vectors are,
respectively,

<1?1(3(n—1)+1) ) (1?2(3(5—1)“) > <Z§3(3(n—1)+1) ) (115)
P1(3(k—1)+2) ’ P2(3(k—1)+2) ’ P3(3(k—1)+2) ’
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wherep, ;) is thejth component op,. Thus, we have
IR, — (2?1(3(5—1)“) P2(3(k—1)+1) 15;3(3(n—1)+1)) , (116)
P1(3(k—1)+2) P2(3(k—1)+2) P3(3(k—1)+2)

The right-hand side equai3|." A from the definition ofA in Eq. (51) and@ in Eq. (52).
Hence, we have
II,R.=Q"A. (117)

It follows that
QI"TAATQl =I,R.R 1] = 11,11, (118)

or Eq. (54) if the metric matrif is defined by Eq. (53).

C.3. Orthographic Projection

If the orthographic projection model of Egs. (46) is assumed, (Fig. 10(a)), the metric con-
straint of Eq. (54) takes the following form [19]:

From these, we determine the metric maffioy least squares. The computation of Step 5
goes as follows [19]. First, we define the< 3 x 3 x 3 tensorB = (B;jx;) by

M
Biji = Z [(qz(l))i(qzu))j(ql(l))k(ql(l))l + (qL(Q))i(an(Q))j(qL(2))k(qL(2))l

k=1

"’i ((QL(l))i(qz(g))j + (qz(g))i(qz(l))j) ((Ql(l))kz(qz(g))l + (QL(Q))IC(QL@))Z))} (120)

where(qL(a))i denotes theth component of the 3-D vectojL(a). We define thes x 6
symmetric matrixB and the 6-D vectoe by

Bii11 Bi122 Biiss V2Bi1as V2B V2B
Baai1 B2992 Bogss V2Bagz V2Baesi V2Baoio
Bs311 B3329 Bssss V2Bssas V2Bsssi V2Bssio

B-= . a1
V2Bas11 V2Baszs V2Basss  2Basas 2Bass 2Basio (121)
V2Bs111 V2Bsios V2Bsiss  2Bsias 2Bsiz1i 2B
V2Bio11 V2Bisos V2Bi2ss  2Bizas 2Biaz1i 2Biann
c=(111000)", (122)
and solve the following simultaneous linear equationsrfer (;):
Bt =c. (123)
The metric matrixXI" is given by
o 16/V2 T5/V2
T: 7—6/\/5 T2 7'4/\/5 . (124)
75/V2 Ta/V2 T
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For the translation computation in Step 5, we simplytlet= ... andt,, = Eym k=1, ..,
2M. The third components,; are left indeterminate. For the rotation computation in Step
10, we compute the SVD

t f
(mlymi 0) = VAUl (125)
Then, theR, is given by
R, = U,diag(1,1,det(V, .U )V /. (126)

The matrixII, in Step 11 is given by

(2k—1) (2K)
m.={o --- o o 1 0 --- 0" (127)

and the matriX2,; in Step 13 is simpl¥2,, = diag(—1, —1,1).

C.4. Weak Perspective Projection

If the weak perspective projection model of Egs. (47) is assumed (Fig. 10(b)), the metric
constraint of Eq. (54) takes the following form [19]:

2
t byt N t toy
(qn(l)a Tq,{(l)) - (q,{(g); Tq,{@)) = t%,{’ (qn(l), an(Q)) =0. (128)

Dropping the termyf?2 /¢, , we determine the metric matrik from the resulting two equa-

ZR?

tions by least squares. The computation of Step 5 goes as follows [19]. We define the
3 x 3 x 3 x 3tensorB = (Bjj) by

M
Bijkl = Z [(CIL(l))i(qz(l))j(q];(l))k(qz(l))l - (QL(l))i(QL(l))j(qT,{(g))k(QL(g))l

k=1
—(a} )@} )@l o)ral o)+ (ahn))ilalo)i(al 0)k(al o)

.I_
((qla))i(ql(z))j(QL(l))k(qL(z))l + (qTH(Q))i(qﬁ(l))j(qn(l))k‘(q

+(QL(1))i(QL(2))j(QL(Q))k(qz(l))l + (qL(Q))i(qL(l))j(qn(Q))k’(qK(l))l>:|? (129)

—

and compute thé x 6 symmetric matrixB in Eq. (121). Letr = (7;) be the 6-D unit eigen-
vector of B for the smallest eigenvalue. Then, the metric m&ltiis given by Eq. (124) if
det T > 0. If det T' < 0, we change the sing @'. For the translation computation in Step
5, we first compute

2
tow = fK : (130)
i ]
\/(qm(1)7TqL(1)) + (qm(g)quL(Q))
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Next, we let . t
tow = —t s tyw = "ty (131)
e N M
For the rotation computation in Step 10, we compute the SVD
1257 T T o T
= (ml) min 0) = ViAUL (132)

and determindR,; by Eq. (126). The matriXI, in Step 11 is given by

(2k—1) (2k)
0 -0 1 0 0 - 0
anﬁ O --- 0 0 1 0 --- 0]°> (133)
tx \o0 ... 0 0 o0 o0 0

and the matriX2,, in Step 13 is simplf2,, = diag(—1, —1,1).

C.5. Paraperspective Projection

If the weak paraperspective projection model of Egs. (48) is assumed (Fig. 10(c)), the metric
constraint of Eq. (54) takes the following form [19]:

fz Iz _ iR

T R SR - ot ot
@y Taxy) = 55z Gy Te) = 57 @ro) Tahe) = 2
(134)
where -
1 1 tgmtyn
K y Kk — 5 K — T o 135
“=ivege rTiregE TR (135)

We eliminatef? /t2,. from Egs. (134) and determine the metric maffixrom the resulting
two equations by least squares. The computation of Step 5 goes as follows [19]. We define
the3 x 3 x 3 x 3 tensor3 = (B;;;) by

Bijr = Z [(’Yf% + 1)0‘i(QL(1))i(QL(1))j(QL(l))k(QL(1)>Z

T

T )
r(2)/1\D(1)
+( 1)0%'7&

)

( )
+('Yfe — 1) aeyu( i\, (2))i qn(l))k(QL(l))l . (136)
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Then, we compute thé x 6 symmetric matrixB in Eq. (121), and let = (r;) be the 6-D
unit eigenvector oB for the smallest eigenvalue. The metric maffixs given by Eq. (124)
if detT > 0. If det T' < 0, we change the sing @. For the translation computation in
Step 5, we first compute

2
tow = fr . (137)
\/04,@( k(1) Tq )‘i‘ﬁn( Tq K(2 ))

Next, we compute,,, andt,, by Egs. (131). For the rotation computation in Step 10, we

compute
Lo/ Ik 12 tok t
L = z /f z mT X mT — LmT ﬂmT (2))7

<3>_1+(tm/tm)u(tyﬂ/tm)?(ﬁ; () 7R g, R

t_ten 4 tor o tes s ty»w
Ty T 7 TR0 T TRE ke T g e T T (138)

Then, we compute the SVD
T T T _ T
(%(1) Te(2) rn(S)) = VAU, . (139)

The rotation matrice®?,; are given by Eq. (126). The matrix, in Step 11 is given by

(2k—1) (2k)
f 0O --- 0 1 0 0o ---
I, ti 0O --- 0 0 1 o --- 0> (140)
A0 o 0 —tge/tae  —tyk/tze O oo 0
and the matriX2, in Step 13 is given by
2t .t
o=t (141)
£ 112

C.6. Generic Model

If the generic model of Egs. (45) is assumed, the metric constraint of Eq. (54) takes the
following form [20]:

+ ﬁgt?:m’ (qL(Q)’ TqL(Q)) + ﬁm YK

C2 CQ

(L1, Ta) (3)) = Balonlys, (142)

We eliminatel/¢? and 32 from Egs. (142) and determine the metric matfixfrom the
resulting two equations by least squares. The computation of Step 5 goes as follows [20].
We let

Ay = tonlys, Cr=12, — o, (143)
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and define th& x 3 x 3 x 3 tensorB = (B;ji;) by

M

Bijr = Z [Ai ((QL(l))i(QL(l))j(QL(l))k(QL(l))l + (qL(Q))i(qL(Q))j(qL(Q))k(qL(Q))l

k=1

T T T

_(q,i(l))z‘(qz(l))j(fl,ﬂ(g))kz(q,.C f f f

2) i — (qﬁ(2)>i(ql(2))j (qn(l))k(qn(l))l)

Lea (gt Vitat )il i IR PR i
+ECH ((qn(l))z(qn@))J(qn(l))k(qn@))l + (qn(Q))Z(qH(1)>](qn(l))k(qn@))l
(

.I.

1)i(@h5))(ah )@l ) + (qn(2))i(qz(l))j(qL(Q))k<qL(1))l)

1 Pyt (ol Yool t
_§Ancn((qn(1))Z(q,i(1)) (q (1) (g /1(2))1+(qn(l))l(qﬁ(l)).](qli(Q))k(qn(l))l

)k
+(al1))ialo)sal oy el + (@l o)ilal))ial ) k(al )
_(QL(l))i(qz(g))j@T )( )l ( )z(QL(l))j(qL(Q))k<qL(2))l
~(@h0))i(@La)a (@l (@l = (@l )ilali )i (@l ilal )| 244)

Then, we compute thé x 6 symmetric matrixB in Eq. (121), and let = (r;) be the 6-D
unit eigenvector oB for the smallest eigenvalue. The metric maffixs given by Eq. (124)
if detT" > 0. If det T' < 0, we change the sing @'. For the translation computation in
Step 5, we solve the following simultaneous linear equations for and 32:

< 2 2+, )<1/c§)
2+, tin—i—t‘* +t§,€£§ﬁ 32

T T T
_ <~2 T T ( 5(1)12 %1)) + (35(2)7 k(2 )) T ’r ) . (145)
tm(qﬁ(l)aTqH(l)) + tyn(qﬁ(gqun(Q)) + tﬂm yfi( (1)’ ,T'q (2 ))

GW>—Q<%> (146)

The third components,,; are left indeterminate. For the rotation computation in Step 10,
we compute

Next, we let

T

__ ¢ (C"im];(l) X mL(Q) - 5&(%&"”2(1) + tynml(z)))
R(3) — O 1+ 8282, + 12,) ’

f o =c¢om! f t et t
Tha) = Gyt BetonT g, Th2) = Gl () + Betysry g)- (147)

Then, we compute the SVD of Eq. (139), aRg are given by Eq. (126). The matriX, in
Step 11 is given by

(2,—1) (2k)
0 --- 0 1/Ce 0 0 - 0
M.=(0 - 0 0 1/¢s 0o - o0l (148)
0 0 _ﬁntzli/gi _ﬁntyn/Cn 0 e 0
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and the matriX2, in Step 13 is given by

T 1 0
Q, = QHn”Tg s . = ( 0 ) x ( 1. (149)
Ty
_ﬁ/itxl'{ _/Bnty/f
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