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Abstract
This paper studies numerical schemes for fitting an ellipse to points in an image. First, the problem
is posed as maximum likelihood, and the relationship to the KCR lower bound is stated. Then, the
algorithms of FNS, HEIV, renormalization, and Gauss-Newton iterations are described. Using simulated
and real image data, their convergence properties are compared, and their dependence on the shape of
the arc to which an ellipse is to be fitted is revealed.
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1 Introduction

Circular objects in the scene are generally pro-
jected onto ellipses on the image plane, and their
3-D positions can be computed from their images
[6]. For this reason, fitting ellipses to a point se-
quence is one of the first steps of various vision ap-
plications. In this paper, we concentrate on numer-
ical aspects, assuming that outliers have already
been removed, e.g., by the procedure described in
[10].

Various algebraic fitting methods were proposed in
the past [1, 13, 15, 16], but Kanatani [8] pointed
out that ellipse fitting can be regarded as statisti-
cal estimation and that maximum likelihood (ML)
produces an optimal solution. Since then, many
numerical schemes have been proposed, e.g., FNS
[4], the HEIV [14], and Gauss-Newton iterations
[11]. These methods attain a theoretical accuracy
bound (KCR lower bound [3, 8]) up to high order
terms in noise. Kanatani’s renormalization [7, 8,
12] also computes a solution nearly equivalent to
them [9].

All these methods are iterative, and the
convergence properties are different from method
to method. The purpose of this paper is
to experimentally compare their convergence
behavior.

2 Ellipse Fitting

An ellipse is represented by

Ax2+2Bxy+Cy2+2f0(Dx+Ey)+Ff2
0 = 0, (1)

where f0 is an arbitrary scaling constant1. If we
define

1In our experiments, we set f0 = 600. This is to make
the coefficients have approximately the same magnitude for
numerical stability. Theoretically, we can set f0 = 1.

u = (A,B, C,D, E, F )>, (2)
ξ = (x2, 2xy, y2, 2f0x, 2f0y, f2

0 )>, (3)

Eq. (1) is written as

(u, ξ) = 0. (4)

Throughout this paper, we denote the inner prod-
uct of vectors a and b by (a, b). Since the mag-
nitude of the vector u is indeterminate, we adopt
normalization ‖u‖ = 1.

Eq. (1) describes not necessarily an ellipse but also
a parabola, a hyperbola, and their degeneracies
(e.g., two lines) [6]. Even if the points (xα, yα) are
sampled from an ellipse, the fitted equation may
define a hyperbola or other curves in the presence
of large noise, and a technique for preventing this
has been proposed [13]. Here, however, we do
not impose any constraints, assuming that noise
is sufficiently small.

3 KCR Lower Bound

We write the data ξα in the form ξα = ξ̄α + ∆ξα,
where ξ̄α is the true value and ∆ξα the noise term.
We define the covariance matrix of ξα by

V [ξα] = E[∆ξα∆ξ>α ], (5)

where E[ · ] denotes expectation over the noise dis-
tribution. If random noise of mean 0 and standard
deviation σ is independently added to each coor-
dinate of the points in the image, we can see from
Eq. (3) that the covariance matrix V [ξα] has the
form 4σ2V0[ξα] except for O(σ4), where V0[ξα] is




x̄2
α x̄αȳα 0 f0x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα f0ȳα f0x̄α 0
0 x̄αȳα ȳ2

α 0 f0ȳα 0
f0x̄α f0ȳα 0 f2

0 0 0
0 f0x̄α f0ȳα 0 f2

0 0
0 0 0 0 0 0




. (6)
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Here, (x̄α, ȳα) is the true position of point (xα, yα).
In actual computations, (x̄α, ȳα) is approximated2

by the data position (xα, yα).

We define the covariance matrix V [û] of an esti-
mate û by

V [û] = E[(P uû)(P uû)>], (7)

where P u is the projection matrix

P u = I − uu>, (8)

which projects û onto the hyperplane orthogonal
to u (I denotes the unit matrix). Since the pa-
rameter vector u is normalized to unit norm, its
domain is the unit sphere S5 in R6. We focus on
the asymptotic limit of small noise and evaluate
the error after projecting û onto the tangent space
to S5 at u [8].

Kanatani [8, 9] proved that if ξα is regarded as an
independent Gaussian random variable of mean ξ̄α

and covariance matrix V [ξα], the following inequal-
ity holds for an arbitrary unbiased estimator û of
u:

V [û] Â 4σ2
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−
5

. (9)

Here, Â means that the left-hand side minus the
right is positive semidefinite, and ( · )−r means pseu-
doinverse of rank r.

Chernov and Lesort [3] called the right-hand side
of Eq. (9) the KCR (Kanatani-Cramer-Rao) lower
bound and showed that it holds except for terms
of O(σ4) even if û is not unbiased; it is sufficient
that û is “consistent” in the sense that û → u as
σ → 0.

4 Maximum Likelihood (ML)

Maximum likelihood (ML) under Gaussian noise
assumption is to minimize the sum of squared Ma-
halanobis distances

J =
1
2

N∑
α=1

(ξα − ξ̄α, V0[ξα]−2 (ξα − ξ̄α)), (10)

subject to the constraints (u, ξ̄α) = 0, α = 1, ...,
N . Eliminating the constraints by introducing La-
grange multiplies, we can write Eq. (10) as follows
[8, 9]:

J =
1
2

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (11)

It can be shown that the covariance matrix V [û]
of the resulting estimator û agrees with the KCR
lower bound except for terms of O(σ4) [8, 9].

2We have confirmed that this does not cause any notice-
able changes in the final results.

Eq. (11) is minimized by solving

∇uJ =
N∑

α=1

(u, ξα)ξα

(u, V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]u
(u, V0[ξα]u)2

= (M −L)u = 0, (12)

where the 6× 6 matrices M and L are defined by

M =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, (13)

L =
N∑

α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (14)

FNS

The FNS (fundamental numerical scheme) of Cho-
jnacki et al. [4] solves Eq. (12) by the following
iterations:

1. Initialize u.
2. Compute the matrices M and L in Eqs. (13)

and (14).
3. Solve the eigenvalue problem

(M −L)u′ = λu′, (15)

and compute the unit eigenvector u′ for the
eigenvalue λ closest to 0.

4. If u′ ≈ u except for sign, return u′ and stop.
Else, let u ← u′ and go back to Step 2.

Later, Chojnacki et al. [5] pointed out that conver-
gence performance improves if we choose in Step 3
not the eigenvalue closest to 0 but the smallest one.
We call the above procedure the original FNS and
the one using the smallest eigenvalue the modified
FNS .

Whichever eigenvalue is chosen for λ, we have λ =
0 after convergence. In fact, convergence means

(M −L)u = λu (16)

for some u. Computing the inner product with u
on both sides, we have

(u,Mu)− (u, Lu) = λ. (17)

On the other hand, Eqs. (13) and (14) imply that
(u,Mu) = (u, Lu) identically, meaning λ = 0.

HEIV

Let

ξα =
(

zα

f2
0

)
, u =

(
v
F

)
, (18)

V0[ξα] =
(

V0[zα] 0
0> 0

)
. (19)
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Define 5× 5 matrices M̃ and L̃ by

M̃ =
N∑

α=1

z̃αz̃>α
(v, V0[zα]v)

, (20)

L̃ =
N∑

α=1

(v, z̃α)2V0[zα]
(v, V0[zα]v)2

, (21)

where we put

z̃α = zα − z̄, (22)

z̄ =
N∑

α=1

zα

(v, V0[zα]v)

/
N∑

β=1

1
(v, V0[zβ ]v)

. (23)

Then, Eq. (12) splits into the following two equa-
tions [5]:

M̃v = L̃v, (v, z̄) + f2
0 F = 0. (24)

If we determine a 5-D unit vector v that satisfies
the first equation, the value of F is determined
from the second, and we obtain u in the form

u = N [
(

v
F

)
], (25)

where N [ · ] denotes normalization to unit norm.
The HEIV (heteroscedastic errors-in-variables)
method of Leedan and Meer [14] computes the
vector v by the following iterations:

1. Initialize v.
2. Compute the matrices M̃ and L̃ in Eqs. (20)

and (21).
3. Solve the generalized eigenvalue problem

M̃v′ = λL̃v′, (26)

and compute the unit eigenvector v′ for the
eigenvalue λ closest to 1.

4. If v′ ≈ v except for sign, return v′ and stop.
Else, let v ← v′ and go back to Step 2.

However, Leedan and Meer [14] pointed out that
choosing in Step 3 not the eigenvalue closest to 1
but the smallest one improves the convergence per-
formance. We call the above procedure the original
HEIV and the one using the smallest eigenvalue
the modified HEIV .

Whichever eigenvalue is chosen for λ, we have λ =
1 after convergence. In fact, convergence means

M̃v = λL̃v (27)

for some v. Computing the inner product with v
on both sides, we have

(v, M̃v) = λ(v, L̃v). (28)

On the other hand, Eqs. (20) and (21) imply that
(v,M̃v) = (v, L̃v) identically, meaning λ = 1.

Renormalization

The renormalization of Kanatani [8] is to approx-
imate the matrix L in Eq. (14) in the form

L ≈ cN , N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (29)

The constant c is determined so that M − cN
has eigenvalue 0. This is done by the following
iterations [8]:

1. Initialize u and let c = 0.
2. Compute the matrices M and N in Eqs. (13)

and (29).
3. Solve the eigenvalue problem

(M − cN)u′ = λu′, (30)

and compute the unit eigenvector u′ for the
eigenvalue λ closest to 0.

4. If λ ≈ 0, return u′ and stop. Else, let

c ← c +
λ

(u′, Nu′)
, u ← u′ (31)

and go back to Step 2.

Gauss-Newton Iterations (GN)

Kanatani and Sugaya [11] proposed to minimize
Eq. (11) directly by Gauss-Newton iterations.
Differentiating Eq. (12) and introducing Gauss-
Newton approximation (i.e., ignoring terms that
contain (u, ξα)), we see that the Hessian is simply
the matrix M in Eq. (13). In order to enforce the
normalization constraint ‖u‖ = 1 in a differential
form, we enforce M to have eigenvalue 0 by the
projection matrix Pu of Eq. (8) and compute
pseudoinverse. The procedure goes as follows:

1. Initialize u.
2. Compute

u′ = N [u− (PuMPu)−5 (M −L)u]. (32)

3. If u′ ≈ u, return u′ and stop. Else, let u ←
u′ and go back to Step 2.

5 Initialization

For initialization of the iterations, we test the fol-
lowing three:

Random Choice

We generate six independent Gaussian random
numbers of mean 0 and standard deviation 1 and
normalize the vector consisting of them into unit
norm.
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Least Squares (LS)

Approximating the denominators in Eq. (11) by a
constant, we minimize

JLS =
1
2

N∑
α=1

(u, ξα)2 =
1
2
(u, MLSu), (33)

where we define

MLS =
N∑

α=1

ξαξ>α . (34)

Eq. (33) is minimized by the unit eigenvalue u of
MLS for the smallest eigenvalue.

Taubin’s Method

Replacing the denominators in Eq. (11) by their
average, we minimize the following function3 [16]:

JTB =
1
2

∑N
α=1(u, ξα)2∑N

α=1(u, V0[ξα]u)
=

1
2

(u, MLSu)
(u, NTBu)

.

(35)
The matrix NTB has the form

NTB =
N∑

α=1

V0[ξα]. (36)

Eq. (35) is minimized by solving the generalized
eigenvalue problem

MLSu = λNTBu (37)

for the smallest eigenvalue. Since NTB is not pos-
itive definite, we decompose ξα, u, and V0[ξα] in
the form of Eqs. (19) and define 5 × 5 matrices
M̃LS and ÑTB by

M̃LS =
N∑

α=1

z̃αz̃>α , ÑTB =
N∑

α=1

V0[zα], (38)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (39)

Then, Eq. (37) splits into two equations

M̃LSv = λÑTBv, (v, z̄) + f2
0 F33 = 0. (40)

We compute the unit eigenvector v of the first
equation for the smallest eigenvalue λ. The second
equation gives F33, and u is given by Eq. (25).

3Taubin [16] did not take the covariance matrix into
account. This is a modification of his method.

(a) (b)

Figure 1: 20 points on elliptic arcs. (a) Short arch.
(b) Long arc

6 Numerical Examples

Fig. 1 shows two examples of 20 equidistant points
(x̄α, ȳα) on an ellipse. We added Gaussian noise of
mean 0 and standard deviation σ to the x and y co-
ordinates of each point independently and fitted an
ellipse by FNS, HEIV, renormalization, and GN.
For each σ, we plotted the average number of it-
erations over 1000 independent trials. We stopped
when the new value u′ differs from the previous
value4 u by ‖u′ − u‖ < 10−6.

Doing numerical experiments, we have found that
the convergence performance significantly differs
depending on whether we use points on a short
elliptic arc or on a long elliptic arc.

Fitting to a Short Arc

Figure 2 plots the number of iterations for the
short arc in Fig. 1(a). When the iterations did not
converge after 100 iterations, we stopped and set
the iteration count to 100. We can see that the
modified FNS/HEIV always converge faster than
the original FNS/HEIV. This is most apparent
for random initialization, for which the original
FNS/HEIV did not converge for 16% and 49%,
respectively, of the trials.

This can be explained as follows. If the computed
u′ is close to the true value u, the matrix L in
Eq. (14) and the matrix L̃ in Eq. (21) are both
close to O. Initially, however, they may be very
different from O. Eqs. (15) and (26) are written,
respectively, as

(M −L− λI)u′ = 0, (M̃ − λL̃)v′ = 0. (41)

The matrices L and L̃ are both positive definite.
In order that their effects be canceled, we need to
choose λ to be negative in the first equation and
smaller than 1 in the second.

As predicted from this explanation, the difference
between the original FNS/HEIV and the modified
FNS/HEIV shrinks as we use better initial values,
as seen from Fig. 2.

Another finding is that although FNS, HEIV and
GN converges faster as we use better initial val-
ues, the behavior of renormalization is almost un-
changed. This is because we start solving Eq. (30)

4Since u and −u represent the same ellipse, we com-
puted the smaller of the two values ‖u′ ± u‖.
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Figure 2: Average number of iterations for ellipse fitting to the points in Fig. 1(a) vs. noise level.
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Figure 3: Root-mean-squares error of ellipse fitting to
the points in Fig. 1(a) vs. noise level.

with c = 0, canceling the effect of N whatever it
is, and the resulting u′ is close to the LS solution.

In contrast, FNS and HEIV may produce a solution
very different from the true value when initially the
matrices L and L̃ are very different from O. Nat-
urally, GN converges faster if started from better
initial values.

Overall, the most efficient method is the modi-
fied HEIV for whichever initialization. However,
there is no difference between (original or modified)
FNS/HEIV if initialized by Taubin’s method.

Fig. 3 plots for each σ the root-mean-squares of
‖Puû‖ over 1000 independent trials. We com-
pared LS, Taubin’s method, and the four iterative
methods starting from the Taubin solution. We
confirmed that for each method the final solution
does not depend on the initial value as long as the
iterations converge. The dotted line indicates the
KCR lower bound implied by Eq. (9).

From Fig. 3, we can see that Taubin’s method is
considerably better5 than LS. The four iterative
methods indeed improve the Taubin solution, but
the improvement is rather small. All the solutions
nearly agree with the KCR lower bound when noise
is small; as noise increases, they gradually deviate
from it. Since FNS, HEIV, and GN minimize the
same function, the resulting solution is virtually
the same. The accuracy of renormalization is also
very close to them.

5The mechanism of the superiority of Taubin’s method
over LS is analyzed in detail in [9].

Fitting to a Long Arc

Fig. 4 shows the number of iterations for the
long arc in Fig. 1(b). In this case, all methods
converged within 10 iterations when initialized
by LS or Taubin’s method, so the vertical axis is
restricted over that range.

The most unexpected, as compared with Fig. 2,
is the fact that the modified FNS is worse than
the original FNS . For random initialization, the
modified FNS did not converge after 100 iterations
for all 1000 trials, while the original FNS failed to
converge only for 24% of the trials.

This is related to the singularity of ellipse fitting
[2]: Some of the terms on the right-hand side of
Eq. (11) diverge to ±∞. This happens when a
data point exists near the center of the current
candidate fit, which is more likely to occur when
the data points are distributed over a long arc.

As we can see from Fig. 4, renormalization is the
most stable for whichever initialization. As we
noted earlier, this is because the iterations start
from c = 0; Eq. (30) yields a value u′ close to
the LS solution, which is already fairly accurate
for a long arc. GN is also stable, because the
solution continuously changes in the course of the
iterations, while FNS and HEIV may compute os-
cillating eigenvectors.

Figure 5 compares the accuracy of all the methods
in the same way as Fig. 3. As expected, the LS so-
lution, which is usually prone to statistical bias, is
as accurate as Taubin’s method, because bias is less
likely to arise for a long arc. Also, the improvement
by the (original or modified) FNS/HEIV, renor-
malization, and GN is very small. All yields prac-
tically the same solution very close to the KCR
lower bound.

7 Conclusions

We have studied the convergence behavior of typi-
cal iterative numerical schemes for maximal like-
lihood (ML) of ellipse fitting. After posing the
problem in relation to the KCR lower bound, we
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Figure 4: Average number of iterations for ellipse fitting to the points in Fig. 1(b) vs. noise level.
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Figure 5: Root-mean-squares error of ellipse fitting to
the points in Fig. 1(b) vs. noise level.

described the algorithms of FNS, HEIV, renormal-
ization, and Gauss-Newton iterations (GN). Using
simulated image data, we compared their conver-
gence performance.

For a short arc, the modified FNS/HEIV have
better convergence properties than the original
FNS/HEIV. The convergence of renormalization
is little affected by the choice of the initial value.
Overall, the modified HEIV is the most efficient.

For a long arc, however, the modified FNS is worse
than the original FNS if randomly initialized, and
the renormalization is the most efficient. If the
iterations converge, however, the fitting accuracy
is far higher than for a short arc whichever method
is used.
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