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Geometric fitting is one of the most fundamental problems of computer vision. In [8], the author
derived a theoretical accuracy bound (KCR lower bound) for geometric fitting in general and
proved that maximum likelihood (ML) estimation is statistically optimal. Recently, Chernov
and Lesort [3] proved a similar result, using a weaker assumption. In this paper, we compare
their formulation with the author’s and describe the background of the problem. We also review
recent topics including semiparametric models and discuss remaining issues.

1. What Is the Problem?

By geometric fitting , we mean fitting a geometric
constraint to observed data and discerning the under-
lying geometric structure from the coefficients of the
fitted equation [8]. A large class of computer vision
problems fall into this framework. The simplest ex-
ample is to fit a parametric curve (e.g., a line, a circle,
an ellipse, or a polynomial curve) in the form

F (x; u) = 0 (1)

to N points {(xα, yα)} in the image, where x =
(x, y)> is the position vector, and u = (u1, ..., up)> is
the parameter vector.

For noisy data {(xα, yα)}, no parameter u satis-
fies F (xα; u) = 0 for all α = 1, ..., N , so one often
computes a u such that

JLS =
N∑

α=1

F (xα;u)2 → min . (2)

This is called the least-squares (LS ) method or alge-
braic distance minimization. However, it is widely
known that the solution has strong statistical bias.

A better method known to yield higher accuracy is
to regard the data {xα} as perturbed from their true
positions {x̄α} which are exactly on the curve F (x; u)
= 0 and to simultaneously estimate the true positions
{x̄α} and the parameter u that maximize the statis-
tical likelihood. If noise is subject to isotropic, in-
dependent, and identical Gaussian distribution, this
reduces to the minimization

JML =
N∑

α=1

‖xα − x̄α‖2 → min, (3)
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subject to the constraint

F (x̄α; u) = 0, α = 1, ..., N. (4)

This is called maximum likelihood (ML) estimation
or geometric distance minimization.

Eqs. (3) and (4) can be converted to unconstrained
minimization by introducing Lagrange multipliers.
Introducing linear approximation by assuming that
noise is small, we can rewrite eq. (3) as follows (see
Appendix A for the derivation):

JML =
N∑

α=1

F (xα;u)2

‖∇xFα‖2 → min . (5)

Here, ∇xFα is the gradient of the function F (x; u) in
eq. (1) with respect to x, and the subscript α means
that the derivative is evaluated at x = xα. This min-
imization is known to be effective in many problems
and is one of the most widely used methods in com-
puter vision applications [8].

This approach is not limited to curve fitting but
can be extended to many other problems. For ex-
ample, given correspondences of feature points over
multiple images, the trajectory of a particular point
can be identified with a single point in the product
space of the images, known as the joint image. Fit-
ting a geometric constraint derived from the imaging
geometry, such as the epipolar constraint , the trifocal
constraint , the quadrifocal constraint , or the affine
constraint , we can compute the camera motion and
the 3-D shape of the scene from the coefficients of the
fitted equation [6].

We need not assume isotropic and identical Gaus-
sian noise. If the noise distribution is different from
datum to datum, all we need is to introduce covari-
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ance matrices1 V [xα] in eq. (5). The author showed
that the solution of eq. (5) can be systematically com-
puted by a method called renormalization [7] when
the function F (x; u) can be transformed into a linear
form in u by change of variables2. This method mo-
tivated many similar approaches3: Leedan and Meer
[14] proposed a method called HEIV , and Chojnacki
et al. [4] generalized it into what they call FNS .

However, a still unanswered question is if eq. (5)
is really optimal and if better methods exist at all.

2. How Do We Compare Methods?

The reason this question is so difficult to answer
is that it is not clear how to measure the “goodness”
of a method. For example, we may measure the ac-
curacy of an estimate û by the norm ‖û− u‖ of the
difference from its true value u. However, there are
many objections. Some may say that we should take
expectation with respect to our belief or experience
as to what value the parameter u is likely to take
(known as the Bayesian approach). Others may ar-
gue that we should rather focus on the error in the
application domain, e.g., if we use the value û for 3-D
reconstruction, we should evaluate the reconstruction
error that û incurs.

Even if we adopt the simplest measure ‖û−u‖, the
problem is not solved, because noise is random and
hence an estimate û can happen to coincide with the
true value u, whatever method we use. So, we need to
compute the mean square E[‖û−u‖2], where E[ · ] is
the expectation with respect to the noise distribution.
We prefer the mean square simply because this gen-
erally makes the subsequent analysis easy, but there
are many objections: some say max ‖û − u‖ should
be used; others say E[‖û − u‖] is better. However,
the analysis is still complicated even if the simplest
mean square is used.

For comparing the performance of statistical es-
timation methods, statisticians usually simplify the
analysis by introducing asymptotic approximations
as the number n of observations increases. So, many
computer vision researchers analyze asymptotic be-
havior as the number N of data increases for evalu-
ating the performance of geometric fitting. However,
is the number N of data really the number of “obser-
vations”?

3. How Can We Increase Data?

The tenet of statistics is to observe a random phe-
nomenon and discern the underlying mechanism, as-
suming that the observed data are deterministically

1The datum x and the parameter u can be subject to some
constraints, such as being unit vectors. Multiple constraints,
each in the form of eq. (1), can exist, and some of them can
be overlapping or redundant. The analysis goes similarly if we
introduce pseudoinverse and projection operators [8].

2This is the case for many problems in computer vision,
including line and conic fitting, homography computation, and
estimation of the fundamental matrix [8].

3A comprehensive review is in [12].

generated but corrupted by random noise. We cannot
infer the mechanism from only one observation, but
because noise is random, we can expect that the effect
of noise is canceled if observations are repeated; the
hidden mechanism will reveal itself as the number of
observations increases. Hence, statisticians measure
the performance of statistical estimation by the rate
of the increase of accuracy as the number n of obser-
vation increases. However, if we identify the number
N of data with the “number of observations”, many
inconsistencies arise [11, 12].

Firstly, it is assumed in statistics that observations
can be repeated as many times as desired in princi-
ple, i.e., except for the fact that observations entail
costs and are subject to many constraints in the real
world. In contrast, the input for computer vision is
images. We may observe many different images, but
except in simulations we cannot repeatedly observe
the same image corrupted by different noise. Hence,
the number of observation is always n = 1.

Secondly, the unknowns for the standard statisti-
cal estimation are the parameters of the underlying
mechanism, while for geometric fitting the true values
of the data are also unknowns. Hence, if we increase
the number of data, the number of unknowns also
increases accordingly4, and their estimation accuracy
cannot be improved however many data we observe.
For curve fitting, for example, we may correctly es-
timate the true curve by increasing the number of
points, but we cannot estimate their true positions
on that curve.

Thirdly, we cannot simply increase the data but
also need to consider how we increase them. For line
fitting, for example, the fitting accuracy does not im-
prove if we repeatedly add new points in the neighbor-
hood of a particular point. In contrast, the accuracy
will dramatically improve if we distribute new points
uniformly along the line to be fitted. So, various theo-
ries have recently been proposed for assuming or esti-
mating the distribution of the true positions along the
curve and marginalizing them over the distribution.
Such formulations are called semiparametric models
[2, 13, 16].

4. Is ML Not Optimal?

If we have a lot of data, ML is known to be not op-
timal. In fact, Endoh et al. [5] pointed out that 3-D
interpretation from a dense optical flow field by ML
is not optimal, and Ohta [13] showed that the semi-
parametric model yields a better result. Okatani and
Deguchi [16] demonstrated that for estimating 3-D
shape and motion from multiple images, the semi-
parametric model can result in higher accuracy. In
all cases, however, the procedure is very complicated,
and the performance can surpass ML only when the
number of data is very large and the problem has a

4Such increasing parameters are often called nuisance pa-
rameters to distinguish them from the remaining structural
parameters.
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special form.
On the other hand, ML in the form of eq. (5)

is always effective in all practical applications. At
present, no method that surpasses ML in usual situa-
tions is known. This implies that ML may be optimal
in some sense in “usual” situations. If so, in what
sense? What are the “usual situations?

The author gave an answer to these questions [8, 9].
The fact that these issues have not been widely dis-
cussed within the statistical community seems largely
because of the paradigm that statistics is to overcome
randomness by repeated observations. Also, statis-
ticians are mostly unfamiliar with geometric fitting
problems in the form as appears in computer vision
applications.

In the following, we describe the author’s formula-
tion and compared it with the recent results of Cher-
nov and Lesort [3].

5. KCR Lower Bound

The fundamental difference of the author’s ap-
proach from the standard statistical estimation is that
the analysis is focused on small noise rather than
asymptotic analysis for a large number n of observa-
tions. This is motivated by the fact that computer
vision deals with pixel-level small errors, while the
traditional statistical estimation is mainly concerned
with large errors, e.g., in fieldwork in real environ-
ments.

Estimating the parameter u from the data {xα}
means finding an estimate û expressed as a function
of the data {xα}:

û = û(x1, ..., xN ). (6)

The function û is called an estimator of u. Consider
the covariance matrix 5 of estimator û:

V [û] = E[(û− u)(û− u)>]. (7)

We assume that each datum xα is displaced from its
true value x̄α by component-wise independent Gaus-
sian noise of mean 0 and standard deviation ε:

xα = x̄α + ∆xα, ∆xα ∼ N(0, ε2I). (8)

We call ε the noise level . The following argument
holds for a more general noise distribution6 [8], but
here we concentrate only on the isotropic Gaussian
distribution for simplicity.

Let ∆u be the error in the estimator û:

û = u + ∆u. (9)

Substituting eqs. (8) and (9) into eq. (5), doing Taylor
expansion in ∆xα and ∆u by assuming that noise is
small, and computing the value ∆u that minimizes

5Its trace trV [û] = E[‖û− u‖2] is the mean-square error.
6The same argument applies to a wide class of probability

distributions called the exponential family [8].

eq. (5), we find that the covariance matrix V [ûML]
of the ML estimator ûML can be expanded in ε as
follows [8] (see Appendix B for the derivation):

V [ûML] =ε2

(
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2

)−1

+O(ε4). (10)

Here, ∇uF̄α denotes the gradient of the function
F (x; u) in eq. (1) with respect to u, and F̄α means
that the derivation is evaluated at x = x̄α.

We can also show that the first term on the right-
hand side of eq. (10) is a lower bound on an arbitrary
unbiased estimator û in the following sense [8] (see
Appendix C for the derivation):

V [û] Âε2

(
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2

)−1

. (11)

Here, Â denotes that the difference between the
left-hand side and the right-hand side is a positive
semidefinite symmetric matrix.

Thus, the covariance matrix of the ML estimator
ûML attains the lower bound in the first order in ε
(i.e., if terms O(ε4) are ignored). In this sense, ML
is optimal. Chernov and Lesort [3] called the right-
hand side of eq. (11) the KCR (Kanatani-Cramer-
Rao) lower bound .

6. CR Lower Bound

The KCR lower bound is different from the well
known CR (Cramer-Rao) lower bound: the difference
is less in the bound than in the problem. As men-
tioned earlier, statistical estimation is to discern the
hidden mechanism by repeating observations. This
is formalized as estimation of the parameter θ by
observing n independent instances x1, ..., xn of a
random variable X occurring according to an as-
sumed probability density p(x;θ). Maximum like-
lihood (ML) estimation is to compute the value θ̂ML

of θ that maximizes the likelihood

L =
n∏

i=1

p(xi;θ). (12)

Considering the asymptotic limit n → ∞ and in-
voking the law of large numbers, which states that
the sample mean of independent instances of a ran-
dom variable converges to its expectation as n →
∞, together with the central limit theorem, which
states that the distribution of the sample mean can
be asymptotically approximated by a Gaussian distri-
bution, we can show under a fairly general condition
that the covariance matrix V [θ̂ML] of the ML estima-
tor θ̂ML is expanded in 1/n in the form

V [θ̂ML] =
1
n

J−1 + O(
1
n2

), (13)

where J is the Fisher information matrix defined by

J = E[
(
∇θ log p(x; θ)

)(
∇θ log p(x; θ)

)>
]. (14)
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Figure 1: (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n → ∞ for
the number n of observations, because admissible accuracy can be reached with a smaller number of observations. (b)
For geometric fitting, it is desired that the accuracy increases rapidly as ε → 0 for the noise level ε, because larger data
uncertainty can be tolerated for admissible accuracy.

The expectation E[ · ] is taken with respect to the
probability density p(x; θ). The first term on the
right-hand side of eq. (13) is called the CR (Cramer-
Rao) lower bound , and the following Cramer-Rao in-
equality can be proved for an arbitrary unbiased esti-
mator θ̂:

V [θ̂] Â 1
n

J−1. (15)

It follows that the covariance matrix of the ML esti-
mator θ̂ML attains the CR lower bound in the first or-
der (i.e., if terms O(1/n2) are ignored) in the asymp-
totic limit n → ∞ of the number n of observations.
This fact is known as the asymptotic efficiency of ML,
and in this sense ML is optimal for the standard sta-
tistical estimation.

7. Duality of Interpretation

Thus, the KCR lower bound and the CR lower
bound are different concepts. Yet, there is something
common in their formalisms.

The reason why the performance of the standard
statistical estimation is evaluated in the asymptotic
limit n → ∞ of the number n of observations is that
a method whose accuracy increases rapidly as n →∞
can attain admissible accuracy with a fewer number of
observations (Fig. 1(a)). Such a method is desirable if
we consider the cost of observations in real situations.

In contrast, the performance of geometric fitting
should be evaluated in the limit ε → 0 of the noise
level ε, because a method whose accuracy increases
rapidly as ε → 0 can tolerate larger uncertainty for
admissible accuracy (Fig. 1(b)). Such a method is
preferable if we consider the uncertainty inherent of
image processing operations.

Now, consider the following thought experiment.
For geometric fitting, the image data may not be ex-
act due to the uncertainty of image processing oper-
ations, but they always have the same value however
many times we observe them. Suppose, hypotheti-
cally, they change their values each time we observe
them. Then, we would obtain n different values for
n observations. Under independent Gaussian noise,
an optimal estimate of the true value is their sample
mean. As is well known, the standard deviation of a
sample mean of n observations is 1/

√
n times that of

the individual observations.
Thus, repeating such hypothetical observations is

equivalent to reducing the noise level ε to ε/
√

n. It

follows that the perturbation analysis for ε → 0 is
mathematically equivalent to the asymptotic analy-
sis for n → ∞ of the number n of hypothetical ob-
servations. This is the reason why the asymptotic
approximation · · · + O(1/

√
nk) for the standard sta-

tistical estimation corresponds to · · ·+ O(εk) for the
geometric fitting counterpart [10].

This type of duality of interpretation also arises for
model selection: we obtain the geometric AIC and
the geometric MDL for geometric fitting as the coun-
terparts of Akaike’s AIC (Akaike information crite-
rion) [1] and Rissanen’s MDL (minimum description
length) [17], respectively [10].

8. Condition for Optimality

Since its first introduction in [8], the KCR lower
bound in eq. (11) has scarcely been recognized by
the computer vision community. Even today, there
are some who doubt its validity7. Recently, however,
Chernov and Lesort [3] proved that the KCR lower
bound holds under a weaker assumption.

Eq. (11) is derived by assuming unbiasedness [8]
(see Appendix C):

E[û] = u. (16)

Chernov and Lesort [3] replaced this by the following
consistency :

lim
ε→0

û = u. (17)

This states that the estimate û gives the true value
u in the absence of noise. This is trivially confirmed
for all practical estimation methods8, since methods
that do not satisfy this are not worth considering.

Suppose the data xα are m-dimensional vectors
and the parameter u is a p-dimensional vector. Sub-
stituting eqs. (8) into the right-hand side of eq. (6)
and using Taylor expansion, we see that the consis-
tency condition (17) implies

û = u +
N∑

α=1

(
∇xαû

)
∆xα + O(ε2), (18)

7Some dismissed the result, saying that it appeared only in
the author’s monograph, not in peer-reviewed journals. The
truth is that the result was submitted to journals but rejected
as not being useful in practice.

8This is not so for standard statistical estimation problems,
i.e., it is not easy to prove the consistency in the sense that
the estimate converges to the true value in some probabilistic
sense as the number n of observations goes to infinity.
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where ∇xαû denotes the p × m matrix whose (ij)
element is ∂ûi/∂xjα; derivatives are evaluated at xα

= x̄α, α = 1, ..., N . From eq. (18), we have

(û−u)(û−u)>=
N∑

α,β=1

(
∇xα

û
)
∆xα∆x>β

(
∇xβ

û
)>

+(terms of order 3 or higher in {∆xα}). (19)

Taking expectation on both sides, we obtain the co-
variance matrix V [û] in eq. (7) in the form

V [û] = ε2
N∑

α=1

(
∇xα

û
)(
∇xα

û
)>

+ O(ε4), (20)

where we use the fact that noise is independent for
each α and hence from eq. (8) we have9

E[∆xα∆x>β ] = δαβε2I. (21)

The remainder term on the right-hand side of eq. (20)
is O(ε4) because of the symmetry of the noise distri-
bution: the third order terms in ∆xα are 0 in expec-
tation

9. Derivation of the KCR Lower Bound

Chernov and Lesort [3] derived the KCR lower
bound in much the same way as in the original deriva-
tion in [8], using the variational principle with re-
spect to the true values {x̄α} and the parameter
u. If we perturb x̄α and u into x̄α + δx̄α and
u + δu in such a way that eq. (4) is not violated,
i.e., F (x̄α + δx̄α; u + δu) = 0, we have for arbitrary
perturbations10 {δx̄α} and δu

(∇xF̄α, δx̄α) + (∇uF̄α, δu) = 0, (22)

where in the following we write (a, b) for the inner
product of vectors a and b. The notations ∇xF̄α and
∇uF̄α have the same meaning as in eq. (10).

From the definition (6) of the estimator û and the
consistency condition (17), we have the identity u =
û(x̄1, ..., x̄N ). Hence,

N∑
α=1

(
∇xαû

)
δx̄α = δu, (23)

for arbitrary variations {δx̄α} and δu that satisfy
eq. (22). From this, we conclude

N∑
α=1

(
∇xαû

)(
∇xαû

)>
Â

(
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2

)−1

,

(24)
by invoking the following lemma:

9The symbol δαβ is the Kronecker delta, taking 1 for α =
β and 0 otherwise.

10This is not the usual Taylor expansion but an identity for
infinitesimal variations δx̄α and δu, so no higher order terms
appear. This corresponds to what is known as principle of
virtual work in mechanics. Note that δx̄α is a hypothetical
variation of the true value x̄α, not the noise term ∆xα.

Lemma 1 Let a1, ..., aN be nonzero m-dimensional
vectors, and b1, ..., bN p-dimensional vectors b1, ...,
bN spanning Rp. If there exist p × m matrices A1,
..., AN such that equality

N∑
α=1

Aαxα = y (25)

holds for any m-dimensional vectors x1, ..., xN and
an arbitrary p-dimensional vector u that satisfy

(aα, xα) + (bα, y) = 0, α = 1, ..., N, (26)

then the following inequality holds:

N∑
α=1

AαA>
α Â

(
N∑

α=1

bαb>α
‖aα‖2

)−1

. (27)

Chernov and Lesort [3] proved this lemma by argu-
ments similar to the author’s [8]. The right-hand side
of eq. (24) is nothing but the KCR lower bound ex-
cept for the multiplier ε2. From (10), we see that the
covariance matrix V [ûML] of the ML estimator ûML

satisfies the lower bound except for terms O(ε4).

10. Observations

The theory of Chernov and Lesort [3] is an expan-
sion of the author’s theory [8] in that they do not use
the unbiasedness assumption (16). Also, their argu-
ment is clearer11 and easier to understand than the
author’s [8] (see Appendix C). On the other hand, the
author’s derivation imposes the lower bound on the
covariance matrix V [û] itself (irrespective of the noise
level ε), while Chernov and Lesort [3] only derived
the lower bound on the leading term in the expan-
sion (20) in ε. Their reasoning sounds natural if we
note that the consistency (17) implies the unbiased-
ness (16) in the limit ε → 0. Reflecting the weaker
assumption, their conclusion is somewhat weaker but
still sufficient for characterizing properties for ε → 0.
In particular, the optimality of ML follows.

Chernov and Lesort [3] also pointed out a rather
surprising fact. Analyzing the KCR lower bound,
they showed that seemingly suboptimal methods can
be optimal. One example is the problem of fitting a
circle

(x− a)2 + (y − b)2 = R2 (28)
to given points {(xα, yα)}, α = 1, ..., N . The LS of
eq. (2) becomes

JLS =
N∑

α=1

((xα−a)2 +(yα− b)2−R2)2 → min, (29)

while the ML of eq. (3) has the form

JML =
1
4

N∑
α=1

((xα − a)2 + (yα − b)2 −R2)2

(xα − a)2 + (yα − b)2
→ min .

(30)
11However, the proof of Lemma 1 is not easy, requiring as

sophisticated mathematical techniques as in the proof of the
author’s.
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It can be shown that both attain the KCR lower
bound in the first order, and in this sense both are
optimal [3]. In general, modification of eq. (3) in the
form

J =
N∑

α=1

c(u)F (xα; u)2

‖∇xFα‖2 → min (31)

does not affect the covariance matrix V [û] of the re-
sulting estimator û in the first order, where c(u) is
an arbitrary positive function of u (see Appendix
D). Eq. (28) is obtained from eq. (30) by inserting
c(a, b, R) = R to the numerator; replacing the denom-
inator in eq. (30) by R does not affect the solution as
far as the leading term in ε is concerned.

Chernov and Lesort [3] conducted simulations and
confirmed that the solution of the LS of eq. (29) and
the solution of the ML of eq. (30) behave quite sim-
ilarly when noise is extremely small. As noise in-
creases, however, ML generally performs better than
LS, but surprisingly LS is better than ML above
a certain noise level in some situations. Chernov
and Lesort [3] pointed out that the cause of this
anomaly can be traced back to a hidden singularity12

in eq. (28).

11. Conclusions

As we have seen, the KCR lower bound is the most
important characterization of geometric fitting. As
Chernov and Lesort [3] showed, however, methods
that are optimal in the sense of the KCR lower bound
may perform differently in the presence of large noise.
In this sense, finding additional characterization that
complements the KCR lower bound remains a crucial
problem.

Recently, Mühlich and Mester [15] proposed a new
fitting technique for problems for which the constraint
(1) can be linearized in u (including line and conic
fitting, homography computation, and estimation of
the fundamental matrix). For such problems, the au-
thor’s renormalization, the HEIV of Leedan and Meer
[14], and the FNS of Chojnacki et al. [4] all yield a
solution that attains the KCR lower bound in the
first order. Mühlich and Mester [15] extended a tech-
nique called whitening or equilibration and showed
that their method, though not optimal in the sense
of the KCR lower bound, can produce a solution with
comparable or higher accuracy with less computa-
tional failures when noise is large.

One of the major reasons why such attempts have
not been made until recently seem to lie in the
fact that computer vision researchers are likely to
take textbooks of statistics and discourses of distin-
guished statisticians for granted and blindly follow
the asymptotic analysis as N → ∞ for the num-
ber N of data. Rather, computer vision researchers
should bring forth theories and analyses specific to

12Hence, this observation does not apply to most problems
of computer vision including conic fitting. In general, ML is
far superior to LS.

computer vision applications. The studies of Cher-
nov and Lesort [3] and Mühlich and Mester [15] are
good examples.
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Appendix

A: Linear Approximation of ML

Substituting x̄α = xα −∆xα into eq. (4) and as-
suming that the noise term ∆xα is small, we obtain
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the linear approximation

Fα − (∇xFα, ∆xα) = 0. (32)

Introducing Lagrange multipliers λα for this con-
straint, let

L =
1
2

N∑
α=1

‖∆xα‖2 +
N∑

α=1

λα(Fα − (∇xFα, ∆xα)).

(33)
The solution ∆xα that minimizes L subject to the
constraint (32) satisfies ∇∆xα

L = 0, α = 1, ..., N , or

∆xα − λα∇xFα = 0. (34)

Hence, ∆xα = λα∇xFα. Substitution of this into
eq. (32) yields

Fα − (∇xFα, λα∇xFα) = 0, (35)

from which we obtain λα in the form

λα =
Fα

‖∇xFα‖2 . (36)

Thus, eq. (3) is rewritten in the form

JML =
N∑

α=1

‖λα∇xFα‖2 =
N∑

α=1

F 2
α

‖∇xFα‖4 ‖∇xFα‖2

=
N∑

α=1

F 2
α

‖∇xFα‖2 , (37)

resulting in eq. (5). 2

B: Covariance Matrix of ML

After substitution of eqs. (8) and (9) into eq. (5)
and doing Taylor expansion, the function JML is writ-
ten in the following form:

JML =
N∑

α=1

((∇xF̄α, ∆xα) + (∇uF̄α,∆u))2

‖∇xF̄α‖2
+ O(ε3).

(38)
Replacing ‖∇xFα‖2 by ‖∇xF̄α‖2 in the denominator
on the right hand side does not affect the leading
term because the numerator is O(ε2); the difference
is absorbed into the remainder term O(ε3).

If we find ∆u that minimizes eq. (38), the ML
estimator ûML is given by u + ∆u. The solution ∆u
is obtained by solving ∇∆uJML = 0. Since the first
term on the right-hand side of eq. (38) is a quadratic
form in ∆uα, we obtain

2
N∑

α=1

((∇xF̄α, ∆xα) + (∇uF̄α, ∆u))∇uF̄α

‖∇xF̄α‖2
= O(ε2), (39)

which is rewritten in the form
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u

= −
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα + O(ε2). (40)

From this, we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u∆u>

N∑

β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα∆x>β

(∇xF̄β)(∇uF̄β)>

‖∇xF̄α‖2

+O(ε3). (41)

Taking expectation on both sides and recalling the
definition V [ûML] = E[∆u∆u>], we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
V [ûML]

N∑

β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
+ O(ε4)

=
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
+ O(ε4), (42)

where we have used eq. (21) and the fact that
E[O(ε3)] = O(ε4). From eq. (42) follows eq. (10). 2

C: Derivation of the KCR Lower Bound

The original derivation of the KCR lower bound
is as follows [8]. The unbiasedness condition (16) is
rewritten as

E[û− u] = 0, (43)

which should be an identity in {x̄α} and u that sat-
isfies eq. (4).

From the definition of the expectation E[ · ], the
infinitesimal variation of E[û− u] is13

δ

∫
(û− u)p1 · · · pNdx = −

∫
(δu)p1 · · · pNdx

+
N∑

α=1

∫
(û− u)p1 · · · δpα · · · pNdx

= −δu +
∫

(û− u)
N∑

α=1

(p1 · · · δpα · · · pN )dx, (44)

where
∫

dx is a shorthand of
∫ · · · ∫ dx1 · · ·xN . By

assumption, the probability density of xα is

p(xα) =
1

(
√

2π)nεn
e−‖xα−x̄α‖2/2ε2

, (45)

which we abbreviate to pα. The infinitesimal varia-
tion of eq. (45) with respect to x̄α is

δpα = (lα, δx̄α)pα, (46)
13Recall that we consider variations in {x̄α} (not {xα}) and

u. Since the estimator û is a function of the data {xα}, it
does not change for these variations. The variation δu is inde-
pendent of {xα}, so it can be moved outside the integral

∫
dx.

Also note that
∫

p1 · · · δpα · · · pNdx = 1.
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where we define the score lα by

lα ≡ ∇x̄α log pα =
xα − x̄α

ε2
. (47)

Since eq. (43) is an identity in {x̄α} and u that sat-
isfies eq. (4), the variation (44) should vanish for ar-
bitrary variations {δx̄α} and δu that satisfy eq. (22).
Substituting eq. (46) into eq. (44), we conclude that

E[(û− u)
N∑

α=1

l>α δx̄α] = δu, (48)

for arbitrary variations {δx̄α} and δu that satisfy
eq. (22).

Consider the following particular variations {δx̄α}:

δx̄α = − (∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
δu. (49)

It is easy to confirm that eq. (22) is identically satis-
fied. Substituting eq. (49) into eq. (48), we obtain

E[(û− u)
N∑

α=1

m>
α ]δu = −δu, (50)

where we define the vectors {mα} by

mα =
(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
lα. (51)

Since eq. (48) should hold for arbitrary variations
{δx̄α} and δu that satisfy eq. (22), eq. (50) should
hold for arbitrary unconstrained variations δu, which
means

E[(û− u)
N∑

α=1

m>
α ] = −I. (52)

Using this and recalling the definition (7) of the co-
variance matrix V [û], we obtain

E[
(

û− u∑N
α=1 mα

) (
û− u∑N
α=1 mα

)>
]

=
(

V [û] −I
−I M

)
, (53)

where we define the matrix M by

M = E[
( N∑

α=1

mα

)( N∑

β=1

mβ

)>
]

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
E[lαlβ ]

(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2

=
1
ε2

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
. (54)

In the above equation, we use the identity E[lαl>β ]
= δαβI/ε4, which is easily confirmed from eqs. (21)

and (47). The matrix Jα ≡ E[lαl>α ] is the Fisher
information matrix of the distribution pα and that
E[lαl>β ] = δαβJα if the distributions {pα} are mutu-
ally independent.

Since the inside of the expectation E[ · ] on the left-
hand side of eq. (53) is evidently a positive semidef-
inite symmetric matrix, so is the right-hand side. It
follows the following is also a positive semidefinite
symmetric matrix:
(

I M−1

M−1

) (
V [û] −I
−I M

)(
I

M−1 M−1

)

=
(

V [û]−M−1

M−1

)
. (55)

From this, we conclude that V [û] −M−1 should be
a positive semidefinite symmetric matrix, implying
eq. (11). 2

The above proof is for the simplest case, but the
same result holds for more general cases14. If we have
multiple constraints, which may not be independent
of each other, or if the domains of the data and the
parameters are constrained, we can introduce gener-
alized inverses and projection operators to go along
the same argument [8]. If the error distribution is
not Gaussian or different from datum to datum, the
score lα and the Fisher information matrix Jα take
very complicated forms, yet the basic logic remains
the same [8].

D: Weighted Least Squares

Comparing eqs. (3) and (31), we can write

J̃ML(u) = c(u)JML(u). (56)

If c(u) is perturbed into c(u + ∆u) = c(u) +
(∇uc,∆u)+· · ·, we have J̃ML(u+∆u) = c(u)JML(u+
∆u) + O(ε3), because JML is O(ε2). Hence, differen-
tiation eq. (56) has the form

∇J̃ML = c(u)∇JML + O(ε2). (57)

It follows that the solution of ∇J̃ML = 0 and the so-
lution of ∇JML = 0 coincide except for O(ε2). Thus,
their covariance matrices coincide except for O(ε4).

Chernov and Lesort [3] further proved that the so-
lution of the weighted least squares method in the form

J̃ =
N∑

α=1

wα(xα; u)F (xα;u)2 → min (58)

is optimal in the sense of the KCR lower bound if and
only if

wα(xα; u) =
c(u)

‖∇xFα‖2 . (59)

In other words, no forms other than eq. (31) can at-
tain the KCR lower bound in the first order.

14However, the description becomes extremely clumsy and
cumbersome with a lot of symbols. One of the reasons why the
author’s theory [8] was doubted or rejected by journals may be
that the proof was done in the most general setting.
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