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A rigorous accuracy analysis is given to various techniques for estimating parameters of geometric
models from noisy data for computer vision applications. First, it is pointed out that parameter
estimation for vision applications is very different in nature from traditional statistical analysis
and hence a different mathematical framework is necessary in such a domain. After general
theories on estimation and accuracy are given, typical existing techniques are selected, and their
accuracy is evaluated up to higher order terms. This leads to a “hyperaccurate” method that
outperforms existing methods.

1. Introduction

Modeling the geometric structure of images in a
parametric form and estimating the parameters from
observations are the first steps of many computer vi-
sion applications such as 3-D reconstruction and vir-
tual reality generation. In the past, numerous opti-
mization techniques have been proposed for such pa-
rameter estimation, but their accuracy is customarily
tested using real and simulated images a posteriori .
The purpose of this paper is to present a theoreti-
cal foundation for rigorous accuracy analysis that can
lead to improved estimation techniques.

This may sound simple, because parameter esti-
mation in the presence of noise is the main theme
of statistics, so all one needs to do seems simply use
the established results of statistics. We first point
out that this is not so because parameter estimation
for typical computer vision applications is very dif-
ferent in nature form traditional statistical analysis.
We first discuss this in detail.

Next, we present a mathematical framework that
specifically suits geometric computations frequently
encountered in computer vision applications. We
point out that this is in a sense “dual” to the standard
paradigm found in the statistical literature.
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After giving general theories on estimation and ac-
curacy, we concentrate on problems for which the
model equation can be transformed into a linear form
via changes of variables. This type of problem covers
most of the major computer vision applications. We
select well known estimation techniques and analyze
their accuracy up to higher order terms. This reveals
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why some methods known to be superior/inferior are
really so in theoretical terms. As a byproduct, our
analysis leads to a “hyperaccurate” method that out-
performs existing methods. We confirm our analy-
sis by numerical simulation of ellipse fitting to point
data.

2. Geometric Fitting

2.1 Definition

We call the class of problems to be discussed in
this paper geometric fitting : we fit a parameterized
geometric model (a curve, a surface, or a relationship
in high dimensions) expressed as an implicit equation
in the form

F (x; u) = 0, (1)

to N data xα, α = 1, ..., N , typically points in an
image or point correspondences over multiple images
[13]. The function F (x;u), which may be a vector
function if the model is defined by multiple equations,
is parameterized by vector u. Each xα is assumed
to be perturbed by independent noise from its true
value x̄α which strictly satisfies Eq. (1). From the
parameter u of the fitted equation, one can discern
the underlying geometric structure. A large class of
computer vision problems fall into this category [13].

Though one can speak of noise and parameter esti-
mation, the fact that this problem does not straight-
forwardly fit the traditional framework of statistics
has not been widely recognized. The following are
typical distinctions of geometric fitting as compared
with the traditional parameter estimation problem:

• Unlike traditional statistics, there is no explicit
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model which explains observables in terms of de-
terministic mechanisms and random noise. All
descriptions are implicit .

• No inputs or outputs exist. No such concepts
exist as causes and effects, or ordinates and ab-
scissas.

• The underlying data space is usually homoge-
neous and isotropic with no inherent coordinate
system. Hence, the estimation process should be
invariant to changes of the coordinate system
with respect to which the data are described.

• Usually, the data are geometrically constrained
to be on predetermined curves, surfaces, and
hypersurfaces (e.g., unit vectors or matrices of
determinant 0). The parameters to be esti-
mated may also be similarly constrained. Hence,
the Gaussian distribution, the most fundamental
noise modeling, does not exist in its strict sense
in such constrained spaces.

We first discuss in detail why the traditional ap-
proach does not suit our intended applications.
2.2 Reduction to Statistical Estimation

It appears that the problem can be easily rewrit-
ten in the traditional form. The “observable” is the
set of data xα, which can be rearranged into a high
dimensional vector X =

(
x>

1 x>
2 · · · x>

N

)>. Let
εα be noise in xα, and define the vector E =(
ε>
1 ε>

2 · · · ε>
N

)>. Let X̄ be the true value of
X. The statistical model in the usual sense is

X = X̄ + E. (2)

The unknown X̄ needs to be estimated. Let p(E) be
the probability density of the noise vector E. Our
task is to estimate X̄ from X, which we regard as
sampled from p(X − X̄). The trouble is that the
parameter u, which we really want to estimate, is
not contained in this model. How can we estimate it?

The existence of the parameter u is implicit in
the sense that it constrains the mutual relationships
among the components of X̄. In fact, one would im-
mediately obtain an optimal estimate X̄ = X if it
were not for such an implicit constraint.

In order to make the implicit constraint explicit,
one needs to introducing a new parameter t to solve
Eq. (1) for u in the parametric form

x = x(t; u). (3)

For example, if we want to fit a circle (x−a)2+(y−b)2
= r2, we rewrite it as x = a + r cos θ, y = b + r sin θ
by introducing the directional angle θ. However, this
type of parametric representation is usually very dif-
ficult to obtain.

Suppose such a parametric representation does ex-
ist. Substituting x̄1 = x(t1, u), x̄2 = x(t2, u), ..., x̄N

= x(tN , u), Eq. (2) now has the form

X = X̄(t1, ..., tN ;u) + E. (4)

Our task is to estimate the parameters t1 ,..., tN and
u from X.

2.3 Neyman-Scott Problem

Although the problem looks like a standard form,
there is a big difference: we observe only one ob-
servable X for a “particular” set of parameters t1
,..., tN and u. Namely, X is a single sample from
p(X − X̄(t1, ..., tN ; u)).

The tenet of statistical estimation is to observe re-
peated samples from a distribution, or an ensemble,
and infer its unknown parameters. Naturally, esti-
mation becomes more accurate as more samples are
drawn, thanks to the law of large numbers. Here,
however, only one sample X is available.

What happens if we increase the data? If we ob-
serve another datum xN+1, the observable X be-
comes a yet higher dimensional vector, and Eq. (4)
becomes a yet higher dimensional equation, which has
an additional unknown tN+1. This means that the re-
sulting observable X is not “another” sample of the
same distribution; it is one sample from a new distri-
bution with a new set of parameters t1 ,..., tN+1 and
u. However large the number of data is, the number
of observable is always 1.

This (seeming) anomaly was first pointed out by
Neyman and Scott [23]. Since then, this problem has
been referred to as the Neyman-Scott problem. Even
for a single observation, maximum likelihood (ML)
estimation is possible. However, Neyman and Scott
[23] pointed out that the estimated parameters do not
necessarily converge to their true values as N → ∞,
indicating the (seeming) lack of “consistency”, which
is a characteristic of ML.

This is natural of course, because increasing the
number of data does not mean increasing the num-
ber of samples from a distribution having particular
parameters. Though u may be unchanged as N in-
creases, we have as many parameters t1 ,..., tN as
the increased number of data. Due to this (seem-
ing) anomaly, these are called nuisance parameters,
whereas u is called the structural parameter or the
parameter of interest .

2.4 Semiparametric Models

In spite of many attempts in the past, this anomaly
has never been resolved, because it does not make
sense to regard what is not standard statistical es-
timation as standard statistical estimation. It has
been realized that the only way to fit the problem in
the standard framework is to regard t1 ,..., tN not as
parameters but as data sampled from a fixed proba-
bility density q(t; v) with some unknown parameters
v called hyperparameters.

The problem is now interpreted as follows. Given
u and v, the values t1 ,..., tN are randomly drawn
from q(t; v). Then, Eq. (3) defines the true values
x̄1, ..., x̄N , to which random noise drawn from p(E)
is added. The task is to estimate both u and v by
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Figure 1: (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n → ∞ for
the number n of observations, because admissible accuracy can be reached with a smaller number of observations. (b)
For geometric fitting, it is desired that the accuracy increases rapidly as ε → 0 for the noise level ε, because larger data
uncertainty can be tolerated for admissible accuracy.

observing x1, ..., xN . For a given parametric den-
sity q(t; v), statisticians call this interpretation the
structural model ; in contrast, Eq. (4) is called the
functional model .

Defining a model and mathematically analyzing
the asymptotic behavior are the task of statisticians,
but in practice how can we give the density q(t; v) by
merely looking at a single set of data x1, ..., xN? To
cope with this difficulty, a new approach has emerged:
we introduce a density q(t; v) whose form is not com-
pletely specified. Such a model is said to be semi-
parametric [2, 4].

The standard procedure for such a problem goes
like this. We first estimate the density q(t;v) (the
most difficult part), then marginalize the model over
q(t;v), i.e., integrate out all t1, ..., tN to obtain a
likelihood function of u alone (not analytically easy),
and finally search for the value u that maximizes it.
Now that the problem is reduced to repeated sam-
pling from a distribution with a fixed set of parame-
ters, the consistency as N → ∞ is guaranteed under
mild conditions.

This approach has also been adopted in several
computer vision problems where a large number of
data are available. Ohta [24] showed that the semi-
parametric model yields a better result for 3-D inter-
pretation of a dense optical flow field, and Okatani
and Deguchi [25] demonstrated that for estimating
3-D shape and motion from a point cloud seen in
multiple images, the semiparametric model can re-
sult in higher accuracy. In both cases, however, the
procedure is very complicated, and the superior per-
formance is obtained only when the number of data
is extremely large.

2.5 Dual Approach of Kanatani

A natural question arises: why do we need to
rewrite Eq. (1) in a parametric form by introducing
the new parameter t? If Eq. (1) has a simple form,
e.g., a polynomial, why do we need to convert it to
a complicated (generally non-algebraic1) form, if the
conversion is possible at all. Why cannot we do esti-
mation using Eq. (1) as is?

1It is known that a polynomial (or algebraic) equation does
not have an algebraically parametric representation unless its
“genus” is 0 (Clebsch theorem).

This might be answered as follows. Statisticians
try to fit the problem in the standard framework be-
cause they are motivated to analyze asymptotic be-
havior of estimation as the number n of observations
increases. In particular, the “consistency”, i.e., the
property that the computed estimates converge to
their true values as n →∞, together with the speed of
convergence measured in O((1/

√
n)k), is their major

concern.
This concern originates from the fact that an es-

timation method whose accuracy increases rapidly
as n → ∞ can attain admissible accuracy with a
fewer number of observations (Fig. 1(a)). Such a
method is desirable because most statistical applica-
tions are done in the presence of large noise (e.g., agri-
culture, medicine, economics, psychology, and cen-
sus surveys), and hence one needs a large number of
repeated observations to compensate for the noise,
which entails a considerable cost in real situations.

To this, Kanatani [13, 15] countered, saying that
the purpose of many computer vision applications is
to estimate the underlying geometric structure as ac-
curately as possible in the presence of small noise. In
fact, the uncertainty introduced by image processing
operations is usually around a few pixels or subpixels.
He asserted that in such domains, it is more reason-
able to evaluate the performance in the limit ε → 0
for the noise level ε, because a method whose accu-
racy increases rapidly as ε → 0 can tolerate larger
uncertainty for admissible accuracy (Fig. 1(b)).

If our our interest is in the limit ε → 0, we need
not force Eq. (1) to conform to the traditional frame-
work. Instead, we can build a mathematical theory of
estimation directly from Eq. (1). Indeed, this is what
has implicitly been done by many computer vision
researchers for years without worrying much about
orthodox theories in the statistical literature.

2.6 Duality of interpretation

Kanatani [13, 15] pushed this idea further in ex-
plicit terms and showed that resulting mathematical
consequences have corresponding traditional results
in a dual form, e.g., the KCR lower bound [6, 14] cor-
responds to the traditional Cramer-Rao (CR) lower
bound, and the geometric AIC and the geometric
MDL correspond, respectively, to Akaike’s AIC [1]
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Table 1: Duality between traditional statistical estima-
tion and geometric fitting [15].

statistical estimation geometric fitting
data generating geometric constraints
mechanism
x ∼ p(x; θ) F (x; u) = 0

CR lower bound KCR lower bound

VCR[θ̂] = O(1/n) VKCR[û] = O(ε2)

ML is optimal in the ML is optimal in the
limit n → ∞ limit ε → 0

Akaike’s AIC geometric AIC
AIC = · · · + O(1/n) G-AIC = · · · + O(ε4)

Rissanen’s MDL geometric MDL
MDL = · · · + O(1) G-MDL = · · · + O(ε2)

and Rissennen’s MDL [27] (Table 1).
The correspondence is dual in the sense that small

noise expansions have the form · · ·+O(εk) for geomet-
ric fitting, to which correspond traditional asymptotic
expansions in the form · · · + O(1/

√
nk). Kanatani

[13, 15] explained this, invoking the following thought
experiment.

For geometric fitting, the image data may not be
exact due to the uncertainty of image processing oper-
ations, but they always have the same value however
many times we observe them, so the number n of
observations is always 1, as pointed out earlier. Sup-
pose, hypothetically, they change their values each
time we observe them as if in quantum mechanics.
Then, we would obtain n different values for n obser-
vations. If we take their sample mean, its standard
deviation is 1/

√
n times that of individual observa-

tions. This means that repeating hypothetical obser-
vations n times effectively reduces the noise level ε
to ε/

√
n. Thus, the behavior of estimation for ε →

0 is mathematically equivalent to the asymptotic be-
havior for n → ∞ of the number n of hypothetical
observations (not the number N of “data”).

In the following, we adopt this approach and ana-
lyze the accuracy of existing estimation techniques in
the limit ε → 0.

3. Parameter Estimation and Accuracy

3.1 Noise Description and Estimators

Our goal is to obtain a good estimate of the param-
eter u from observed data xα. To do mathematical
analysis, however, there is a serious obstacle arising
from the fact that the data xα and the parameter
u may be constrained; they may be unit vectors or
matrices of determinant 0, for instance. How can we
define noise in the data and errors of the parame-
ters? Evidently, direct vector calculus is not suitable.
For example, if a unit vector is perturbed isotropi-
cally, the perturbed values are distributed over a unit

Figure 2: The displacement of a constrained variable is
projected onto the tangent space, with which we identify
the noise domain.

sphere, but their average is “inside” the sphere.
A more serious problem is that noise distributions

cannot be Gaussian, because Gaussian distributions
with infinitely long tails can exist only in a Euclidean
space. Since Gaussian distributions are the most fun-
damental of all distributions, how can we do mathe-
matical analysis without it?

Several mathematical formulations have been pro-
posed for probability distributions in a non-Euclidean
space based on theories of Lie groups and invariant
measures (e.g., Begelfor and Werman [3] and Pennec
[26]), but the results are very much complicated.

Fortunately, however, such complications are not
necessary in our formulation, because we are focus-
ing only on small noise effects in the dual framework.
Hence, we can simply assume that noise concentrates
on a small region around the true value. As such,
noise can be regarded as effectively occurring in the
tangent space at that point. Within this tangent
space, the noise distribution can be regarded as Gaus-
sian; the discrepancy at the tail part is of higher order
terms. Accordingly, we define the covariance matrix
of xα by

V [xα] = E[
(
Px̄α

(xα − x̄α)
)(

Px̄α
(xα − x̄α)

)>
], (5)

where E[ · ] denotes expectation over the noise distri-
bution, and Px̄α denotes projection onto the tangent
space to the domain X of the data at x̄α (Fig. 2).

The geometric fitting problem in the form of
Eq. (1) is solved if a procedure is given for comput-
ing an estimate û of u in terms of observed data xα,
which defines a function

û = û(x1, ...,xN ), (6)

called an estimator of u. A natural requirement is
that the true value should be obtained in the absence
of noise:

lim
ε→0

û = u. (7)

Here, ε is the noise level, and u the true parameter
value. Chernov and Lesort [6] called this condition
consistency in the dual framework. In this paper,
we consider only consistent estimators in this sense.
Confirming consistency is usually a trivial matter.

If x1, ..., xN are random variables, so is û as a
function of them. Hence, we can measure its accuracy
by its covariance matrix. Here again, the parameter
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u may be constrained and its domain U may not be
Euclidean. So, we identify the error of û as belonging
to the tangent space to U at the true value u. Namely,
we define the covariance matrix V [û] of û by

V [û] = E[
(
Pu(û − u)

)(
Pu(û − u)

)>
], (8)

where Pu denotes projection onto the tangent space
of the domain U at u.

3.2 KCR Lower Bound

Kanatani [13, 16] proved that if each datum xα

is an independent Gaussian random variable in the
above-mentioned sense with mean x̄α and covariance
matrix V [xα], the following inequality holds for an
arbitrary unbiased estimator û of u (see Appendix A
for the proof):

V [û] Â

(
N∑

α=1

(Pu∇uF̄α)(Pu∇uF̄α)>

(∇xF̄α, V [xα]∇xF̄α)

)−

. (9)

Here, Â means that the left-hand side minus the right
is positive semidefinite, and the superscript − denotes
pseudoinverse. The symbols ∇xF̄α and ∇uF̄α denote
the gradient of the function F (x; u) in Eq. (1) with
respect to x and u, respectively, evaluated at x = x̄α.
Throughout this paper, we denote the inner product
of vectors a and b by (a, b).

Chernov and Lesort [6] called the right-hand side
of Eq. (9) the KCR (Kanatani-Cramer-Rao) lower
bound and showed that it holds except for O(ε4) even
if û is not unbiased; it is sufficient that û is “consis-
tent” in the sense of Eq. (7).

If we worked in the traditional domain of statistics,
we would obtain the corresponding CR (Cramer-Rao)
lower bound . The statistical model is given by Eq. (4)
with likelihood function p(X − X̄(t1, ..., tN ;u)). So,
the CR bound can be obtained by following the stan-
dard procedure described in the statistical literature.

To be specific, we first evaluate second order
derivatives of log p(X−X̄(t1, ..., tN ; u)) with respect
to both t1, ..., tN and u (or multiply the first or-
der derivatives) and define an (mN + p) × (mN + p)
matrix, where m and p are the dimensions of the vec-
tors tα and the vector u, respectively. We then take
expectation of this matrix with respect to the den-
sity p(X − X̄(t1, ..., tN ;u)). The resulting matrix is
called the Fisher information matrix . Then, we in-
vert it and discard the nuisance parameters t1, ..., tN

by taking out only the p × p diagonal block corre-
sponding to u, resulting in the CR lower bound on u
alone.

In most cases, however, this derivation process is
almost intractable due to the difficulty of analytically
inverting a matrix of a very large size. In contrast,
the KCR lower bound in the form of Eq. (9) directly
gives a bound on u alone, without involving any “nui-
sance parameters”. This is one of the most signifi-

cant advantages of working in the dual framework of
Kanatani [13, 16].

3.3 Minimization Schemes

It is a common strategy to define an estimator
through minimization or maximization of some cost
function, although this is not always necessary, as we
will see later. Traditionally, the term “optimal” has
been widely used to mean that something is mini-
mized or maximized, and minimization or maximiza-
tion has been simply called “optimization”. Here,
however, we reserve the term “optimal” for the strict
sense that nothing better can exists .

A widely used method is what is called least-
squares (LS) (and by many other names such as al-
gebraic distance minimization), minimizing

J =
N∑

α=1

F (xα; u)2, (10)

thereby implicitly defining an estimator
û(x1, ...,xN ). It has been widely recognized
that this estimator has low accuracy with large
statistical bias. Another popular scheme is what is
called geometric distance minimization (and by many
other names such as Sampson error minimization),
minimizing

J =
N∑

α=1

F (xα; u)2

‖∇xFα‖2
. (11)

Many other minimization schemes have been pro-
posed in the past. All of them are designed so as to
make F (xα; u) approximately 0 for all α and at the
same time let the solution û have desirable properties
[5, 28, 29]. To this, Kanatani [13] viewed the problem
as statistical estimation for estimating the true data
values x̄α that strictly satisfy the constraint

F (x̄α; u) = 0, α = 1, ..., N, (12)

using the knowledge of the data covariance matrices
V [xα].

If we assume that the noise in each xα is indepen-
dent Gaussian (in the tangent space) with mean 0 and
covariance matrix V [xα], the likelihood of observing
x1, ..., xN is

C

N∏
α=1

e−(xα−x̄α,V [xα]−(xα−x̄α))/2, (13)

where C is a normalization constant. The true values
x̄1, ..., x̄N are constrained by Eq. (12). Maximizing
Eq. (13) is equivalent to minimizing the negative of
its logarithm, which is written up to additive and
multiplicative constants in the form

J =
N∑

α=1

(xα − x̄α, V [xα]−(xα − x̄α)), (14)
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called the (square) Mahalanobis distance. This is
to be minimized subject to Eq. (12). Kanatani [13]
called this scheme maximum likelihood (ML) for geo-
metric fitting.

The constraint of Eq. (12) can be eliminated by
introducing Lagrange multipliers and ignoring higher
order terms in the noise level, which can be justified
in our dual framework. The resulting form is (see
Appendix B for the derivation)

J =
N∑

α=1

F (xα;u)2

(∇xFα, V [xα]∇xFα)
. (15)

It can be shown that the covariance matrix V [û]
of the resulting estimator û achieves the KCR lower
bound except for O(ε4) [6, 13, 16] (see Appendix C
for the proof). It is widely believed that this is the
best method of all, aside from the semiparametric
approach in the asymptotic limit N → ∞. We will
later show that this is not so (Section 4.6).

3.4 Linearized Constraint Optimization

In the rest of this paper, we concentrate on a spe-
cial subclass of geometric fitting problems in which
Eq. (1) reduces to the linear form

(ξ(x),u) = 0, (16)

by changing variables ξ = ξ(x). If the data xα are
m-dimensional vectors and the unknown parameter
u is a p-dimensional vector, the mapping ξ( · ) is a
(generally nonlinear) embedding from Rm to Rp. In
order to remove scale indeterminacy of the form of
Eq. (16), we normalize u to ‖u‖ = 1.

The KCR lower bound for the linearized constraint
has the form

VKCR[û] =
( N∑

α=1

ξ̄αξ̄
>
α

(u, V [ξα]u)

)−
, (17)

where we write ξ̄α = ξ(x̄α). The covariance matrix
V [ξα] of ξα = ξ(xα) is given, except for higher order
terms in the noise level, in the form

V [ξα] = ∇xξ̄
>
α V [xα]∇xξ̄α, (18)

where ∇xξ̄α is the m × p Jacobian matrix

∇xξ =

 ∂ξ1/∂x1 · · · ∂ξp/∂x1

...
. . .

...
∂ξ1/∂xm · · · ∂ξp/∂xm

 . (19)

evaluated at x = x̄α. Note that in Eq. (17) we do not
need the projection operator for the normalization
constraint ‖u‖ = 1, because ξ̄α is orthogonal to u
due to Eq. (16); for the moment, we assume that no
other internal constraints exist.

This subclass of geometric fitting problems covers
a wide range of computer vision applications. The
following are typical examples:

Example 1 Suppose we want to fit a quadratic curve
(circle, ellipse, parabola, hyperbola, or their degener-
acy) to N points (xα, yα) in the plane. The constraint
has the form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (20)

If we define

ξ(x, y) = (x2 2xy y2 2x 2y 1)>,

u = (A B C D E F )>, (21)

Eq. (20) is linearized in the form of Eq. (16). If in-
dependent Gaussian noise of mean 0 and standard
deviation σ is added to each coordinates of (xα, yα),
the covariance matrix V [ξα] of the transformed ξα

has the form

V [ξα] = 4σ2


x̄2

α x̄αȳα 0 x̄α 0 0
x̄αȳα x̄2

α + ȳ2
α x̄αȳα ȳα x̄α 0

0 x̄αȳα ȳ2
α 0 ȳα 0

x̄α ȳα 0 1 0 0
0 x̄α ȳα 0 1 0
0 0 0 0 0 0

 ,

(22)
except for O(σ4), where (x̄α, ȳα) is the true position
of (xα, yα). 2

Example 2 Suppose we have N corresponding
points in two images of the same scene viewed from
different positions. If point (x, y) in the first image
corresponds to (x′, y′) in the second, they should sat-
isfy the following epipolar equation [11]:

(

 x
y
1

 , F

 x′

y′

1

) = 0. (23)

Here, F is a matrix of rank 2, called the fundamental
matrix , that depends only on the intrinsic parameters
of the two cameras that took the two images and their
relative 3-D positions, but not on the scene and the
location of the identified points [11]. If we define

ξ(x, y, x′, y′)=(xx′ xy′ x yx′ yy′ y x′ y′ 1)>,

u=(F11 F12 F13 F21 F22 F23 F31 F32 F33)>, (24)

Eq. (23) is linearized in the form of Eq. (16). If in-
dependent Gaussian noise of mean 0 and standard
deviation σ is added to each coordinates of the corre-
sponding points (xα, yα) and (x′

α, y′
α), the covariance

matrix V [ξα] of the transformed ξα has the form

V [ξα] = σ2×

x̄2
α + x̄′2

α x̄′
αȳ′

α x̄′
α x̄αȳα 0 0 x̄α 0 0

x̄′
αȳ′

α x̄2
α + ȳ′2

α ȳ′
α 0 x̄αȳα 0 0 x̄α0

x̄′
α ȳ′

α 1 0 0 0 0 0 0
x̄αȳα 0 0 ȳ2

α + x̄′2
α x̄′

αȳ′
α x̄′

α ȳα 0 0
0 x̄αȳα 0 x̄′

αȳ′
α ȳ2

α + ȳ′2
α ȳ′

α 0 ȳα0
0 0 0 x̄′

α ȳ′
α 1 0 0 0

x̄α 0 0 ȳα 0 0 1 0 0
0 x̄α 0 0 ȳα 0 0 1 0
0 0 0 0 0 0 0 0 0


,
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(25)

except for O(σ4), where (x̄α, ȳα) and (x̄′
α, ȳ′

α), are
the true positions of (xα, yα) and (x′

α, y′
α), respec-

tively. The fundamental matrix has, aside from scale
normalization, the constraint that its determinant is
0. If we take this constraint into consideration, the
KCR lower bound of Eq (17) involves the correspond-
ing projection operation [19]. 2

As we can see from Eqs. (22) and (25), the covari-
ance matrix V [ξα] is usually factored into the form

V [ξα] = ε2V0[ξα], (26)

where ε is a constant that characterizes the noise and
V0[ξα] is a matrix that depends only on the true data
values. Hereafter, we assume this form and define ε
to be the noise level ; we call V0[ξα] the normalized
covariance matrix . In the actual computation, the
true data values are approximated by their observed
values.

4. Accuracy of Parameter Estimation

We now give a rigorous accuracy analysis of typical
estimation techniques up to high order error terms.
This type of analysis has not been done before, and
the following are original results of this paper.

4.1 Least Squares (LS)

For the linearized constraint of Eq. (16), minimiza-
tion of Eq. (10) reduces to minimization of

J =
N∑

α=1

(ξα, u)2 =
N∑

α=1

(u, ξαξ>
α u) = (u,M0u),

(27)
where

M0 ≡
N∑

α=1

ξαξ>
α . (28)

This is a symmetric matrix (generally positive defi-
nite), so the quadratic form (u,M0u) is minimized
by the unit eigenvector for the smallest eigenvalue of
M0.

To do error analysis, we write

M0û = λû, (29)

into which we substitute ξα = ξ̄α + ∆ξα and û =
u + ∆1u + ∆2u + · · ·, where ∆1 and ∆2 denote per-
turbations corresponding to the first and the second
orders in ∆ξα, respectively. We have

(M̄0 + ∆1M0 + ∆2M0)(u + ∆1u + ∆2u + · · ·)
= (∆1λ + ∆2λ + · · ·)(u + ∆1u + ∆2u + · · ·), (30)

where M̄0 is the value of M0 obtained by replacing
ξα in Eq. (29) by their true values ξ̄α, and

∆1M0 =
N∑

α=1

(ξ̄α∆ξ>
α + ∆ξαξ̄

>
α ),

∆2M0 =
N∑

α=1

∆ξα∆ξ>
α . (31)

We also expand the eigenvalue λ in Eq. (29) into
∆1λ+∆2λ+ · · ·. Since λ = 0 in the absence of noise,
its 0th order term does not exist.

Equating first and second order terms on both
sides of Eq. (30), we obtain

M̄0∆1u + ∆1M0u = ∆1λu, (32)

M̄0∆2u+∆1M0∆1u+∆2M0u = ∆1λ∆1u+∆2λu.
(33)

Computing the inner product with u on both
sides of Eq. (32) and noting that (u, M̄0u) and
(u, ∆M̄0u) identically vanish, we see that ∆1λ = 0.
Multiplying M̄

−
0 on both sides of Eq. (32) and noting

that M̄
−
0 M̄0 = P u (≡ I − uu>, the projection ma-

trix onto the hyperplane orthogonal to u) and ∆1u
is orthogonal to u to a first approximation (because
‖u‖ = 1), we conclude that

∆1u = −M̄
−
0 ∆1M0u. (34)

Evidently, E[∆1u] = 0. Its covariance matrix is

V [∆1u] = E[∆1u∆1u
>]

= M̄
−
0 E[(∆1M0u)(∆1M0u)>]M̄−

0

= M̄
−
0 E[

N∑
α=1

(∆ξα, u)ξ̄α

N∑
β=1

(∆ξβ , u)ξ̄>
β ]M̄−

0

= M̄
−
0

N∑
αβ=1

(u, E[∆ξα∆ξ>
β ]u)ξ̄αξ̄

>
β M̄

−
0

= ε2M̄
−
0 M̄

′
0M̄

−
0 , (35)

where we define

M̄
′
0 ≡

N∑
α=1

(u, V0[ξα]u)ξ̄αξ̄
>
β , (36)

and use the identity E[∆ξα∆ξ>
β ] = ε2δαβV0[ξα] im-

plied by our assumption about the noise (δαβ is the
Kronecker delta, taking 1 for α = β and 0 otherwise).

Multiplying M̄
−
0 on both sides of Eq. (33) and

solving for M̄
−
0 M̄0∆2u (≡ P u∆2u), we obtain

∆2u
⊥

= −M̄
−
0 ∆1M0∆1u − M̄

−
0 ∆2M0u

= M̄
−
0 ∆1M0M̄

−
0 ∆1M0u − M̄

−
0 ∆2M0u, (37)

where ∆2u
⊥ (≡ P u∆2u) is the component of ∆2u or-

thogonal to u. The parallel component ∆2u
‖ can also

be computed, but it is not important, since it arises
solely for enforcing the normalization constraint ‖û‖
= 1 (Fig. 3). Thus, we can measure the accuracy only
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∆ u
u

O

u

∆ u ⊥

∆ u ||

Figure 3: The orthogonal error component ∆u⊥ and the

parallel error component ∆u‖ of an estimate û of u. The
accuracy can be measured by the orthogonal component
∆u⊥.

by examining the orthogonal component, as discussed
in Section 3.1.

If we note that

E[∆1M0M̄
−
0 ∆1M0u]

= E[
N∑

α=1

(ξ̄α∆ξ>
α + ∆ξαξ̄

>
α )M̄−

0

N∑
β=1

(∆ξβ , u)ξ̄β ]

=
N∑

α,β=1

(u, E[∆ξβ∆ξ>
α ]M̄−

0 ξ̄β)ξ̄α

+
N∑

α,β=1

(ξ̄α, M̄
−
0 ξ̄β)E[∆ξα∆ξ>

β ]u

= ε2
N∑

α=1

(u, V0[ξα]M̄−
0 ξ̄α)ξ̄α

+ε2
N∑

α=1

(ξ̄α,M̄
−
0 ξ̄α)V0[ξα]u, (38)

E[∆2M0u] =
N∑

α=1

E[∆ξα∆ξ>
α ]u = ε2

N∑
α=1

V0[ξα]u

= ε2N0u, (39)

where we define

N0 ≡
N∑

α=1

V0[ξα], (40)

the expectation of ∆2u
⊥ is given by

E[∆2u
⊥]

= ε2M̄
−
0

N∑
α=1

(u, V0[ξα]M̄−
0 ξ̄α)ξ̄α

+ε2M̄
−
0

N∑
α=1

(ξ̄α, M̄
−
0 ξ̄α)V0[ξα]u − ε2M̄

−
0 N0u.

(41)

4.2 Taubin Method

The method due to Taubin2 [29] is to minimize,
instead of Eq. (27),

J =
∑N

α=1(ξα, u)2∑N
α=1(u, V0[ξα]u)

=
(u, M0u)
(u, N0u)

. (42)

This is a Rayleigh ratio, so it is minimized by the
eigenvector of the generalized eigenvalue problem

M0û = λN0û, (43)

for the smallest eigenvalue. The matrix N0 may be
singular, but we can solve Eq. (43) by reducing the
number of parameters as prescribed by Chojnacki, et
al. [9, 10] (see Appendix D for the procedure).

As in the case of LS, we expand Eq. (43) in the
form

(M̄0 + ∆1M0 + ∆2M0)(u + ∆1u + ∆2u + · · ·)
= (∆1λ + ∆2λ + · · ·)N0(u + ∆1u + ∆2u + · · ·),

(44)

and equate first and second order terms on both sides.
We obtain

M̄0∆1u + ∆1M0u = ∆1λN0u, (45)

M̄0∆2u + ∆1M0∆1u + ∆2M0u

= ∆1λN0∆1u + ∆2λN0u. (46)

Computing the inner product with u on both sides
of Eq. (45), we again find that ∆1λ = 0. So, the
first order error ∆1u is again given by Eq. (34) and
hence its covariance matrix V [∆1u] by Eq. (35). In
other words, LS and the Taubin method have the same
accuracy to a first approximation.

However, the Taubin method is known to be sub-
stantially better than LS. So, the difference should be
second-order effects. Multiplying M̄

−
0 on both sides

of Eq. (46) and solving for ∆2u
⊥ (≡ M̄

−
0 M̄

−
0 ∆2u),

we obtain

∆2u
⊥ = −M̄

−
0 ∆1M0∆1u − M̄

−
0 ∆2M0u

−∆2λM̄0Nu

= M̄
−
0 ∆1M0M̄

−
0 ∆1M0u − M̄

−
0 ∆2M0u

−∆2λM̄0Nu. (47)

Comparing this with Eq. (37), we find that an extra
term, −∆2λM̄

−
0 Nu, is added. We now evaluate the

expectation of Eq. (47).

2Taubin [29] studied curve fitting, which he analyzed purely
from a geometric point of view without using statistical terms
such as means and covariance matrices. What is shown here is
a modification of his method in the present framework.
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Figure 4: 20 points on an ellipse.

Computing the inner product with u on both
sides of Eq. (46), and noting that (u, M0∆2u) and
(u, ∆1M0∆1u) identically vanish, we obtain

∆2λ =
(u, ∆2M0u)

(u,N0u)
. (48)

Its expectation is

E[∆2λ] =
(u, E[∆2M0u])

(u, N0u)
= ε2, (49)

where we have used Eq. (39). As a result, the expec-
tation of the last term in Eq. (47) cancel the last term
of Eq. (41), resulting in

E[∆2u
⊥] = ε2M̄

−
0

N∑
α=1

(u, V0[ξα]M̄−
0 ξ̄α)ξ̄α

+ε2M̄
−
0

N∑
α=1

(ξ̄α, M̄
−
0 ξ̄α)V0[ξα]u. (50)

In other words, the second order bias −ε2M−
0 N0u

of LS is eliminated by the introduction of N0 on the
right-hand side of Eq. (43). We conclude that this
is the cause of the improved accuracy of the Taubin
method as compared with LS. We now confirm this
by numerical experiments.

Example 3 Figure 4 shows N = 20 points (x̄α, ȳα)
taken on ellipse

x2

502
+

y2

1002
= 1, (51)

with equal intervals. From them, we generated data
points (xα, yα) by adding Gaussian noise of mean 0
and standard deviation σ to the x and y coordinates
independently. Then, we fitted an ellipse by LS and
the Taubin method.

Figure 5 plots for different σ the fitting error eval-
uated by the following root mean square over 10,000
independent trials:

D =

√√√√ 1
10000

10000∑
a=1

‖P uû(a)‖2. (52)

Here, û(a) is the ath value of û. The thick and
thin line are for LS and the Taubin method, respec-
tively. The dotted line is the corresponding KCR

 0.1

 0  0.01  0.02

LS

Taubin

KCR

σ

Figure 5: Noise level vs. RMS error for the ellipse data
in Fig. 4: LS (thick solid line), Taubin (thin solid line),
and KCR lower bound (dotted line).

lower bound (tr denotes the trace):

DKCR = 2σ

√√√√tr
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−
. (53)

As we can see, the LS solution is of very low ac-
curacy, while the Taubin solution is fairly accurate.
The plots for LS and Taubin should have, at σ = 0,
the same slope distinct from that of the KCR lower
bound, as far as the first order error ∆1u is concerned.
However, this effect is too weak to be visible in Fig. 5,
implying that the performance difference between LS
and Taubin is mostly due to second order error ∆2u,
in particular the last term of Eq. (41). 2

4.3 Optimally Weighted Least Squares

A well known correction to LS is to appropriately
weight each summand in Eq. (27) in the form

J =
N∑

α=1

Wα(ξα, u)2, (54)

which is minimized by the unit eigenvector of

M =
N∑

α=1

Wαξαξ>
α , (55)

for the smallest eigenvalue. The weight Wα is deter-
mined so that the covariance matrix of the resulting
estimate is as close to the KCR lower bound as pos-
sible.

Following the analysis in Section 4.1, we can easily
see that the first order covariance matrix in Eq. (35)
is now replaced by

V [∆1u] = ε2M̄
−

( N∑
α=1

Wα(u, V0[ξα]u)ξ̄αξ̄
>
β

)
M̄

−
.

(56)
It is not difficult to see that this coincides with the
KCR lower bound if we set

Wα =
1

(u, V0[ξα]u)
. (57)
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In fact, we have

V [∆1u] = ε2M̄
−

( N∑
α=1

ξ̄αξ̄
>
β

(u, V0[ξα]u)

)
M̄

−

= ε2M̄
−

M̄M̄
− = ε2M̄

−
, (58)

where we define

M̄ ≡
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
. (59)

Evidently, Eq. (58) equals the KCR lower bound
given by Eq. (17).

However, we cannot use Eq. (57), because the true
value u is unknown. So, we do iterations. Namely, we
first give an appropriate initial guess of u, say by LS,
substitute it into Eq. (57) and compute the eigenvec-
tor of the matrix M in Eq. (55) for the smallest eigen-
value. Using the resulting solution, we update the
weight Wα and iterate this process. This method is
known as optimally weighted (iterative) least squares,
or simply reweight [29]. The fact that this method
achieves the KCR lower bound to a first approxima-
tion was pointed out by Chernov and Lesort [6].

We now evaluate its accuracy. After the iterations
have converged, the resulting solution û satisfies

M̂û = λû, (60)

where

M̂ =
N∑

α=1

ξαξ>
α

(û, V0[ξα]û)
. (61)

Substituting ξα = ξ̄α+∆ξα, û = u+∆1u+∆2u+· · ·,
and λ = ∆1λ + ∆2λ + · · · into Eq. (60), we have

(M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M)
(u + ∆1u + ∆2u + · · ·)
= (∆1λ + ∆2λ + · · ·)(u + ∆1u + ∆2u + · · ·), (62)

where we put

∆1M =
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)
, (63)

∆2M =
N∑

α=1

∆ξα∆ξ>
α

(u, V0[ξα]u)
, (64)

∆∗
1M = −2

N∑
α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)2
(∆1u, V0[ξα]u), (65)

∆∗
2M = −2

N∑
α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)2
(∆1u, V0[ξα]u)

+
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

(
−2(∆2u, V0[ξα]u)

(u, V0[ξα]u)

+
4(∆1u, V0[ξα]u)2

(u, V0[ξα]u)2
− (∆1u, V0[ξα]∆1u)

(u, V0[ξα]u)

)
.

(66)

Here, ∆∗
1M and ∆∗

2M are, respectively, the first and
second order perturbations of M for using û in the
denominator in Eq. (61).

Equating first and second order terms on both
sides of Eq. (62), we obtain

M̄∆1u + (∆1M + ∆∗
1M)u = ∆1λu, (67)

M̄∆2u + (∆1M + ∆∗
1M)∆1u + (∆2M + ∆∗

2M)u
= ∆1λ∆1u + ∆2λu. (68)

Computing the inner product with u on both sides
of Eq. (67) and noting that (u, M̄u), (u, ∆1Mu),
and (u,∆∗

1Mu) all identically vanish, we find that
∆1λ = 0. Multiplying M̄

− on both sides of Eq. (67)
and solving for ∆1u, we obtain as before

∆1u = −M̄
−∆1Mu, (69)

whose covariance matrix V [∆1u] coincides with the
KCR lower bound ε2M̄

−.
Multiplying M̄

− on both sides of Eq. (68) and
solving for ∆2u

⊥ (≡ M̄
−

M̄∆2u), we obtain

∆2u
⊥

=−M̄
−(∆1M +∆∗

1M)∆1u−M̄
−(∆2M +∆∗

2M)u

= M̄
−∆1MM̄

−∆1Mu + M̄
−∆∗

1MM̄
−∆1Mu

−M̄
−∆2Mu − M̄

−∆∗
2Mu. (70)

Now, we compute its expectation. We first see that

E[M̄−∆1MM̄
−∆1Mu]

= E[M̄−
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)
M̄

−
N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)
]

= M̄
−

N∑
α,β=1

(ξ̄α, M̄
−

ξ̄β)E[∆ξα∆ξ>
β ]u

(u, V0[ξα]u)(u, V0[ξβ ]u)

+M̄
−

N∑
α,β=1

(M̄−
ξ̄β , E[∆ξα∆ξ>

β ]u)ξ̄α

(u, V0[ξα]u)(u, V0[ξβ ]u)

= ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u
(u, V0[ξα]u)2

+ε2M̄
−

N∑
α=1

(M̄−
ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
. (71)

We also see that

E[M̄−∆∗
1MM̄

−∆1Mu]

= E[2M̄−
N∑

α=1

(∆1Mu, M̄
−

V0[ξα]u)ξ̄αξ̄
>
α

(u, V0[ξα]u)2

M̄
−∆1Mu]

= 2M̄
−

N∑
α=1

ξ̄α

(u, V0[ξα]u)2
(V0[ξα]u,

M̄
−

E[(∆1Mu)(∆1Mu)>]M̄−
ξ̄α). (72)
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The expectation E[(∆1Mu)(∆1Mu)>] is

E[(∆1Mu)(∆1Mu)>]

= E[
N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)

N∑
β=1

(∆ξβ , u)ξ̄>
β

(u, V0[ξβ ]u)
]

=
N∑

α,β=1

(u, E[∆ξα∆ξ>
β ]u)ξ̄αξ̄

>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)

= ε2
N∑

α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α

(u, V0[ξα]u)2
= ε2

N∑
α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

= ε2M̄ . (73)

Hence, Eq. (72) becomes

E[M̄−∆∗
1MM̄

−∆1Mu]

= 2ε2M̄
−

N∑
α=1

(V0[ξα]u, M̄
−

M̄M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2

= 2ε2M̄
−

N∑
α=1

(V0[ξα]u, M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
. (74)

The expectation of M̄
−∆2Mu is

E[M̄−∆2Mu] = E[M̄−
N∑

α=1

(∆ξα, u)∆ξα

(u, V0[ξα]u)
]

= M̄
−

N∑
α=1

E[∆ξα∆ξ>
α ]u

(u, V0[ξα]u)
= ε2M̄

−
N∑

α=1

V0[ξα]u
(u, V0[ξα]u)

= ε2M̄
−

N̄u, (75)

where we define

N̄ ≡
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (76)

The expectation of M̄
−∆∗

2Mu is

E[M̄−∆∗
2Mu]

= E[−2M̄
−

N∑
α=1

(∆1u, V0[ξα]u)(∆ξα, u)ξ̄α

(u, V0[ξα]u)2
]

= 2M̄
−

N∑
α=1

(u, E[∆ξα(∆1Mu)>]M̄−
V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
.

(77)

The expectation E[∆ξα(∆1Mu)>] is

E[∆ξα(∆1Mu)>] = E[∆ξα

N∑
β=1

(∆ξβ , u)ξ̄>
β

(u, V0[ξβ ]u)
]

=
N∑

β=1

E[∆ξα∆ξ>
β ]uξ̄

>
β

(u, V0[ξβ ]u)
=

ε2V0[ξα]uξ̄
>
α

(u, V0[ξα]u)
. (78)

Table 2: The role of the Taubin method and renormal-
ization.

no weight iterative reweight
eigenvalue
problem

LS ↔ optimally
weighted LS

⇓ ⇓
generalized
eigenvalue
problem

Taubin ↔ renormalization

Hence, Eq. (77) becomes

E[M̄−∆∗
2Mu]

= 2ε2M̄
−

N∑
α=1

(u, V0[ξα]u)(ξ̄α,M̄
−

V0[ξα]u)ξ̄α

(u, V0[ξα]u)3

= 2ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
, (79)

which is the same as Eq. (74). Thus, the expectation
of ∆2u

⊥ in Eq. (70)

E[∆2u
⊥]

= ε2M̄
−

N∑
α=1

(M̄−
ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2

+ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u
(u, V0[ξα]u)2

− ε2M̄
−

N̄u.

(80)

4.4 Renormalization

We can see the similarity between Eqs. (34) and
(41) for (unweighted) LS and Eqs. (69) and (80) for
optimally weighted LS, where the (unweighted) ma-
trix M0 is replaced by the weighted matrix M . We
have seen that the last term −ε2M̄

−
0 N0u in Eq. (41)

can be removed by using the Taubin method, replac-
ing Eq. (29) by Eq. (43) by inserting the (unweighted)
matrix N0.

The above comparison implies that the last term
−ε2M̄

−
N̄u in Eq. (80) may be removed by replacing

the eigenvalue problem of Eq. (60) by a generalized
eigenvalue problem

M̂û = λN̂ , (81)

by inserting the weighed matrix

N̂ =
N∑

α=1

V0[ξα]
(û, V0[ξα]û)

. (82)

Indeed, this is the idea of the renormalization of
Kanatani [12, 13] (Table 2). His original idea was
that the exact value u is obtained as the eigenvector
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of M̄ in Eq. (59) for eigenvalue 0. If we approximate
M̄ by M̂ in Eq. (60), we have

M̂ = M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M . (83)

Evidently E[∆1M ] = O and E[∆∗
1M ] = O, but we

see from Eq. (64) that

E[∆2M ] =
N∑

α=1

E[∆ξα∆ξ>
α ]

(u, V0[ξα]u)
=

N∑
α=1

ε2V0[ξα]
(u, V0[ξα]u)

= ε2N̄ . (84)

Hence, M̂ − ε2N̄ is closer to M̄ in expectation than
M̂ . Though we do not know ε2 and N̄ , the latter
may be approximated by N̂ . The former is simply
regarded as an unknown to be estimated. Kanatani
[12, 13] estimated it as the value c that make M̂−cN̂
singular, since the true value M̄ has eigenvalue 0.
Thus, Kanatani’s renormalization goes as follows:

1. Initialize û, say by LS, and let c = 0.
2. Solve the eigenvalue problem

(M̂ − cN̂)u = λu, (85)

and let u be the unit eigenvector for the eigen-
value λ closest to 0.

3. If λ ≈ 0, return û and stop. Else, let

c ← c +
λ

(u, N̂u)
, û ← u, (86)

and go back to Step 2.

This method has been demonstrated to result in
dramatic improvement over (unweighted or optimally
weighted) LS in many computer vision problems in-
cluding fundamental matrix computation for 3-D re-
construction and homography estimation for image
mosaicing [19, 20]. We now analyze its accuracy.

After the iterations have converged, we have

(M̂ − cN̂)û = 0, (87)

which is essentially Eq. (81). As before, we have the
perturbation expansion(

M̄ + (∆1M + ∆∗
1M) + (∆2M + ∆∗

2M) + · · ·

−(∆1c + ∆2c + · · ·)(N̄ + ∆∗
1N + · · ·)

)
(u + ∆1u

+∆2u + · · ·) = 0, (88)

where

∆∗
1N = −2

N∑
α=1

(∆1u, V0[ξα]u)V0[ξα]
(u, V0[ξα]u)

, (89)

which arises from the expansion of the denominator
in the expression of N̂ (the second order perturbation
∆∗

2N does not affect the subsequent analysis).

Equating first and second order terms on both
sides of Eq. (88), we obtain

M̄∆1u + (∆1M + ∆∗
1M − ∆1cN̄)u = 0, (90)

M̄∆2u + (∆1M + ∆∗
1M − ∆1cN̄)∆1u

+(∆2M + ∆∗
2M − ∆1c∆∗

1N − ∆2cN̄)u = 0. (91)

Computing the inner product with û on both sides
of Eq. (90), we find that ∆1c = 0 as before. Multi-
plying M̄

− on both sides of Eq. (90) and solving for
∆1u, we again obtain Eq. (69). Hence, its covariance
matrix V [∆1u] coincides with the KCR lower bound
ε2M̄

−.
Multiplying M̄

− on both sides of Eq. (91) and
solving for ∆2u

⊥, we obtain

∆2u
⊥

= −M̄
−∆1M∆1u − M̄

−∆∗
1M∆1u − M̄

−∆2Mu

−M̄
−∆∗

2Mu + ∆2cM̄
−

N̄u

= M̄
−∆1MM̄

−∆1Mu + M̄
−∆∗

1MM̄
−∆1Mu

−M̄
−∆2Mu − M̄

−∆∗
2Mu + ∆2cM̄

−
N̄u. (92)

Comparing this with Eq. (70), we find that an extra
term, ∆2cM̄

−
N̄u, is added. We now evaluate the

expectation of Eq. (92).
Computing the inner product with u on both

sides of Eq. (91) and noting that (u, M̄∆2u),
(u, ∆∗

1M∆1u), and (u, ∆∗
2Mu) all identically van-

ish, we have

∆2c =
(u, ∆2Mu) − (u, ∆1M∆1u)

(u, N̄u)
(93)

We first note from the definition of N̄ in Eq. (76)
that

(u, N̄u) =
N∑

α=1

(u, V0[ξα]u)
(u, V0[ξα]u)

= N. (94)

The expectation of (u,∆2Mu) is

E[(u, ∆2Mu)]

=
N∑

α=1

(u, E[∆ξα∆ξ>
α ]u)

(u, V0[ξα]u)
=

N∑
α=1

(u, ε2V0[ξα]u)
(u, V0[ξα]u)

= Nε2. (95)

The expectation of (u,∆1M∆1u) is

E[(u, ∆1M∆1u)]

= E[(u, ∆1MM̄
−∆1Mu)]

= E[(∆1Mu, M̄
−∆1Mu)]

= E[(
N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)
, M̄

−
N∑

β=1

(∆ξβ , u)ξ̄β

(u, V0[ξβ ]u)
)]

84



Kenichi KANATANI MEM.FAC.ENG.OKA.UNI. Vol. 41

=
N∑

α,β=1

(u, E[∆ξα∆ξ>
β ]u)(ξ̄α, M̄

−
ξ̄β)

(u, V0[ξα]u)(u, V0[ξβ ]u)

= ε2
N∑

α=1

(u, V0[ξα]u)(ξ̄α, M̄
−

ξ̄α)
(u, V0[ξα]u)2

= ε2
N∑

α=1

(ξ̄α, M̄
−

ξ̄α)
(u, V0[ξα]u)

= ε2
N∑

α=1

tr[M̄−
ξ̄αξ̄

>
α ]

(u, V0[ξα]u)

= ε2tr[M̄−
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
] = ε2tr[M̄−

M̄ ]

= ε2tr[P u] = (p − 1)ε2, (96)

where p is the dimension of the parameter vector u.
Thus, from Eq. (93) we have

E[∆2c] =
(
1 − p − 1

N

)
ε2, (97)

and hence from Eq. (92)

E[∆2u
⊥] = ε2M̄

−
N∑

α=1

(M̄−
ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2

+ε2M̄
−

N∑
α=1

(ξ̄α,M̄
−

ξ̄α)V0[ξα]u
(u, V0[ξα]u)2

−p − 1
N

ε2M̄
−

N̄u. (98)

Eq. (97) corresponds to the well known formula of un-
biased estimation of the noise variance ε2 (note that
the p-dimensional unit vector u has p − 1 degrees of
freedom).

If the number N of data is fairly large, which
is the case in many vision applications, the last
term in Eq. (98) is insignificant, resulting in the fre-
quently reported dramatic improvement over opti-
mally weighted LS.

Kanatani’s renormalization was at first not well
understood. This was due to the generally held pre-
conception that parameter estimation should be done
by minimizing something. People wondered what
renormalization was actually minimizing. In this line
of thought, Chojnacki et al. [7] interpreted renormal-
ization be an approximation to ML. We have seen,
however, that optimal estimation does not necessar-
ily mean minimization and that renormalization is an
effort to improve accuracy by a direct means.

Example 4 Figure 6 is the RMS error plot corre-
sponding to Fig. 5 using the ellipse data in Example
3. The thick solid line is for LS, the dashed line is for
optimally weighted LS, and the thick solid line is for
renormalization. The dotted line is for the KCR lower
bound. Although the plots for optimally weighted LS
and renormalization should both be tangent to that
of the KCR lower bound at σ = 0, but not for LS,

 0.1

 0  0.01  0.02

LS

opt. LS

renorm.

KCR

σ

Figure 6: Noise level vs. RMS error for the ellipse data
in Fig. 4: LS (thick solid line), optimally weighted LS
(dashed line), renormalization (thin solid line), and the
KCR lower bound (dotted line).

this is not visible from the figure, again confirming
that the performance difference is mostly due to the
second order error ∆2u.

In fact, we can see from Fig. 6 that the accuracy
gain of optimally weighted LS over the (unweighted)
LS is rather small , meaning that satisfaction of the
KCR lower bound in the first order is not a good
indicator of high accuracy.

In contrast, renormalization performs considerably
better than optimally weighted LS, clearly demon-
strating that the last term of Eq. (80) has a decisive
influence on the accuracy . The situation is similar to
the relationship between LS and the Taubin method
(Fig. 5). 2

4.5 Maximum Likelihood (ML)

Maximum likelihood (ML) in the sense of Kanatani
(Section 3.3) minimizes Eq. (14), which reduces for
the linearized constraint of Eq. (16) to

J =
N∑

α=1

(ξα,u)2

(u, V0[ξα]u)
. (99)

Differentiating this with respect to u, we obtain

∇uJ =
N∑

α=1

2(ξα, u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u
(u, V0[ξα]u)2

.

(100)
Hence, the ML estimator û is the solution of

M̂û = L̂û, (101)

where M̂ is defined by Eq. (61) and L̂ is given by

L̂ =
N∑

α=1

(ξα, û)2V0[ξα]
(û, V0[ξα]û)2

. (102)

Equation (101) can be solved using various nu-
merical schemes. The FNS (fundamental numerical
scheme) of Chojnacki et al. [8] reduces Eq. (101) to
iterative eigenvalue problem solving (see Appendix
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E); the HEIV (heteroscedastic errors-in-variable) of
Leedan and Meer [22] reduces it to iterative gener-
alized eigenvalue problem solving (see Appendix F).
We may also do a special type of Gauss-Newton it-
erations as formulated by Kanatani and Sugaya [21]
and Kanatani [18] (see Appendix G). We now analyze
the accuracy of the resulting ML estimator.

Whatever iterative scheme is used, Eq. (101) holds
after the iterations have converged. The perturbation
expansion of Eq. (101) is

(M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M + · · ·
−∆2L − ∆∗

2L)(ū + ∆1u + ∆2u + · · ·) = 0, (103)

where

∆2L =
N∑

α=1

(∆ξ̄α, ū)2V0[ξα]
(ū, V0[ξα]ū)2

,

∆∗
2L =

N∑
α=1

(ξ̄α,∆1u)2V0[ξα]
(ū, V0[ξα]ū)2

+2
N∑

α=1

(ξ̄α,∆1u)(∆ξ̄α, ū)V0[ξα]
(ū, V0[ξα]ū)2

. (104)

Note that Eq. (102) vanishes if ξα and û are replaced
by ξ̄α and u, respectively. Hence, the 0th order term
of L is O. Since Eq. (102) contains the quadratic
term (ξα, û)2, the first order perturbations ∆1L and
∆∗

1L are also O.
Equating first and second order terms on both

sides of Eq. (104), we obtain

M̄∆1u + (∆1M + ∆∗
1M)ū = 0, (105)

M̄∆2u + (∆1M + ∆∗
1M)∆1u + (∆2M

+ ∆∗
2M − ∆2L − ∆∗

2L)ū = 0. (106)

Multiplying M̄
− on both sides of Eq. (105) and solv-

ing for ∆1u, we again obtain Eq. (69). Hence, its
covariance matrix V [∆1u] coincides with the KCR
lower bound ε2M̄

−.
Multiplying M̄

− on both sides of Eq. (106) and
solving for ∆2u

⊥, we obtain

∆2u
⊥

= −M̄
−∆1M∆1u − M̄

−∆∗
1M∆1u − M̄

−∆2Mū

−M̄
−∆∗

2Mū + M̄
−∆2Lū + M̄

−∆∗
2Lū

= M̄
−∆1MM̄

−∆1Mū + M̄
−∆∗

1MM̄
−∆1Mū

−M̄
−∆2Mū − M̄

−∆∗
2Mū + M̄

−∆2Lū

+M̄
−∆∗

2Lū (107)

For computing its expectation, we only need to
consider the new terms M̄

−∆2Lū and M̄
−∆∗

2Lū.

First, we see that

E[M̄−∆2Lū]

= M̄
−

N∑
α=1

(ū, E[∆ξ̄α∆ξ̄
>
α ]ū)V0[ξα]ū

(ū, V0[ξα]ū)2

= M̄
−

N∑
α=1

(ū, ε2V0[ξα]ū)V0[ξα]ū
(ū, V0[ξα]ū)2

= ε2M̄
−

N∑
α=1

V0[ξα]ū
(ū, V0[ξα]ū)

= ε2M̄
−

N̄ū. (108)

For M̄
−∆∗

2Lū, we have

E[M̄−∆∗
2Lū]

= M̄
−

N∑
α=1

(ξ̄α, E[∆1u∆1u
>]ξ̄α)V0[ξα]ū

(ū, V0[ξα]ū)2

+2M̄
−

N∑
α=1

(ξ̄α, E[∆1u∆ξ̄
>
α ]ū)V0[ξα]ū

(ū, V0[ξα]ū)2
. (109)

We have already seen that the first order error ∆1u
satisfies the KCR lower bound, so E[∆1u∆1u

>] =
εM̄

− (see Eq. (58)). On the other hand,

E[∆1u∆ξ̄
>
α ]ū

= −E[M̄−∆1Mū∆ξ̄
>
α ]ū

= −M̄
−

E[
N∑

β=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(ū, V0[ξβ ]ū)
ū∆ξ̄

>
α ]

= −M̄
−

N∑
β=1

(ū, E[∆ξβ∆ξ̄
>
α ]ū)ξ̄β

(ū, V0[ξβ ]ū)

= −ε2M̄
− (ū, V0[ξα]ū)ξ̄α

(ū, V0[ξα]ū)
= −ε2M̄

−
ξ̄α. (110)

Hence,

E[M̄−∆∗
2Lū]

= ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]ū
(ū, V0[ξα]ū)2

−2ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξα)V0[ξα]ū
(ū, V0[ξα]ū)2

.

= −ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]ū
(ū, V0[ξα]ū)2

. (111)

Adding Eqs. (108) and (111) to Eq. (80), we conclude
that

E[∆2u
⊥] = ε2M̄

−
N∑

α=1

(M̄−
ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
. (112)

Comparing this with Eqs. (80) and (98), we can see
the last two terms there are removed.
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There has been a widespread misunderstanding
that optimally weighted LS can actually compute ML
because Eq. (54) is identical to Eq. (99) if the weight
Wα is chosen as in Eq. (57). However, this is not so
[8, 13]. The important thing is not what to minimize
but how it is minimized.

Optimally weighted LS minimizes J in Eq. (99) for
u in the numerator with u in the denominator fixed.
Then, the resulting solution u is substituted into the
denominator, followed by the minimization of J for
u in the numerator, and this is iterated. This means
that when the solution û is obtained, it is guaranteed
that

N∑
α=1

(ξα, û + δu)2

(û, V0[ξα]û)
≥

N∑
α=1

(ξα, û)2

(û, V0[ξα]û)
, (113)

for any infinitesimal perturbation δu, which the con-
vergence of optimally weighted LS means. This, how-
ever, does not guarantee that

N∑
α=1

(ξα, û + δu)2

(û + δu, V0[ξα](û + δu))
≥

N∑
α=1

(ξα, û)2

(û, V0[ξα]û)
,

(114)
for any infinitesimal perturbation δu, which mini-
mization of J really means. The difference between
Eq. (113) and Eq. (114) is very large: the latter elim-
inates the last two terms of E[∆1u

⊥] in Eq. (80).
Renormalization is intermediate in the sense that it
eliminates only the last term (almost).

4.6 Hyperaccuracy Fitting

It has been widely believed that ML is the best
method of all. In fact, no method has been found
that outperforms ML, aside from the semiparametric
approach in the asymptotic limit N → ∞ (Section
2.4).

However, Eq. (112) implies the possibility of im-
proving the accuracy of ML further. Namely, we
“subtract” Eq. (112) from the ML estimator û. Of
course, Eq. (112) cannot be precisely computed, be-
cause it involves the true values ξ̄α and u. So, we ap-
proximate them by the data ξα and the ML estimator
û. As is well known, the unknown squared noise level
ε2 is estimated from the residual of Eq. (99) in the
following form [13]:

ε̂2 =
(û, M̂û)

N − (p − 1)
. (115)

Thus, the correction has the form

ũ = N [û − ε̂2M̂
−

N∑
α=1

(M̂
−

ξα, V0[ξα]û)ξα

(û, V0[ξα]û)2
], (116)

where the operation N [ · ] in denotes normalization to
unit norm for compensating for the parallel compo-
nent ∆u‖ (see Fig. 3).
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Figure 7: Noise level vs. RMS error for the ellipse data
in Fig. 4: Taubin (dashed line), renormalization (thin
solid line), ML (thick solid line), hyperaccurate correc-
tion (chained line), and the KCR lower bound (dotted
line).

(a) (b)

Figure 8: Two instances of ellipse fitting: LS (bro-
ken line), ML (thick solid line), hyperaccuracy correction
(thin solid line), true ellipse (dotted line).

Example 5 Figure 7 shows the RMS error plot cor-
responding to Figs. 5 and 6, using the ellipse data in
the Example 3. The dashed line is for the Taubin
method, the thin line is for renormalization, and the
thick solid line is for ML; we used the FNS of Choj-
nacki et al. [8] for computing ML. The dotted line is
for the KCR lower bound.

We can see that in spite of the drastic bias reduc-
tion of ML in the form of Eq. (112) as compared to
the Taubin method (Eq. (80)) and renormalization
(Eq. (98)), ML has only comparable accuracy to the
Taubin method and renormalization.

The chained line shows the result of the hyperac-
curate correction of Eq. (116). We can see that the
error is further reduced3.

Figure 8(a) shows one instance of ellipse fitting (σ
= 0.015). The dotted line shows the true ellipse; the
broken line is for LS; the thick solid line is for ML;
the thin solid line is for the hyperaccurate correction.
We can see that the fitted ellipse is closer to the true
shape after the correction. Figure 8(b) is another
instance (σ = 0.015). In this case, the ellipse given by
ML is already very accurate, and it slightly deviates
from the true shape after the correction.

Thus, the accuracy sometimes improves and some-
times deteriorates. Overall, however, the cases of
improvement is the majority; on average we observe
slight improvement as shown in Fig. 7.

3The hyperaccuracy correction of ellipse fitting was first pre-
sented in [17], but the term ∆∗

2L was not taken into account.
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Table 3: Average error ratio of different methods.

LS 1.636

Optimally weighted LS 1.575

Taubin 1.144

Renormalization 1.133

ML 1.125

Hyperaccurate correction 1.007

KCR lower bound 1.000

For comparing all the methods tested so far, we
define the “error ratio” D/DKCR by D in Eq. (52)
divided by DKCR in Eq. (53) and average it over the
tested range of σ. Table 3 list this value for different
method. 2

5. Conclusions

We have given a rigorous accuracy analysis of vari-
ous techniques for geometric fitting. We first pointed
out how our problem is different from traditional sta-
tistical analysis and explained why we need a different
framework. After giving general theories in our new
framework, we selected typical techniques and ana-
lytically evaluated their accuracy up to second order
terms. Table 4 summarizes the first order error, its
covariance matrix, and the second order bias. Con-
ducting numerical simulations of ellipse fitting, we
have observed the following:

1. LS and the Taubin method have the same er-
ror to a first approximation. However, the latter
achieves much higher accuracy, because a domi-
nant second order bias term of LS is removed.

2. Optimally weighted LS achieves the KCR lower
bound to a first approximation. However, the ac-
curacy gain over (unweighted) LS is rather small.
This is due to the existence of second order bias
terms.

3. Renormalization nearly removes the dominant
bias term of optimally weighted LS, resulting in
considerable accuracy improvement.

4. ML is less biased than renormalization. How-
ever, the accuracy gain is rather small.

5. By estimating and subtracting the bias term
from the ML solution, we can achieve higher ac-
curacy than ML (“hyperaccuracy”).

Thus, we conclude that it is the second order er-
ror , not the first, that has dominant effects over the
accuracy. This is the new discovery made for the first
time in this paper. We have also found that not all
second order terms have the same degree of influence.
Detailed evaluation of this requires further investiga-
tion.
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Appendix

A: Derivation of the KCR Lower Bound

For simplicity, we consider only the case where no
intrinsic constraints exist on the data xα or the pa-
rameter u and the noise is identical and isotropic
Gaussian with mean 0 and variance ε2. In other
words, we assume that the probability distribution
density of each datum xα is

p(xα) =
1

(
√

2π)nεn
e−‖xα−x̄α‖2/2ε2

. (117)

Suppose an unbiased estimator û(x1, ...,xN ) is given.
Its unbiasedness mean

E[û − u] = 0, (118)

where E[ · ] is expectation over the joint probability
density p(x1) · · · p(xN ). Since this density is param-
eterized by the true data values x̄α, Eq. (118) can be
viewed as an equation of x̄α as well as the unknown
u. The crucial fact is that Eq. (118) should be an
identity in x̄α and u that satisfies Eq. (1), because
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unbiasedness is a “property” of the estimator û that
should hold for whatever values of x̄α and u. Hence,
Eq. (118) should be invariant to infinitesimal varia-
tion of x̄α and u. This means

δ

∫
(û − u)p1 · · · pNdx = −

∫
(δu)p1 · · · pNdx

+
N∑

α=1

∫
(û − u)p1 · · · δpα · · · pNdx

= −δu +
∫

(û − u)
N∑

α=1

(p1 · · · δpα · · · pN )dx, (119)

where pα is an abbreviation of p(xα) and
∫

dx is a
shorthand of

∫
· · ·

∫
dx1 · · ·xN . Note that we con-

sider variations in x̄α (not xα) and u. Since the es-
timator û is a function of the data xα, it does not
change for these variations. The variation δu is inde-
pendent of xα, so it can be moved outside the integral∫

dx. Also note that
∫

p1 · · · pNdx = 1.
The infinitesimal variation of Eq. (117) with re-

spect to x̄α is

δpα = (lα, δx̄α)pα, (120)

where we define the score lα by

lα ≡ ∇x̄α log pα =
xα − x̄α

ε2
. (121)

Since Eq. (118) is an identity in x̄α and u that satis-
fies Eq. (1), the variation (119) should vanish for ar-
bitrary infinitesimal variations δx̄α and δu that are
compatible with Eq. (1). If Eq. (120) is substituted
into Eq. (119), its vanishing means

E[(û − u)
N∑

α=1

l>α δx̄α] = δu. (122)

The infinitesimal variation of Eq. (1) has the form

(∇xF̄α, δx̄α) + (∇uF̄α, δu) = 0, (123)

where the overbar means evaluating it at x = x̄α for
the true value u. Consider the following particular
variations δx̄α:

δx̄α = − (∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
δu. (124)

Evidently, Eq. (123) is satisfied by whatever u. Sub-
stituting Eq. (124) into Eq. (122), we obtain

E[(û − u)
N∑

α=1

m>
α ]δu = −δu, (125)

where we define the vectors mα by

mα =
(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
lα. (126)

Since Eq. (125) should hold for arbitrary variation
δu, we have

E[(û − u)
N∑

α=1

m>
α ] = −I. (127)

Hence, we have

E[
(

û − u∑N
α=1 mα

)(
û − u∑N
α=1 mα

)>

] =
(

V [û] −I
−I M

)
,

(128)
where we define the matrix M by

M = E[
( N∑

α=1

mα

)( N∑
β=1

mβ

)>
]

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
E[lαlβ ]

(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2

=
1
ε2

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
. (129)

In the above equation, we use the identity E[lαl>β ] =
δαβI/ε4, which is a consequence of independence of
the noise in each datum xα.

Since the inside of the expectation E[ · ] on the left-
hand side of Eq. (128) is evidently positive semidef-
inite, so is the right-hand side. Hence, the following
is also positive semidefinite:(

I M−1

M−1

)(
V [û] −I
−I M

)(
I

M−1 M−1

)
=

(
V [û] − M−1

M−1

)
. (130)

From this, we conclude that

V [û] Â M−1. (131)

This result is easily generalized to the case where in-
trinsic constraints exist on the data xα and the pa-
rameter u and the covariance matrix V [xα] is not full
rank [13]. In the general case, we obtain Eq. (9).

B: Linear Approximation of ML

For simplicity, we consider only the case where
no intrinsic constraints exist on the data xα or the
parameter u and the noise is identical and isotropic
Gaussian. Substituting x̄α = xα−∆xα into Eq. (12)
and assuming that the noise term ∆xα is small, we
obtain the linear approximation

Fα − (∇xFα, ∆xα) = 0, (132)

subject to which we want to minimize
∑N

α=1 ‖∆xα‖2.
Introducing Lagrange multipliers λα, let

L =
1
2

N∑
α=1

‖∆xα‖2 +
N∑

α=1

λα(Fα − (∇xFα, ∆xα)).

(133)
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Taking the derivative of L with respect to ∆xα and
setting it to 0, we have

∆xα − λα∇xFα = 0. (134)

Hence, ∆xα = λα∇xFα. Substitution of this into
Eq. (132) yields

Fα − (∇xFα, λα∇xFα) = 0, (135)

from which we obtain λα in the form

λα =
Fα

‖∇xFα‖2
. (136)

Thus,

J =
N∑

α=1

‖∆xα‖2 =
N∑

α=1

‖λα∇xFα‖2

=
N∑

α=1

F 2
α

‖∇xFα‖4
‖∇xFα‖2 =

N∑
α=1

F 2
α

‖∇xFα‖2
. (137)

This result can easily be generalized to the case where
intrinsic constraints exist on the data xα and the pa-
rameter u and the covariance matrix V [xα] is not full
rank [13]. In the general case, we obtain (15).

C: Covariance Matrix of ML

For simplicity, we consider only the case where
no intrinsic constraints exist on the data xα or the
parameter u and the noise is identical and isotropic
Gaussian with mean 0 and variance ε2, so V [xα] =
ε2I. Letting xα = x̄α + ∆xα and replacing u by
u + ∆u in Eq. (15), we can expand J in the form

J =
N∑

α=1

((∇xF̄α,∆xα) + (∇uF̄α, ∆u))2

‖∇xF̄α‖2
+ O(ε3),

(138)
where the overbar means evaluating it at x = x̄α

for the true value u. Note that replacing ∇xFα by
∇xF̄α by in the denominator does not affect the lead-
ing term because the numerator is O(ε2); the differ-
ence is absorbed into the remainder term O(ε3).

If we find ∆u that minimizes Eq. (138), the ML
estimator û is given by u + ∆u. Since the first term
on the right-hand side of Eq. (138) is quadratic in
∆uα, the derivative of J with respect to ∆u is

2
N∑

α=1

((∇xF̄α, ∆xα) + (∇uF̄α, ∆u))∇uF̄α

‖∇xF̄α‖2
+ O(ε2).

(139)
Letting this be 0, we have

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u

= −
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα + O(ε2), (140)

from which we obtain
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u∆u>

N∑
β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα∆x>

β

(∇xF̄β)(∇uF̄β)>

‖∇xF̄α‖2

+O(ε3). (141)

Taking expectation on both sides, we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
V [û]

N∑
β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2

(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
+ O(ε4)

=
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
+ O(ε4). (142)

Note that E[O(ε3)] = O(ε4), because the noise dis-
tribution is isotropic and odd noise terms vanish in
expectation. The first term in the last expression is
the KCR lower bound in this case.

This result can easily be generalized to the case
where intrinsic constraints exist on the data xα and
the parameter u and the covariance matrix V [xα] is
not full rank [13]. We conclude that the covariance
matrix of the ML estimator agrees with the KCR
lower bound except for O(ε4).

D: Procedure for the Taubin Method

In most vision applications, the embedded data ξα,
the parameter u, and the normalized covariance ma-
trix V0[ξα] are decomposed in the form

ξα =
(

zα

C

)
, u =

(
v
a

)
,

V0[ξα] =
(

V0[zα] 0
0> 0

)
, (143)

where C and a are constants; see Eqs. (21) for ellipse
fitting and Eqs. (24) for fundamental matrix com-
putation. Here, zα and v are (p − 1)-dimensional
vectors, and V0[zα] is a (p − 1) × (p − 1) normalized
covariance matrix of zα; see Eqs. (22) and (25).

So, we compute estimates v̂ and â of v and a,
respectively. Define (p − 1) × (p − 1) matrices M̃0

and Ñ0 by

M̃0 =
N∑

α=1

z̃αz̃>
α , Ñ0 =

N∑
α=1

V0[zα], (144)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (145)
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Then, Eq. (43) splits into two equations

M̃0v̂ = λÑ0v̂, (v̂, z̄) + Câ = 0. (146)

If we compute the (p − 1)-dimensional unit general-
ized eigenvector v̂ of the first equation for the smallest
generalized eigenvalue λ (see, e.g., [13] for the proce-
dure), the second gives â. Hence, û is given by

û = N [
(

v̂
â

)
], (147)

where N [ · ] denotes normalization to unit norm.

E: Procedure for FNS

The FNS of Chojnacki et al. [8] solves Eq. (101)
by the following iterations:

1. Initialize û, say by LS.
2. Compute the matrix M̂ in Eq. (61) and the ma-

trix L̂ in Eq. (102), and solve the eigenvalue
problem

(M̂ − L̂)u = λu. (148)

Let u be the unit eigenvector for the eigenvalue
λ closest to 0.

3. If u ≈ û except for sign, stop. Else, let û ← u
and go back to Step 2.

Later, Chojnacki et al. [10] pointed out that conver-
gence performance improves if we choose in Step 2
not the eigenvalue closest to 0 but the smallest one.
See Kanatani and Sugaya [21] and Kanatani [18] for
the comparative experiment of this effect.

F: Procedure for HEIV

In most vision applications, the embedded data ξα,
the parameter u, and the normalized covariance ma-
trix V0[ξα] are decomposed in the form of Eqs. (143).
So, we compute estimates v̂ and â of v and a, respec-
tively. Define (p − 1) × (p − 1) matrices M̃ and L̃
by

M̃ =
N∑

α=1

z̃αz̃>
α

(v̂, V0[zα]v̂)
, L̃ =

N∑
α=1

(v̂, z̃α)2V0[zα]
(v̂, V0[zα]v̂)2

,

(149)
where we put

z̃α = zα − z̄,

z̄ =
N∑

α=1

zα

(v̂, V0[zα]v̂)

/
N∑

β=1

1
(v̂, V0[zβ ]v̂)

. (150)

Then, Eq. (101) splits into the following two equa-
tions [9, 10]:

M̃v̂ = L̃v̂, (v̂, z̄) + Câ = 0. (151)

If determine v̂ from the first equation, the second
determines â. Hence, the estimate û is given in the
form of Eq. (147). The HEIV of Leedan and Meer [22]
solves the first equation by the following iterations:

1. Initialize v̂, say by LS.
2. Compute the matrices M̃ and L̃ in Eq. (149),

and solve the generalized eigenvalue problem

M̃v = λL̃v. (152)

Let v be the unit generalized eigenvector for the
generalized eigenvalue λ closest to 1.

3. If v ≈ v̂ except for sign, return v̂ and stop. Else,
let v̂ ← v and go back to Step 2.

Leedan and Meer [22] pointed out that choosing in
Step 3 not the generalized eigenvalue closest to 1
but the smallest one improves the convergence perfor-
mance. See Kanatani and Sugaya [21] and Kanatani
[18] for the comparative experiment of this effect.

G: Gauss-Newton Iterations

Since the gradient ∇uJ is given by Eq. (100), we
can minimize the function J in Eq. (99) by Newton
iterations. If we evaluate the Hessian ∇2

uJ , the incre-
ment ∆u in u is determined by solving

(∇2
uJ)∆u = −∇uJ. (153)

Since ∇2
uJ is singular (the function J is constant

in the direction of u), the solution is indeterminate.
However, if we use pseudoinverse and compute

∆u = −(∇2
uJ)−∇uJ, (154)

we obtain a solution, which is orthogonal to u.
Differentiating Eq. (99) and introducing Gauss-

Newton approximation (i.e., ignoring terms that con-
tain (u, ξα)), we see that the Hessian is nothing but
the matrix M̂ in Eq. (61) for u = û. In order to com-
pute pseudoinverse, we enforce M̂ , which is generally
nonsingular, to have eigenvalue 0, using the projec-
tion matrix P û = I − ûû>.

The iteration procedure given by Kanatani and
Sugaya [21] and Kanatani [18] goes as follows:

1. Initialize û, say by LS.
2. Compute

u = N [û − (P ûM̂P û)−(M̂ − L̂)û]. (155)

3. If u ≈ û, return û and stop. Else, let û ← u
and go back to Step 2.

This scheme is just as effective as FNS, HEIV, and
renormalization. See Kanatani and Sugaya [21] and
Kanatani [18] for the comparative experiment of this
effect.
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