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Hyperaccurate Ellipse Fitting without Iterations
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This paper presents a new method for fitting an ellipse to a point sequence extracted from images.
It is widely known that the best fit is obtained by maximum likelihood. However, it requires
iterations, which may not converge in the presence of large noise. Our approach is algebraic distance
minimization; no iterations are required. Exploiting the fact that the solution depends on the
way the scale is normalized, we analyze the accuracy to high order error terms with the scale
normalization weight unspecified and determine it so that the bias is zero up to the second order.
We demonstrate by experiments that our method is superior to the Taubin method, also algebraic
and known to be highly accurate.

1. INTRODUCTION

Circular objects are projected onto camera images
as ellipses, and from their 2-D shapes one can recon-
struct their 3-D structure [11]. For this reason, de-
tecting ellipses in images and computing their mathe-
matical representation are the first step of many com-
puter vision applications including industrial robotic
operations and autonomous navigation. This is done
in two stages, although they are often intermingled.
The first stage is to detect edges, test if a particular
edge segment can be regarded as an elliptic arc, and
integrate multiple arcs into ellipses [15, 23]. The sec-
ond stage is to fit an equation to those edge points
regarded as constituting an elliptic arc. In this paper,
we concentrate on the latter.

———————
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Among many ellipse fitting algorithms presented
in the past, those regarded as the most accurate are
methods based on maximum likelihood (ML), and
various computational schemes have been proposed
including the FNS (Fundamental Numerical Scheme
of Chojnacki et al. [5], the HEIV (Heteroscedastic
Errors-in-Variable of Leedan and Meer [18] and Matei
and Meer [19], and the projective Gauss-Newton iter-
ations of Kanatani and Sugaya [16]. Efforts have also
been made to make the cost function more precise
[17] and add a posterior correction to the solution

∗E-mail kanatani@suri.cs.okayama-u.ac.jp

[13], but the solution of all ML-based methods al-
ready achieves the theoretical accuracy limit, called
the KCR lower bound [4, 12, 14], up to high order er-
ror terms. Hence, there is practically no room for fur-
ther accuracy improvement. However, all ML-based
methods have one drawback: Iterations are required
for nonlinear optimization, but they often fail to con-
verge in the presence of large noise. Also, an ap-
propriate initial guess must be provided. Therefore,
accurate algebraic methods that do not require itera-
tions are very much desired, even though the solution
may not be strictly optimal.

The best known algebraic method is the least
squares, also known as algebraic distance minimiza-
tion or DLT (direct linear transformation) [10], but all
algebraic fitting methods have an inherent weakness:
We need to impose a normalization to remove scale
indeterminacy, yet the solution depends on the choice
of the normalization. Al-Sharadqah and Chernov [2]
and Rangarajan and Kanatani [21] exploited this free-
dom for fitting circles. Invoking the high order error
analysis of Kanatani [14], they optimized the normal-
ization so that the solution has the highest accuracy.
In this paper, we apply their techniques to ellipse fit-
ting. Doing numerical experiments, we demonstrate
that our method is superior to the Taubin method
[24], also an algebraic method known to be very ac-
curate [14, 16].
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Figure 1: Fitting an ellipse to a point sequence.

2. ALGEBRAIC FITTING OF ELLIPSES

An ellipse is represented by

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0, (1)

where f0 is a scale constant that has an order of x and
y; without this, finite precision numerical computa-
tion would incur serious accuracy loss1. Our task is
to compute the coefficients A, ..., F so that the ellipse
of Eq. (1) passes through given points (xα, yα), α =
1, ..., N , as closely as possible (Fig.1). The algebraic
approach is to compute A, ..., F that minimize the
algebraic distance

J =
1
N

N∑
α=1

(
Ax2

α+2Bxαyα+Cy2
α+2f0(Dxα+Eyα)

+f2
0 F

)2

. (2)

This is also known as the least squares, algebraic dis-
tance minimization, or the direct linear transforma-
tion (DLT). Evidently, Eq. (2) is minimized by A =
· · · = F = 0 if no scale normalization is imposed.
Frequently used normalizations include

F = 1, (3)

A + C = 1, (4)

A2 + B2 + C2 + D2 + E2 + F 2 = 1, (5)

A2 + B2 + C2 + D2 + E2 = 1, (6)

A2 + 2B2 + C2 = 1, (7)

AC − B2 = 1. (8)

Equation (3) reduces minimization of Eq. (2) to si-
multaneous linear equations [1, 6, 22]. However,
Eq. (1) with F = 1 cannot represent ellipses pass-
ing through the origin (0, 0). Equation (4) remedies
this [8, 22]. The most frequently used is2 Eq. (5) [20],
but some authors use Eq. (6) [9]. Equation (7) im-
poses invariance to coordinate transformations in the

1In our experiments, we set f0 = 600, assuming images of
one side less than 1000 pixels.

2Some authors write an ellipse as Ax2 +Bxy +Cy2 +Dx+
Ey + F = 0. The meaning of Eq. (5) differs for this form and
for Eq. (1). In the following, we ignore such small differences;
no significant consequence would result.

sense that the ellipse fitted after the coordinate sys-
tem is translated and rotated is the same as the orig-
inally fitted ellipse translated and rotated afterwards
[3]. Equation (8) prevents Eq. (1) from representing a
parabola (AC−B2 = 0) or a hyperbola (AC−B2 < 0)
[7]. Many other normalizations are conceivable, but
the crucial fact is that the resulting solution depends
on which normalization is imposed. The purpose of
this paper is to find the “best” normalization. Write
the 6-D vector of the unknown coefficients as

u =
(
A B C D E F

)>
, (9)

and consider the class of normalizations written as

(u, Nu) = constant, (10)

for some symmetric matrix N , where and hereafter
we denote the inner product of vectors a an b by
(a, b). Equations (5), (6), and (7) can be written in
this form with a positive definite or semidefinite N ,
while for Eq. (8) N is nondefinite. In this paper, we
allow nondefinite N , so that the constant in Eq. (10)
is not necessarily positive.

3. ALGEBRAIC SOLUTIONS

If the weight matrix N is given, the solution u that
minimizes Eq. (1) is immediately computed. Write

ξ =
(
x2 2xy y2 2f0x 2f0y f2

0

)>
. (11)

Equation (1) is now written as

(u, ξ) = 0. (12)

Let ξα be the value of ξ for (xα, yα). Our problem is
to minimize

J =
1
N

N∑
α=1

(u, ξα)2 =
1
N

N∑
α=1

u>ξαξ>
α u = (u, Mu),

(13)
subject to Eq. (10), where we define the 6× 6 matrix
M as follows:

M =
1
N

N∑
α=1

ξαξ>
α . (14)

Equation (13) is a quadratic form in u, so it is mini-
mized subject to Eq. (10) by solving the generalized
eigenvalue problem

Mu = λNu. (15)

If Eq. (1) is exactly satisfied for all (xα, yα), i.e.,
(u, ξα) = 0 for all α, Eq. (14) implies Mu = 0 and
hence λ = 0. If the weight N is positive definite
or semidefinite, the generalized eigenvalue λ is posi-
tive in the presence of noise, so the solution is given
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by the generalized eigenvector u for the smallest λ.
Here, we allow N to be nondefinite, so λ may not
be positive. In the following, we do error analysis of
Eq. (15) by assuming that λ ≈ 0, so the solution is
given by the generalized eigenvector u for the λ with
the smallest absolute value3. Since the solution u of
Eq. (15) has scale indeterminacy, we hereafter adopt
normalization into unit norm ‖u‖ = 1 rather than
Eq. (10).

The resulting solution may not necessarily repre-
sent an ellipse; it may represent a parabola or hyper-
bola. This can be avoided by imposing Eq. (8) [7], but
here we do not exclude nonellipse solution and opti-
mize N so that the resulting solution u is as close to
its true value u as possible.

Least squares. In the following, we call the popu-
lar method of using Eq. (5) the least squares for
short. This is equivalent to letting N to be the
unit matrix I. Then, Eq. (15) becomes an ordi-
nary eigenvalue problem

Mu = λu, (16)

and the solution is the unit eigenvector of M for
the smallest eigenvalue.

Taubin method. A well known algebraic method
known to be very accurate is due to Taubin [24],
who used as N

NT =
4
N

N∑
α=1


x2

α xαyα 0 f0xα 0 0
xαyα x2

α + y2
α xαyα f0yα f0xα 0

0 xαyα y2
α 0 f0yα 0

f0xα f0yα 0 f2
0 0 0

0 f0xα f0yα 0 f2
0 0

0 0 0 0 0 0

.

(17)
The solution is given by the unit generalized
eigenvector u of Eq. (15) for the smallest gen-
eralized eigenvalue λ.

4. ERROR ANALYSIS

We regard each (xα, yα) as perturbed from its true
position (x̄α, ȳα) by (∆xα, ∆yα) and write

ξα = ξ̄α + ∆1ξα + ∆2ξα, (18)

where ξ̄α is the true value of ξα, and ∆1ξα, and ∆2ξα

are the noise terms of the first and the second order,

3In the presence of noise, M is positive definite, so (u, Mu)
> 0. If (u, Nu) < 0 for the final solution, we have λ < 0.
However, if we replace N by −N, we obtain the same solution
u with λ > 0, so the sign of λ does not have a particular
meaning.

respectively:

∆1ξα=


2x̄α∆xα

2x̄α∆yα+2ȳα∆xα

2ȳα∆yα

2f0∆xα

2f0∆yα

0

, ∆2ξα=


∆x2

α

2∆xα∆yα

∆y2
α

0
0
0

.

(19)
The second term ∆2ξα is ellipse specific and was not
considered in the general theory of Kanatani [14].
We define the covariance matrix of ξα by V [ξα] =
E[∆1ξα∆1ξ

>
α ], where E[ · ] denotes expectation. If

the noise terms ∆xα and ∆yα are regarded as inde-
pendent random Gaussian variables of mean 0 and
standard deviation σ, we obtain

V [ξα] = E[∆1ξα∆1ξ
>
α ] = σ2V0[ξα], (20)

where we put

V0[ξα] = 4


x̄2

α x̄αȳα 0 f0x̄α 0 0
x̄αȳα x̄2

α + ȳ2
α x̄αȳα f0ȳα f0x̄α 0

0 x̄αȳα ȳ2
α 0 f0ȳα 0

f0x̄α f0ȳα 0 f2
0 0 0

0 f0x̄α f0ȳα 0 f2
0 0

0 0 0 0 0 0

 .

(21)
Here, we have noted that E[∆xα] = E[∆yα] = 0,
E[∆x2

α] = E[∆y2
α] = σ2, and E[∆xα∆yα] = 0 accord-

ing to our assumption. We call the above V0[ξα] the
normalized covariance matrix . Comparing Eqs. (21)
and (17), we find that the Taubin method uses as N

NT =
1
N

N∑
α=1

V0[ξα], (22)

after the observations (xα, yα) are plugged into
(x̄α, ȳα).

5. PERTURBATION ANALYSIS

Substituting Eq. (18) into Eq. (14), we have

M =
1
N

N∑
α=1

(ξ̄α+∆1ξα+∆2ξα)(ξ̄α+∆1ξα+∆2ξα)>

= M̄ + ∆1M + ∆2M + · · · , (23)

where · · · denotes noise terms of order three and
higher, and we define M̄ , ∆1M , and ∆2M by

M̄ =
1
N

N∑
α=1

ξ̄αξ̄
>
α , (24)

∆1M =
1
N

N∑
α=1

(
ξ̄α∆1ξ

>
α + ∆1ξαξ̄

>
α

)
, (25)
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∆2M =
1
N

N∑
α=1

(
ξ̄α∆2ξ

>
α +∆1ξα∆1ξ

>
α +∆2ξαξ̄

>
α

)
.

(26)
We expand the solution u and λ of Eq. (16) in the
form

u= ū+∆1u+∆2u+· · · , λ= λ̄+∆1λ+∆2λ+· · · , (27)

where the barred terms are the noise-free values, and
symbols ∆1 and ∆2 indicate the first and the sec-
ond order noise terms, respectively. Substituting
Eqs. (23) and (27) into Eq. (15), we obtain

(M̄ +∆1M +∆2M +· · ·)(ū+∆1u+∆2u+· · ·)
= (λ̄+∆1λ+∆2λ+· · ·)N(ū+∆1u+∆2u+· · ·). (28)

Expanding both sides and equating terms of the same
order, we obtain

M̄ū = λ̄Nū, (29)

M̄∆1u + ∆1Mū = λ̄N∆1u + ∆1λNū, (30)

M̄∆2u + ∆1M∆1u + ∆2Mū

= λ̄N∆2u + ∆1λN∆1u + ∆2λNū. (31)

The noise-free values ξ̄α and ū satisfy (ξ̄α, ū) = 0, so
Eq. (24) implies M̄ū = 0, and Eq. (29) implies λ̄ = 0.
From Eq. (25), we have (ū, ∆1Mū) = 0. Computing
the inner product of ū and Eq. (30), we find that ∆1λ

= 0. Multiplying Eq. (30) by the pseudoinverse M̄
−

from left, we have

∆1u = −M̄
−∆1Mū, (32)

where we have noted that ū is the null vector of M̄
(i.e., M̄ū = 0) and hence M̄

−
M̄ (≡ P ū) represents

orthogonal projection along ū. We have also noted
that equating the first order terms in the expansion
of ‖θ̄ + ∆1θ + ∆2θ + · · · ‖2 = 1 results in (θ̄,∆1θ)
= 0，so P θ̄∆1θ = ∆1θ. Substituting Eq. (32) into
Eq. (31), we can express ∆2λ in the form

∆2λ =
(ū, ∆2Mū) − (ū, ∆1MM̄

−∆1Mū)
(ū, Nū)

=
(ū, T ū)
(ū, Nū)

, (33)

where
T = ∆2M − ∆1MM̄

−∆1M . (34)

Next, we consider the second order error ∆2u.
Since ū is a unit vector and does not change its norm,
we are interested in the error component orthogonal
to ū. We define the orthogonal component of ∆2u by

∆2u
⊥ = P ū∆2u (= M̄

−
M̄∆2u). (35)

Multiplying Eq. (31) by M̄
− from left and substitut-

ing Eq. (32), we obtain

∆2u
⊥ = ∆2λM̄

−
Nū + M̄

−∆1MM̄
−∆1Mū

−M̄
−∆2Mū

=
(ū, T ū)
(ū, Nū)

M̄
−

Nū − M̄
−

T ū. (36)

6. COVARIANCE AND BIAS

6.1 General Algebraic Fitting

From Eq. (32), we see that the leading term of the
covariance matrix of the solution u is given by

V [u] = E[∆1u∆1u
>]

= M̄
−

E[(∆1Mu)(∆1Mu)>]M̄−

=
1

N2
M̄

−
E

[ N∑
α=1

(∆ξα, u)ξ̄α

N∑
β=1

(∆ξβ ,u)ξ̄>
β

]
M̄

−

=
1

N2
M̄

−
N∑

α,β=1

(u, E[∆ξα∆ξ>
β ]u)ξ̄αξ̄

>
β M̄

−

=
σ2

N2
M̄

−
( N∑

α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α

)
M̄

−

=
σ2

N
M̄

−
M̄

′
M̄

−
, (37)

where we define

M̄
′ =

1
N

N∑
α=1

(ū, V0[ξα]u)ξ̄αξ̄
>
α . (38)

In the derivation of Eq. (37), we have noted that ξα is
independent for different α and that E[∆1ξα∆1ξ

>
β ] =

δαβσ2V0[ξα], where δαβ is the Kronecker delta. The
important observation is that the covariance matrix
V [u] of the solution u does not depend on the nor-
malization weight N . This implies that all algebraic
methods have the same the covariance matrix in the
leading order , so we are unable to reduce the covari-
ance of h by adjusting N . Yet, the Taubin method is
known to be far accurate than the least squares. We
will show that this stems from the bias terms and that
a superior method can result by reducing the bias.

Since E[∆1u] = 0, there is no bias in the first
order: the leading bias is in the second order. In
order to evaluate the second order bias E[∆2u

⊥], we
evaluate the expectation of T in Eq. (34). We first
consider the term E[∆2M ]. From Eq. (26), we see
that

E[∆2M ] =
1
N

N∑
α=1

(
ξ̄αE[∆2ξα]> + E[∆1ξα∆1ξ

>
α ]

+E[∆2ξα]ξ̄>
α

)
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=
σ2

N

N∑
α=1

(
ξ̄αe>

13 + V0[ξα] + e13ξ̄
>
α

)
= σ2

(
NT + 2S[ξ̄ce

>
13]

)
, (39)

where we have noted the definition in Eq. (20) and
used Eq. (22). The symbol S[ · ] denotes symmetriza-
tion (S[A] ≡ (A + A>)/2), and the vectors ξ̄c and
e13 are defined by

ξ̄c =
1
N

N∑
α=1

ξ̄α, e13 =
(
1 0 1 0 0 0

)>
. (40)

We next consider the term E[∆1MM̄
−∆1M ]. It has

the form (see Appendix for the derivation)

E[∆1MM̄
−∆1M ] =

σ2

N2

N∑
α=1

(
tr[M̄−

V0[ξα]]ξ̄αξ̄
>
α

+(ξ̄α, M̄
−

ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−
ξ̄αξ̄

>
α ]

)
, (41)

where tr[ · ] denotes the trace. From Eqs. (39) and
(41), the matrix T in Eq. (34) has the following ex-
pectation:

E[T ] = σ2
(
NT + 2S[ξ̄ce

>
13]

− 1
N2

N∑
α=1

(
tr[M̄−

V0[ξα]]ξ̄αξ̄
>
α + (ξ̄α, M̄

−
ξ̄α)V0[ξα]

+2S[V0[ξα]M̄−
ξ̄αξ̄

>
α ]

))
. (42)

Thus, the second order error ∆2u
⊥ in Eq. (36) has

the following bias:

E[∆2u
⊥] = M̄

−
( (ū, E[T ]ū)

(ū, Nū)
Nū − E[T ]ū

)
. (43)

6.2 Least Squares

Eq. (42) implies (ξ̄c, ū) = 0 and (ξ̄α, ū) = 0. Hence,
E[T ]ū can be written as

E[T ]ū = σ2
(
NTū + (A + C)ξ̄c

− 1
N2

N∑
α=1

(
(ξ̄α,M̄

−
ξ̄α)V0[ξα]ū

+(ū, V0[ξα]M̄−
ξ̄α)ξ̄α

))
. (44)

If we let N = I, we obtain the least squares fit. Its
leading bias is

E[∆2u
⊥] = M̄

−
(
(ū,E[T ]ū)ū − E[T ]ū

)
= −M̄

−(I − ūū>)E[T ]ū = −M̄
−

E[T ]ū, (45)

where we have used the following equality:

M̄
−(I−ūū>)=M̄

−
P ū =M̄

−
M̄M̄

−=M̄
−
. (46)

From Eqs. (44), and (45), the leading bias of the least
square has the following form:

E[∆2u
⊥] = −σ2M̄

−
(
NTū + (A + C)ξ̄c

− 1
N2

N∑
α=1

(
(ξ̄α, M̄

−
ξ̄α)V0[ξα]ū

+(ū, V0[ξα]M̄−
ξ̄α)ξ̄α

))
. (47)

6.3 Taubin Method

Eq. (44) implies (ξ̄c, ū) = 0 and (ξ̄α, ū) = 0. Hence,
(ū, E[T ]ū) can be written as

(ū, E[T ]ū)

=σ2
(
(ū,NTū) − 1

N2

N∑
α=1

(ξ̄α,M̄
−

ξ̄α)(ū, V0[ξα]ū)
)

=σ2
(
(ū,NTū)− 1

N2

N∑
α=1

tr[M̄−
ξ̄αξ̄

>
α ](ū, V0[ξα]ū)

)
=σ2

(
(ū,NTū)− 1

N2
tr[M̄−

N∑
α=1

(ū, V0[ξα]ū)ξ̄αξ̄
>
α ]

)
=σ2(ū, NTū) − σ2

N
tr[M̄−

M̄
′], (48)

where we have used Eq. (38). If we let N = NT, we
obtain the Taubin method. Thus, the leading bias of
the Taubin fit has form

E[∆2u
⊥] = −σ2M̄

−
(
qNTū + (A + C)ξ̄c

− 1
N2

N∑
α=1

(
(ξ̄α, M̄

−
ξ̄α)V0[ξα]ū

+(ū, V0[ξα]M̄−
ξ̄α)ξ̄α

))
, (49)

where we put

q =
1
N

tr[M̄−
M̄

′]
(ū, NTū)

. (50)

Comparing Eqs. (49) and (47), we notice that the
only difference is that NTū in Eq. (47) is replaced
by qNTū in Eq. (49). We see from Eq. (50) that q <
1 when N is large. This can be regarded as one of the
reasons of the high accuracy of the Taubin method,
as already pointed out by Kanatani [14].

6.4 Hyperaccurate Algebraic Fit

Now, we present our main contribution of this paper.
Our proposal is to chose the weight N to be

N =NT + 2S[ξ̄ce
>
13]−

1
N2

N∑
α=1

(
tr[M̄−

V0[ξα]]ξ̄αξ̄
>
α

+(ξ̄α, M̄
−

ξ̄α)V0[ξα]+2S[V0[ξα]M̄−
ξ̄αξ̄

>
α ]

)
. (51)
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(a) (b)

Figure 2: (a) 31 points on an ellipse. (b) Instances of
fitted ellipses for σ = 0.5. 1. Least squares. 2. Taubin
method. 3. Proposed method. 4. Maximum likelihood.
The true shape is indicated in dashed lines.

u

∆ u

u

O

Figure 3: The true value ū, the computed value u, and
its orthogonal component ∆u to ū.

Then, we have E[T ] = σ2N from Eq. (42), and
Eq. (43) becomes

E[∆2u
⊥] = σ2M̄

−
( (ū, Nū)

(ū, Nū)
N − N

)
ū = 0. (52)

Since Eq. (51) contains the true values ξ̄α and M̄ ,
we evaluate them by replacing the true values (x̄α, ȳα)
in their definitions by the observations (xα, yα). This
does not affect our result, because expectations of
odd-order error terms vanish and hence the error in
Eq. (52) is at most O(σ4). Thus, the second or-
der bias is exactly 0. After the terminology used by
Al-Sharadqah and Chernov [2] for their circle fitting
method, we call our method using Eq. (51) “hyper-
accurate algebraic fitting”.

7. NUMERICAL EXPERIMENTS

We placed 31 equidistant points in the first quad-
rant of the ellipse shown in Fig. 2(a). The major and
the minor axis are 100 and 50 pixel long, respectively.
We added to the x- and y-coordinates of each point
independent Gaussian noise of mean 0 and standard
deviation σ and fitted an ellipse by least squares, the
Taubin method, our proposed method, and maximum
likelihood4. Figure 2(b) shows fitted ellipses for some
noise instance of σ = 0.5.

Since the computed and the true values u and ū

are both unit vectors, we define their discrepancy ∆u

by the orthogonal component

∆u = P ūu, (53)
4We used the FNS of Chojnacki et al. [5]. See [16] for the

details.

(a) (b)

Figure 4: The bias (a) and the RMS error (b) of the fit-
ting to the data in Fig. 2(a). The horizontal axis is for the
standard deviation σ of the added noise. 1. Least squares.
2. Taubin method. 3. Proposed method. 4. Maximum
likelihood (interrupted due to nonconvergence). The dot-
ted line in (b) shows the KCR lower bound.

where P ū (≡ I − ūū>) is the orthogonal projection
matrix along ū. (Fig. 3). Figures 4(a) and (b) plot
for various σ the bias B and the RMS (root-mean-
square) error D defined by

B =
∥∥∥ 1

10000

10000∑
a=1

∆u(a)
∥∥∥,

D =

√√√√ 1
10000

10000∑
a=1

‖∆u(a)‖2, (54)

where u(a) is the solution in the ath trial. The dotted
line in Fig. 4(b) shows the KCR lower bound [12, 14]
given by

DKCR = σ

√√√√tr[
( N∑

α=1

ξ̄αξ̄
>
α

(ū, V0[ξα]ū)

)−
]. (55)

Standard linear algebra routines for solving the
generalized eigenvalue problem in the form of Eq. (15)
assumes that the matrix N is positive definite. As
can be seen from Eq. (17), however, the matrix NT

for the Taubin method is positive semidefinite hav-
ing a row and a column of zeros. The matrix N in
Eq. (51) is not positive definite, either. This causes
no problem, because Eq. (15) can be written as

Nu =
1
λ

Mu. (56)

Since the matrix M in Eq. (14) is positive definite for
noisy data, we can solve Eq. (56) instead of Eq. (15),
using a standard routine. If the smallest eigenvalue
of M happens to be 0, it indicates that the data
are all exact; any method, e.g., LS, gives an exact
solution. For noisy data, the solution u is given by the
generalized eigenvector of Eq. (56) for the generalized
eigenvalue 1/λ with the largest absolute value.

As we can see from Fig. 4(a), the least square solu-
tion has a large bias, as compared to which the Taubin
solution has a smaller bias, and our solution has even
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Figure 5: Left: Edge image containing a small elliptic
edge segment (red). Right: Ellipses fitted to 155 edge
points overlaid on the original image. From inner to outer
are the ellipses computed by least squares (pink), Taubin
method (blue), proposed method (red), and maximum
likelihood (green). The proposed and Taubin method
compute almost overlapping ellipses.

smaller bias. Since the least squares, the Taubin, and
our solutions all have the same covariance matrix to
the leading order, the bias is the decisive factor for
their accuracy. This is demonstrated in Fig. 4(b):
The Taubin solution is more accurate than the least
squares, and our solution is even more accurate.

On the other hand, the ML solution, which min-
imizes the Mahalanobis distance rather than the al-
gebraic distance, has a larger bias than our solution,
as shown in Fig. 4(a). Yet, since the covariance ma-
trix of the ML solution is smaller than Eq. (38) [14],
it achieves a higher accuracy than our solution, as
shown in Fig. 4(b). However, the ML computation
may not converge in the presence of large noise. In-
deed, the interrupted plots of ML in Figs. 2(a) and (b)
indicate that the iterations did not converge beyond
that noise level. In contrast, our method, like the
least squares and the Taubin method, is algebraic, so
the computation can continue for however large noise.

The left of Fig. 5 is an edge image where a short
elliptic arc (red) is visible. We fitted an ellipse to the
155 consecutive edge points on it by least squares,
the Taubin method, our method, and ML. The right
of Fig. 5 shows the resulting ellipses overlaid on the
original image. We can see that the least squares
solution is very poor, while the Taubin solution is
close to the true shape. Our method and ML are
slightly more accurate, but generally the difference is
very small when the number of points is large and the
noise is small as in this example.

8. CONCLUSIONS

We have presented a new algebraic method for fit-
ting an ellipse to a point sequence extracted from im-
ages. The method known to be of the highest accu-
racy is maximum likelihood, but it requires iterations,
which may not converge in the presence of large noise.
Also, an appropriate initial must be given. Our pro-
posed method is algebraic and does not require iter-
ations.

The basic principle is minimization of the algebraic
distance. However, the solution depends on what
kind of normalization is imposed. We exploited this

freedom and derived a best normalization in such a
way that the resulting solution has no bias up to the
second order, invoking the high order error analysis
of Kanatani [14]. Numerical experiments show that
our method is superior to the Taubin method, also an
algebraic method and known to be very accurate.
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Appendix

The expectation E[∆1MM̄
−∆1M ] is computed

as follows:

E[∆1MM̄
−∆1M ]

= E[
1
N

N∑
α=1

(
ξ̄α∆1ξ

>
α + ∆1ξαξ̄

>
α

)
M̄

− 1
N

N∑
β=1

(
ξ̄β∆1ξ

>
β

+∆1ξβ ξ̄
>
β

)
]

=
1

N2

N∑
α,β=1

E[(ξ̄α∆1ξ
>
α + ∆1ξαξ̄

>
α )M̄−(ξ̄β∆1ξ

>
β

+∆1ξβ ξ̄
>
β )]

=
1

N2

N∑
α,β=1

E[ξ̄α∆1ξ
>
α M̄

−
ξ̄β∆1ξ

>
β+ξ̄α∆1ξ

>
α M̄

−∆1ξβ ξ̄
>
β

+∆1ξαξ̄
>
α M̄

−
ξ̄β∆1ξ

>
β + ∆1ξαξ̄

>
α M̄

−∆1ξβ ξ̄
>
β ]

=
1

N2

N∑
α,β=1

E[ξ̄α(∆1ξα, M̄
−

ξ̄β)∆1ξ
>
β

+ξ̄α(∆1ξα,M̄
−∆1ξβ)ξ̄>

β + ∆1ξα(ξ̄α, M̄
−

ξ̄β)∆1ξ
>
β

+∆1ξα(ξ̄α,M̄
−∆1ξβ)ξ̄>

β ]

=
1

N2

N∑
α,β=1

E[(∆1ξα, M̄
−

ξ̄β)ξ̄α∆1ξ
>
β

+(∆1ξα, M̄
−∆1ξβ)ξ̄αξ̄

>
β + (ξ̄α, M̄

−
ξ̄β)∆1ξα∆1ξ

>
β

+∆1ξα(M̄−∆1ξβ , ξ̄α)ξ̄>
β ]

=
1

N2

N∑
α,β=1

E[ξ̄α((M̄−
ξ̄β)>∆1ξα)∆1ξ

>
β

+tr[M̄−∆1ξβ∆1ξ
>
α ]ξ̄αξ̄

>
β + (ξ̄α,M̄

−
ξ̄β)∆1ξα∆1ξ

>
β

+∆1ξα(∆1ξ
>
β M̄

−
ξ̄α)ξ̄>

β ]

=
1

N2

N∑
α,β=1

(
ξ̄αξ̄

>
β M̄

−
E[∆1ξα∆1ξ

>
β ]

+tr[M̄−
E[∆1ξβ∆1ξ

>
α ]]ξ̄αξ̄

>
β

+(ξ̄α, M̄
−

ξ̄β)E[∆1ξα∆1ξ
>
β ]

+E[∆1ξα∆1ξ
>
β ]M̄−

ξ̄αξ̄
>
β

)
=

σ2

N2

N∑
α,β=1

(
ξ̄αξ̄

>
β M̄

−
δαβV0[ξα]

+tr[M̄−
δαβV0[ξα]]ξ̄αξ̄

>
β +(ξ̄α, M̄

−
ξ̄β)δαβV0[ξα]

+δαβV0[ξα]M̄−
ξ̄αξ̄

>
β

)
=

σ2

N2

N∑
α=1

(
ξ̄αξ̄

>
α M̄

−
V0[ξα]

+tr[M̄−
V0[ξα]]ξ̄αξ̄

>
α + (ξ̄α, M̄

−
ξ̄α)V0[ξα]

+V0[ξα]M̄−
ξ̄αξ̄

>
α

)
=

σ2

N2

N∑
α=1

(
tr[M̄−

V0[ξα]]ξ̄αξ̄
>
α + (ξ̄α, M̄

−
ξ̄α)V0[ξα]

+2S[V0[ξα]M̄−
ξ̄αξ̄

>
α ]

)
(57)
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