
Memoirs of the Faculty of Engineering, Okayama University, Vol. 38, Nos. 1 & 2, pp. 61–72, March 2004

Factorization without Factorization: Complete Recipe

Kenichi KANATANI∗ and Yasuyuki SUGAYA
Department of Information Technology, Okayama University

Okayama 700-8530 Japan

(Received February 13, 2004)

The Tomasi-Kanade factorization for reconstructing the 3-D shape of the feature points
tracked through a video stream is widely regarded as based on factorization of a matrix
by SVD (singular value decomposition). This paper points out that the core principle
is the affine camera approximation to the imaging geometry and that SVD is merely
one means of numerical computation. We first describe the geometric structure of the
problem and then give a complete programming scheme for 3-D reconstruction.

1. Introduction

The factorization method of Tomasi and Kanade
[12] is one of the best known techniques for 3-D recon-
struction from feature points tracked through a video
stream. This method computes the camera motion
and the 3-D shape of the scene by approximating the
camera imaging geometry by an affine transforma-
tion. Its execution is very easy, requiring only linear
analysis of the trajectories of the feature points. The
reconstructed shape has sufficient accuracy for many
practical applications for which very high-precision is
not required. Also, the solution can be used as an
initial value for more sophisticated iterative methods
based on rigorous perspective projection [1].

After more than ten years since its birth, however,
there is still a wide-spread misunderstanding that it
is a method for reconstructing 3-D by matrix factor-
ization using SVD (singular value decomposition). In
reality, however, the underlying principle is only the
affine approximation to the camera imaging; factor-
ization by SVD is nothing but an (optional) means
for numerically computing the least-squares solution.

This fact should be so obvious to those using this
method that this need not particularly be mentioned.
For those who did not use this method, however, ex-
plaining this may help them really understand what
the Tomasi-Kanade factorization is.

One cause of the misunderstanding may be that
the actual procedure for the factorization method is
not given in most literature except for characterizing
it as “factorization by SVD”. In truth, the core of
this method lies in what is known as the metric con-
dition and least-squares optimization of the motion
and shape.

The purpose of this paper is two-fold:

1. We explain the geometric structure of the fac-
∗E-mail kanatani@suri.it.okayama-u.ac.jp

torization method, thereby showing that matrix
factorization by SVD does not play any essential
role.

2. From this viewpoint, we describe a complete
computational procedure for this method, de-
tailing specific optimization steps for individual
camera models.

In the following, we first describe the underlying
geometric structure and the general framework of the
computation. Then, we describe the actual algorithm
in detail. The derivation is summarized in the ap-
pendix.

2. Affine Camera Model

Suppose we track N feature points over M frames.
Let (xκα, yκα) be the coordinates of the αth point in
the κth frame1. Stacking all the coordinates verti-
cally, we represent the entire trajectory by the fol-
lowing 2M -D trajectory vector :

pα =
(
x1α y1α x2α y2α · · · xMα yMα

)>
. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We regard the XY Z camera coordinate system as
the world frame2, relative to which the scene is mov-
ing. Consider a 3-D coordinate system fixed to the

1The coordinate origin is arbitrary, e.g., at the upper-left
corner of the image, as long as orthographic projection is as-
sumed. If weak perspective or paraperspective projection is as-
sumed, however, we must specify the principal point (the point
that corresponds to the camera optical axis), typically at the
center of the image frame, and take it as the coordinate origin,
because we are approximating the perspective projection.

2The mathematical structure is the same if we regard the
camera as moving relative to a stationary scene. However, if we
consider multiple motions [4, 5, 6, 7, 9, 10], we need to take the
camera as a reference. So, using the camera-based world frame
is more consistent than using the object-based world frame.

62 Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

scene, and let tκ and {iκ, jκ, kκ} be, respectively, its
origin and basis vectors at time κ. If the αth point
has coordinates (aα, bα, cα) with respect to this coor-
dinate system, its position with respect to the world
frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

We assume an affine camera, which generalizes
orthographic, weak perspective, and paraperspective
projections [8]: the 3-D point rκα is projected onto
the image position

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2×3 matrix and
a 2-D vector determined by the position and orienta-
tion of the camera and its internal parameters at time
κ. Substituting Eq. (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors de-
termined by the position and orientation of the cam-
era and its internal parameters at time κ. From
Eq. (4), the trajectory vector pα in Eq. (1) can be
written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -D vectors
obtained by stacking m̃0κ, m̃1κ, m̃2κ, and m̃3κ ver-
tically over the M frames, respectively.

Eq. (5) implies that the trajectory vectors {pα}
are constrained to be in the 4-D subspace spanned
by {m0, m1, m2, m3} in R2M . This fact is called
the subspace constraint [4]. Moreover, the coefficient
of m0 in eq. (5) is identically 1, meaning that {pα}
are constrained to be in the 3-D affine space passing
through m0 and spanned by {m1, m2, m3}. This
fact is called the affine space constraint [5]. These
geometric interpretations play a central role in re-
covering missing data [11] and segmenting indepen-
dently moving multiple objects into individual mo-
tions [4, 5, 6, 7, 9, 10].

3. Flow of Computation

From the above observation, the procedure for re-
constructing 3-D from the data {pα} consists of the
following four stages:

1. Fit a 3-D affine space to {pα} by least squares.
2. From the fitted space, compute the vectors m0,

m1, m2, and m3.

3. From the resulting vectors m0, m1, m2, and
m3, compute the position tκ and the orientation
{iκ, jκ, kκ} of the scene coordinate system.

4. Compute the scene coordinates (aα, bα, cα) of in-
dividual feature points.

What is known as “factorization by SVD” is a typ-
ical numerical scheme for the first stage. The core
of the procedure is the second stage and is known as
the metric condition, which depends on what camera
model is assumed. The third stage is non-linear op-
timization, because we need to incorporate the con-
straint that {iκ, jκ, kκ} be an orthonormal system.
The solution is given by SVD [2]. The fourth stage is
the simplest: we only need to minimize

J =
N∑

α=1

‖pα −m0 − aαm1 − bαm2 − cαm3‖2. (6)

This is a quadratic minimization in (aα, bα, cα), so
the solution is obtained by solving a linear equation
(the normal equation).

4. Affine Space Fitting

Since the absolute position of the scene coordinate
system is arbitrary, we take its origin at the centroid
of the N feature points. Then,

∑N
α=1 aα =

∑N
α=1 bα

=
∑N

α=1 cα = 0, so eq. (5) implies that m0 coincides
with the centroid of {pκα}

pC =
1
N

N∑
α=1

pα. (7)

Let
p′α = pα − pC , (8)

and define the (second-order) moment matrix

C =
N∑

α=1

p′αp′α
>. (9)

As is well known, the affine space that fits {pα} op-
timally (in the sense of least squares) passes through
the centroid pC and is spanned by the unit eigenvec-
tors {u1, u2, u3} of C for the largest three eigenval-
ues λ1 ≥ λ2 ≥ λ3. It follows that the vectors m1, m2,
and m3 can be expressed as a linear combination of
the basis {u1, u2, u3} in the form

mj =
3∑

i=1

Aijui. (10)

It can be shown, however, that what we need for 3-D
reconstruction is not the matrix A = (Aij) itself but
the metric matrix

T = AA>. (11)

The constraint on the matrix T depends on the as-
sumed camera model and is called the metric condi-
tion.

March 2004 Factorization without Factorization 63

5. Why “Factorization”?

As we have seen, matrix factorization by SVD is
not necessary for 3-D reconstruction. However, we
can use it as a numerical means. In fact, we may
define the 2M ×N observation matrix

W =
(

p′1 p′2 · · · p′N
)

(12)

that has p′1, p′2, ..., p′N as its column. Let

W = UNdiag(σ1, σ2, ..., σN)V >
N (13)

be its SVD, where UN and VN are, respectively, 2M×
N and N ×N matrices consisting of an orthonormal
system of columns, and σ1, σ2, ..., σN (≥ 0) are the
singular values (diag(· · ·) denotes the diagonal matrix
having · · · as its diagonal elements). It is easily seen
that the ith column of UN is the unit eigenvalue of
the moment matrix C in eq. (9) for the eigenvalue
λi = σ2

i [2, 3]. Thus, the eigendecomposition of the
moment matrix C is mathematically equivalent to the
SVD of the observation matrix W .

The computational complexity of SVD of the 2M×
N matrix W usually depends on min(2M, N). So,
SVD will be computationally more efficient when the
number 2M of frames is much larger than the number
N of feature points.

From eq. (5), we have p′α = aαm1+bαm2 +cαm3.
Substituting this into eq. (12), we have

W =
(

m1 m2 m3

)

a1 a2 · · · aN

b1 b2 · · · bN

c1 c2 · · · cN

= MS, (14)

where M is the 2M × 3 motion matrix having mi as
its ith column, and S is the 3×N shape matrix hav-
ing (aα, bα, cα)> as its αth column. In this notation,
eq. (10) can be rewritten as

M = UA, (15)

where U is a 2M × 3 matrix consisting of the first
three column of the matrix UN .

Tomasi and Kanade [12] expressed the affine space
constraint (5) as eq. (14) and called it the rank 3 con-
straint3. Then, they applied SVD to the observation
matrix W in the form of eq. (13), determining the
motion matrix M in the form of eq. (15) using the
metric condition.

From this originates the interpretation that their
method is to do matrix factorization by SVD. How-
ever, we should not mix up the mathematical struc-
ture of the problem with numerical means for solving
it. As we noted earlier, SVD is simply an (optional)
numerical means for affine space fitting.

3If we do not center the coordinate system at the cen-
troid, we can obtain what is known as the rank 4 constraint :

(
p1 · · · pN

)
=

(
m0 m1 m2 m3

)

1 · · · 1
a1 · · · aN

b1 · · · bN

c1 · · · cN

, or W̃ =

M̃S̃. This is a more faithful expression of our affine space con-
straint (5).

6. Main Procedure

We first describe the main procedure for 3-D re-
construction independent of individual camera mod-
els. Then, we detail the subprocedures that depend
on the assumed camera models. The derivation is
summarized in the appendix.

The important thing to note is that two solu-
tions are obtained and that the corresponding 3-D
shapes are mirror images of each other. The two solu-
tions cannot be distinguished under the affine camera
model: both result in identical images when projected .

Input:
• 2M -D trajectory vectors {pα}, α = 1, ..., N (M

is the number of frames, N is the number of fea-
ture points).

• the average scene depth Zc and the focal lengths
{fκ} for all the frames (arbitrarily assigned if
unknown).

Output:
• the translation vectors {tκ} (the positions of the

centroid of the feature points).

• the 3-D positions {r̂α} and {r̂′α} (mirror images
of each other) of the individual feature points
with respect to the first frame.

• the 3-D rotations {Rκ} and {R′
κ} (the orienta-

tions of the scene coordinate system).

Main procedure4:
— Fitting an affine space —

1. Compute the centroid pC of the trajectory vec-
tors {pα} by eq. (7).

2. Let t̃xκ and t̃yκ be the (2(κ−1)+1)th and (2(κ−
1) + 2)th components of pC , respectively.

3. Fit a 3-D affine space to the trajectory vectors
{pα}, and let {u1, u2, u3} be its basis.

4. Let U be the 2M × 3 matrix having u1, u2, and
u3 as its columns, and let u†κ(a) be the (2(κ −
1) + a)th column of U>, κ = 1, ..., M , a = 1, 2.

— Computing the metric matrix —

5.∗ Compute the 3× 3 metric matrix T .

6. Compute the eigenvalues {λ1, λ2, λ3} of T and
the corresponding orthonormal system {v1, v2,
v3} of unit eigenvectors.

T is a positive definite symmetric matrix; its
eigenvalues {λ1, λ2, λ3} are all positive.

— Computing translation —

7.∗ Compute the translation vectors tκ =
(txκ, tyκ, tzκ)>.

— Computing rotation —
4The mark ∗ indicates that the computation depends the

assumed camera model.

64 Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

8. Compute the following 2M -D vectors:

mi =
√

λi

(u†1(1), vi)
(u†1(2), vi)
(u†2(1), vi)

...
(u†M(2), vi)

, i = 1, 2, 3.

(16)
9. Let M be the 2M×3 motion matrix having m1,

m2, and m3 as its columns, and let m†
κ(a) be the

the (2(κ − 1) + a)th column of M>, κ = 1, ...,
M , a = 1, 2.

10.∗ Compute the rotations {Rκ}.
— Optimizing the shape —

11.∗ Recompute the motion matrix M as follows:

M =
M∑

κ=1

Π>κ Rκ. (17)

Πκ = (Πκ(ij)) is a 3×2M matrix that depends
on the assumed camera model.

12. Compute the 3-D shape vectors {sα} as follows:

sα = (M>M)−1M>(pα − pC). (18)

— Computing the mirror image —
13.∗ Compute {s′α} and {R′

κ} as follows:

s′α = −sα, R′
κ = ΩκRκ. (19)

Ωκ is a rotation matrix that depends on the
assumed camera model.

— Computing the 3-D positions —
14. Compute the two sets of solutions {r̂α}, {r̂′α} as

follows:

r̂α =
Zc

tz1
(R1sα + t1), r̂′α =

Zc

tz1
(R′

1s
′
α + t1).

(20)

7. Subprocedures

The steps with the mark ∗ in the preceding section
depend on the assumed camera model. Here, we con-
sider three projection models and give corresponding
subprocedures.

7.1 Orthographic projection

By orthographic projection (Fig. 1), a point
(X, Y, Z) in the scene is projected onto a point (x, y)
in the image such that

(
x
y

)
=

(
X
Y

)
. (21)

The steps with ∗ are computed as follows (the deriva-
tion is given in the appendix).

οο− Z

(X, Y, Z)
(x, y)

Figure 1: Orthographic projection.

Computing the metric matrix
1. Define the following 3 × 3 × 3 × 3 tensor B =

(Bijkl):

Bijkl =
M∑

κ=1

[
(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

+
1
4

(
(u†κ(1))i(u

†
κ(2))j + (u†κ(2))i(u

†
κ(1))j

)

(
(u†κ(1))k(u†κ(2))l + (u†κ(2))k(u†κ(1))l)

)]
.

(22)

(u†κ(a))i denotes the ith component of the 3-D

vector u†κ(a).

2. Define the following 6× 6 symmetric matrix B:

B =

B1111 B1122 B1133

B2211 B2222 B2233

B3311 B3322 B3333√
2B2311

√
2B2322

√
2B2333√

2B3111

√
2B3122

√
2B3133√

2B1211

√
2B1222

√
2B1233√

2B1123

√
2B1131

√
2B1112√

2B2223

√
2B2231

√
2B2212√

2B3323

√
2B3331

√
2B3312

2B2323 2B2331 2B2312

2B3123 2B3131 2B3112

2B1223 2B1231 2B1212

. (23)

3. Compute the following 6-D vector c:

c =
(

1 1 1 0 0 0
)>

. (24)

4. Compute the 6-D vector τ = (τi) by solving the
following linear equation:

Bτ = c. (25)

5. Compute the metric matrix T as follows:

T =

τ1 τ6/
√

2 τ5/
√

2
τ6/
√

2 τ2 τ4/
√

2
τ5/
√

2 τ4/
√

2 τ3

 . (26)

Computing translation
1. Let tzκ = Zc, κ = 1, ..., 2M .
2. Let txκ = t̃xκ and tyκ = t̃yκ, κ = 1, ..., 2M .

March 2004 Factorization without Factorization 65

Z

(X, Y, Z)

(x, y)

O t zf

Figure 2: Weak perspective projection.

Computing rotation
1. For each κ, compute the following SVD:

(
m†

κ(1) m†
κ(2) 0

)
= V κΛκU>

κ . (27)

2. Compute the rotation matrices {Rκ} as follows:

Rκ = Uκdiag(1, 1, det(V κU>
κ))V >

κ (28)

Matrices Πκ and Ωκ

Πκ =

0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1
0
0

(2κ)

0
1
0

0
0
0

· · ·
· · ·
· · ·

0
0
0

 , (29)

Ωκ = diag(−1,−1, 1). (30)

7.2 Weak perspective projection

By weak perspective projection (Fig. 2) [8], a point
(X, Y, Z) in the scene is projected onto a point (x, y)
in the image such that5

(
x
y

)
=

f

tz

(
X
Y

)
, (31)

where f is the focal length of the camera and tz is
the third component of the origin t of the scene co-
ordinate system.

If weak perspective projection is assumed, the focal
lengths {fκ}, κ = 1, ..., M , for all the frames need
to be specified. If they are unknown, they can be
arbitrarily assigned; the reconstructed shape does not
depend on their values. This is because the depth tz
is indeterminate and is normalized to be the user-
assigned value Zc in the end. The steps with ∗ are
computed as follows (the derivation is given in the
appendix).

Computing the metric matrix
1. Compute the following 3× 3× 3× 3 tensor B =

(Bijkl):

Bijkl =
M∑

κ=1

[
(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(1))l

−(u†κ(1))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(1))l

5We assume that the principal point (the point that cor-
responds to the camera optical axis) is specified, typically at
the center of the image frame, and take it as the coordinate
origin. This is because we are approximating the perspective
projection. See footnote 1.

+(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

+
1
4

(
(u†κ(1))i(u

†
κ(2))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

)]
.

(32)

2. Compute the 6 × 6 symmetric matrix B in
eq. (23).

3. Compute the 6-D unit eigenvector τ = (τi) of B
for the smallest eigenvalue.

4. Compute the metric matrix T in eq. (26).

5. If det T < 0, let T ← −T .

Computing translation
1. Compute tzκ as follows:

tzκ = fκ

√
2

(u†κ(1),Tu†κ(1)) + (u†κ(2), Tu†κ(2))
.

(33)

2. Compute txκ and tyκ as follows:

txκ =
tzκ

fκ
t̃xκ, tyκ =

tzκ

fκ
t̃yκ. (34)

Computing rotation
1. For each κ, compute the following SVD:

tzκ

fκ

(
m†

κ(1) m†
κ(2) 0

)
= V κΛκU>

κ . (35)

2. Compute the rotation matrices {Rκ} by eq. (28).

Matrices Πκ and Ωκ

Πκ =
fκ

tzκ

0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1
0
0

(2κ)

0
1
0

0
0
0

· · ·
· · ·
· · ·

0
0
0

 , (36)

Ωκ = diag(−1,−1, 1). (37)

7.3 Paraperspective projection

By paraperspective projection (Fig. 3) [8], a point
(X,Y, Z) in the scene is projected onto a point (x, y)
in the image such that6

(
x
y

)
=

f

tz

((
X
Y

)
+

(
1− Z

tz

)(
tx
ty

))
, (38)

where tx, ty, and tz are the tree components of the
origin t of the scene coordinate system.

6As in the case of weak perspective projection, we assume
that the principal point is specified, typically at the center of
the image frame, and take it as the coordinate origin.

66 Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

Z

(X, Y, Z)

(x, y)

O

t

f

Figure 3: Paraperspective projection.

If paraperspective projection is assumed, the focal
lengths {fκ}, κ = 1, ..., M , for all the frames need
to be specified, but they can be assigned arbitrarily
if they are unknown. The reconstructed shape does
not depend on their values as in the case of weak per-
spective projection. The steps with ∗ are computed
as follows (the derivation is given in the appendix).

Computing the metric matrix
1. Let

ακ =
1

1 + t̃2xκ/f2
κ

, βκ =
1

1 + t̃2yκ/f2
κ

,

γκ =
t̃xκt̃yκ

f2
κ

, κ = 1, ...,M. (39)

2. Define the following 3 × 3 × 3 × 3 tensor B =
(Bijkl):

Bijkl =
M∑

κ=1

[
(γ2

κ+1)α2
κ(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(1))l

+(γ2
κ+1)β2

κ(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

−ακγκ(u†κ(1))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(2))l

−ακγκ(u†κ(1))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

−ακγκ(u†κ(1))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(1))l

−ακγκ(u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(1))l

−βκγκ(u†κ(2))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(2))l

−βκγκ(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

−βκγκ(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

−βκγκ(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(2))l

+(γ2
κ−1)ακγκ(u†κ(1))i(u

†
κ(1))j(u

†
κ(2))k(u†κ(2))l

+(γ2
κ−1)ακγκ(u†κ(2))i(u

†
κ(2))j(u

†
κ(1))k(u†κ(1))l

]
.

(40)

3. Compute the 6 × 6 symmetric matrix B in
eq. (23).

4. Compute the 6-D unit eigenvector τ = (τi) of B
for the smallest eigenvalue.

5. Compute the metric matrix T in eq. (26).

6. If det T < 0, let T ← −T .

Computing translation
1. Compute tzκ as follows:

tzκ =fκ

√
2

ακ(u†κ(1), Tu†κ(1))+βκ(u†κ(2), Tu†κ(2))
(41)

2. Compute txκ and tyκ by eqs. (34).

Computing rotation
1. For each κ, compute the vectors {r†κ(1), r†κ(2),

r†κ(3)} as follows:

r†κ(3) =
tzκ

fκ

(
1 + (txκ/tzκ)2 + (tyκ/tzκ)2

)

(tzκ

fκ
m†

κ(1)×m†
κ(2)−

txκ

tzκ
m†

κ(1)−
tyκ

tzκ
m†

κ(2)

)
,

r†κ(1) =
tzκ

fκ
m†

κ(1) +
txκ

tzκ
r†κ(3),

r†κ(2) =
tzκ

fκ
m†

κ(2) +
tyκ

tzκ
r†κ(3). (42)

2. For each κ, compute the following SVD:
(

r†κ(1) r†κ(2) r†κ(3)

)
= V κΛκU>

κ . (43)

3. Compute the rotation matrices {Rκ} by eq. (28).

Matrices Πκ and Ωκ

Πκ =
fκ

tzκ

0
0
0

· · ·
· · ·
· · ·

0
0
0

(2κ−1)

1
0

−txκ/tzκ

(2κ)

0
1

−tyκ/tzκ

0
0
0

· · ·
· · ·
· · ·

0
0
0

 ,

(44)

Ωκ =
2tκt>κ
‖tκ‖2 − I. (45)

8. Concluding Remarks

We have pointed out that the principle of the
Tomasi-Kanade factorization is the affine camera ap-
proximation to the imaging geometry and that ma-
trix factorization by SVD is nothing but a numerical
means for computing a least-squares solution. We
have clarified the geometric structure of the prob-
lem and given a complete computational procedure7

for 3-D reconstruction based on orthographic projec-
tion, weak perspective projection, and paraperspec-
tive projection. The derivation of the procedure is
summarized in the appendix.

7The C program source is available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html

March 2004 Factorization without Factorization 67

Acknowledgments. This work was supported in part by
the Ministry of Education, Culture, Sports, Science and
Technology, Japan, under a Grant in Aid for Scientific
Research C(2) (No. 15500113), the Support Center for
Advanced Telecommunications Technology Research, and
Kayamori Foundation of Informational Science Advance-
ment. The authors thank Dr. Jun Fujiki of the National
Institute of Advanced Industrial Science and Technology,
Japan, for helpful comments and our graduate student,
Mr. Takayuki Tsubouchi, for doing experiments for us.

References

[1] R. Hartley and A. Zisserman, Multiple View Ge-
ometry in Computer Vision, Cambridge University
Press, Cambridge, U.K., 2000.

[2] K. Kanatani, Geometric Computation for Machine
Vision, Oxford University Press, Oxford, U.K., 1993.

[3] K. Kanatani, Statistical Optimization for Geometric
Computation: Theory and Practice, Elsevier, Ams-
terdam, The Netherlands, 1996.

[4] K. Kanatani, Motion segmentation by subspace sepa-
ration and model selection, Proc. 8th Int. Conf. Com-
put. Vision, July 2001, Vancouver, Canada, Vol. 2,
pp. 301–306.

[5] K. Kanatani, Evaluation and selection of models for
motion segmentation, Proc. 7th Euro. Conf. Comput.
Vision, Copenhagen, Denmark, June 2002, pp. 335–
349.

[6] K. Kanatani and C. Matsunaga, Estimating the num-
ber of independent motions for multibody segmenta-
tion, Proc. 5th Asian Conf. Comput. Vision , January
2002, Melbourne, Australia, Vol. 1, pp. 7–12.

[7] K. Kanatani, Motion segmentation by subspace sep-
aration: Model selection and reliability evaluation,
Int. J. Image Graphics , 2-2 (2002-4), 179–197.

[8] C. J. Poelman and T. Kanade, A paraperspective
factorization method for shape and motion recovery,
IEEE Trans. Patt. Anal. Mach. Intell., 19-3 (1997-
3), 206–218.

[9] Y. Sugaya and K. Kanatani, Automatic camera
model selection for multibody motion segmentation,
Proc. IAPR Workshop on Machine Vision Applica-
tions, December 2002, Nara, Japan, pp. 412–415.

[10] Y. Sugaya and K. Kanatani, Outlier removal for mo-
tion tracking by subspace separation, IEICE Trans.
Inf. & Syst., E86-D-6 (2003-6), 1095–1102.

[11] Y. Sugaya and K. Kanatani, Extending interrupted
feature point tracking for 3-D affine reconstruction,
IEICE Trans. Inf. & Syst., E87-D (2004), to appear.

[12] C. Tomasi and T. Kanade, Shape and motion from
image streams under orthography—A factorization
method, Int. J. Comput. Vision, 9-2 (1992-10), 137–
154.

Appendix: Derivations

A. Orthographic Projection

The orthographic projection equation (21) can be
rewritten as

(
x
y

)
= Π

X
Y
Z

 , (46)

where Π is the following 2× 3 projection matrix:

Π =
(

1 0 0
0 1 0

)
. (47)

Computing the metric matrix

In terms of the projection matrix (47), vectors
m̃1κ, m̃2κ, and m̃3κ in eq. (4) are written as follows:

m̃1κ = Πiκ, m̃2κ = Πjκ, m̃3κ = Πkκ. (48)

Let
Rκ =

(
iκ jκ kκ

)
(49)

be the matrix having the orthonormal system {iκ, jκ,
kκ} as columns. This is a rotation matrix that de-
scribes the orientation of the scene coordinate system
at time κ. Using this, we can write eq. (48) as follows:

(
m̃1κ m̃2κ m̃3κ

)
= ΠRκ. (50)

Since Rκ is an orthogonal matrix, we have
(

m̃1κ m̃2κ m̃3κ

) (
m̃1κ m̃2κ m̃3κ

)>

= ΠRκR>
κ Π> = ΠΠ> = I. (51)

In terms of the vectors m†
κ(a) defined in Step 9 of the

main procedure, the above equation can be written
as

(
m†

κ(1) m†
κ(2)

)> (
m†

κ(1) m†
κ(2)

)
= I. (52)

Equating individual elements on both sides, we obtain

‖m†
κ(1)‖2 = ‖m†

κ(2)‖2 = 1, (m†
κ(1), m

†
κ(2)) = 0.

(53)
Since M> = A>U> from eq. (15), we obtain

m†
κ(a) = A>u†κ(a), (54)

where u†κ(a) are the vectors defined in Step 4 of the
main procedure. Substituting eq. (54) into eqs. (53),
we obtain

(A>u†κ(1),A
>u†κ(1)) = (A>u†κ(2), A

>u†κ(2)) = 1,

(A>u†κ(1),A
>u†κ(2)) = 0. (55)

In terms of the metric matrix T (eq. (11)), these are
rewritten as

(u†κ(1),Tu†κ(1)) = (u†κ(2),Tu†κ(2)) = 1,

(u†κ(1),Tu†κ(2)) = 0. (56)

So, we compute the matrix T that minimizes

K =
M∑

κ=1

[(
(u†κ(1), Tu†κ(1))− 1

)2

+
(
(u†κ(2), Tu†κ(2))− 1

)2

+ (u†κ(1),Tu†κ(2))
2
]
.

(57)

Differentiating this with respect to Tij and setting the
result 0, we obtain the simultaneous linear equations

3∑

i,j,k,l=1

BijklTkl = δij , (58)

68 Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

where the tensor B = (Bijkl) is defined by eq. (22).
In terms of the 6 × 6 symmetric matrix B given in
eq. (23), the 6-D vector τ defined via eq. (26), and the
6-D vector c defined by eq. (24), the above equation
can be expressed in the form given in eq. (25). Its
solution τ determines the matrix T in the form of
eq. (26).

Computing translation

The depth information is lost through ortho-
graphic projection, so we place the origin tκ =
(txκ, tyκ, tzκ)> of the scene coordinate system in the
distance Zc specified by the user from the XY plane.
We also identify (txκ, tyκ) with the centroid of the
projected feature positions, namely (t̃xκ, t̃yκ).

Computing rotation

The metric matrix T is expressed in terms of its
eigenvalues {λ1, λ2, λ3} and the corresponding or-
thonormal system {v1, v2, v3} of eigenvectors as fol-
lows [2]:

T =
(
v1 v2 v3

)
diag(λ1, λ2, λ3)

(
v1 v2 v3

)>
.

(59)

Since this equals AA>, we have

A = ± (
v1 v2 v3

)
diag(

√
λ1,

√
λ2,

√
λ3)Q

= ± (√
λ1v1

√
λ2v2

√
λ3v3

)
Q, (60)

where Q is an arbitrary rotation matrix, which corre-
sponds to the orientation indeterminacy of the scene
coordinate system. The double-sign ± reflects the
mirror-image indeterminacy of the solution. Here, we
pick out one solution by choosing + and Q = I (the
identity). Then, the ith column of the motion matrix
M is

mi =

u†>1(1)
u†>1(2)
u†>2(1)
u†>2(2)

...
u†>M(2)

√
λivi, (61)

which is rewritten as eq. (16).
If we transpose both sides of eq. (50) and let r†κ(i)

be the ith column of R>
κ , we obtain from the defini-

tion of m†
κ(a) and eq. (17)

(
m†

κ(1) m†
κ(2)

)
= R>

κ Π> =
(

r†κ(1) r†κ(2)

)
.

(62)

Hence, we obtain

r†κ(1) = m†
κ(1), r†κ(2) = m†

κ(2). (63)

Since {r†κ(1), r†κ(2), r†κ(3)} is a right-handed orthonor-

mal system, we should theoretically have r†κ(3) =

r†κ(1) × r†κ(2). In the presence of noise in the data,

however, the computed vectors r†κ(1) and r†κ(2) may
not necessarily be orthogonal or of unit length. So,
we fit an exact orthonormal system to them. If we
compute the SVD in the form of eq. (27), the matrix
V κU>

κ is the best approximation to R>
κ in the sense

of least squares [2]. In order to prevent the deter-
minant from being −1, we modify it in the form of
eq. (28) [2].

Computing the shape

Combining the matrix Πκ in eq. (29) and eqs. (49)
and (50), we can rewrite the motion matrix M de-
fined in Step 9 of the main procedure in the form
of eq. (17). Introducing the 3-D shape vector sα =
(aα, bα, cα)>, we can write eq. (6) as

J =
N∑

α=1

‖pα −m0 −Msα‖2. (64)

Since m0 is the centroid of {pα}, the least-squares
solution is given by eq. (18).

Computing the mirror image solution

We are considering a solution corresponding to the
sign + in eq. (60). If we choose − instead, the vectors
mi in eq. (16) will change their signs, and hence the
motion matrix M and the vectors mi will also change
their signs. If the motion matrix M changes its sign,
the shape vectors sα given by eq. (18) also change
their signs.

If the vectors m̃1κ, m̃2κ, and m̃3κ change their
signs, eq. (50) implies that we obtain a mirror im-
age solution R′

κ for the rotation such that ΠRκ =
−ΠR′

κ. Transposing both sides and letting Ωκ =
R′

κR>
κ , we obtain

Ωκ

1 0
0 1
0 0

 =

−1 0

0 −1
0 0

 . (65)

This means that Ωκ is a rotation matrix that maps
vectors (1, 0, 0)> and (0, 1, 0)> onto (−1, 0, 0)> and
(0,−1, 0)>, respectively. So, Ωκ = diag(−1,−1, 1).

B. Weak Perspective Projection

Weak perspective projection equation (31) can be
written in the form of eq. (46) if we define the pro-
jection matrix Π by

Π =
f

tz

(
1 0 0
0 1 0

)
. (66)

Computing the metric matrix

For weak perspective projection, the vectors m̃0κ,
m̃1κ, m̃2κ, and m̃3κ in eq. (4) can be written as

m̃0κ = Πκtκ, m̃1κ = Πκiκ,

m̃2κ = Πκjκ, m̃3κ = Πκkκ, (67)

March 2004 Factorization without Factorization 69

where Πκ is the matrix obtained by replacing f and
tz, respectively, by the values fκ and tzκ at time κ in
eq. (66). From the definition of the rotation matrix
Rκ in eq. (49), we obtain

(
m̃1κ m̃2κ m̃3κ

)
= ΠκRκ. (68)

Since Rκ is an orthogonal matrix, we have
(

m̃1κ m̃2κ m̃3κ

) (
m̃1κ m̃2κ m̃3κ

)>

= ΠκRκR>
κ Π>

κ = ΠκΠ>
κ =

f2
κ

t2zκ

I. (69)

In terms of the vectors m†
κ(a) defined in Step 9 of the

main procedure, the above equation can be rewritten
as

(
m†

κ(1) m†
κ(2)

)> (
m†

κ(1) m†
κ(2)

)
=

f2
κ

t2zκ

I.

(70)

Equating individual elements on both sides, we obtain

‖m†
κ(1)‖2 = ‖m†

κ(2)‖2 =
f2

κ

t2zκ

, (m†
κ(1), m

†
κ(2)) = 0.

(71)

Recalling that M> = A>U> from eq. (15) and in-
troducing the vectors u†κ(a) defined in Step 4 of the

main procedure, we can express the vector m†
κ(a) in

the form of eq. (54). Substituting it into eqs. (71), we
obtain

(A>u†κ(1),A
>u†κ(1)) = (A>u†κ(2),A

>u†κ(2)) =
f2

κ

t2zκ

,

(A>u†κ(1), A
>u†κ(2)). (72)

In terms of the metric matrix T (eq. (11)), these are
rewritten as

(u†κ(1), Tu†κ(1)) = (u†κ(2), Tu†κ(2)) =
f2

κ

t2zκ

,

(u†κ(1), Tu†κ(2)) = 0. (73)

So, we compute the matrix T that minimizes

K =
M∑

κ=1

[(
(u†κ(1), Tu†κ(1))− (u†κ(2), Tu†κ(2))

)2

+(u†κ(1), Tu†κ(2))
2
]
. (74)

If we define the tensor B = (Bijkl) by eq. (32), we
have

K =
3∑

i,j,k,l=1

BijklTijTkl. (75)

Note that eqs. (73) imply that the matrix T has
scale indeterminacy. In fact, doubling T means di-
viding tzκ by

√
2. Then, the matrix Πκ in eq. (66) is

multiplied by
√

2, so eq. (68) implies that the vectors
m̃1κ, m̃2κ, and m̃3κ are all multiplied by

√
2. We

can see from eq. (5), however, that this magnification
can be compensated for by dividing aα, bα, and cα

by
√

2, resulting in a solution compatible with all the
data. So, we do not lose generality if we normalize T
into ‖T ‖ = 1.

In terms of the 6× 6 symmetric matrix B given in
eq. (23) and the 6-D vector τ defined via eq. (26), we
can write eq. (75) as the following quadratic form:

K = (τ ,Bτ). (76)

Since K is a sum of squares, B is a positive semi-
definite symmetric matrix. From the definition of the
vector τ , the condition ‖T ‖ = 1 is equivalent to the
condition ‖τ‖ = 1. So, we compute the unit vector
τ that minimizes the quadratic form K in τ , and the
solution is the unit eigenvector of B for the smallest
eigenvalue [3]. From it, we obtain the solution T
in the form of eq. (26). However, eigenvectors have
signature indeterminacy, and the matrix T should be
positive semi-definite. So, if det T < 0, we change the
sign of T .

Computing translation

If the metric matrix T is computed, the first of
eqs. (73) gives tzκ in the form of eq. (33), which is ar-
ranged so as to preserve the symmetry between u†κ(1)

and u†κ(2). The remaining components txκ and tyκ

are determined from the first of eqs. (67) in the form
of eqs. (34).

Computing rotation

As in the case of orthographic projection, the ith
column of the motion matrix M is given in the form
of eq. (16), and the vectors m†

κ(a) are determined
accordingly.

If we transpose both sides of eq. (68) and let r†κ(i)

be the ith column of R>
κ , we obtain from the defini-

tion of m†
κ(a)

(
m†

κ(1) m†
κ(2)

)
=R>

κ Π>
κ =

fκ

tzκ

(
r†κ(1) r†κ(2)

)
.

(77)

Hence, we obtain

r†κ(1) =
tzκ

fκ
m†

κ(1), r†κ(2) =
tzκ

fκ
m†

κ(2). (78)

Since {r†κ(1), r†κ(2), r†κ(3)} is a right-handed orthonor-

mal system, we should theoretically have r†κ(3) =

r†κ(1) × r†κ(2). In the presence of noise in the data,

however, the computed vectors r†κ(1) and r†κ(2) may
not necessarily be orthogonal or of unit length. So,
we fit an exact orthonormal system to them. As in
the case of orthographic projection, if we compute the
SVD in the form of eq. (27), the best approximation
to Rκ is given by eq. (28) [2]．

70 Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

Computing the shape

Combining the matrix Πκ in eq. (36) and eqs. (49)
and (68), we can rewrite the motion matrix M de-
fined in Step 9 of the main procedure in the form
of eq. (17). Introducing the 3-D shape vector を sα

= (aα, bα, cα)>, we can write eq. (6) in the form of
eq. (64), from which the least-squares solution is given
in the form of eq. (18).

Computing the mirror image solution

As in the case of orthographic projection, the so-
lution sα for the shape vector gives rise to its mir-
ror image solution −sα, for which the vectors m†

κ(a)

change their signs. Then, eq. (68) implies that we ob-
tain a mirror image solution R′

κ for the rotation such
that ΠκRκ = −ΠκR′

κ. Transposing both sides and
letting Ωκ = R′

κR>
κ , we obtain

Ωκ

1 0
0 1
0 0

 =

−1 0

0 −1
0 0

 . (79)

This means that Ωκ is a rotation matrix that maps
vectors (1, 0, 0)> and (0, 1, 0)> onto (−1, 0, 0)> and
(0,−1, 0)>, respectively. So, Ωκ = diag(−1,−1, 1).

C. Paraperspective Projection

If we define the projection matrix Π by

Π =
f

tz

(
1 0 −tx/tz tx/f
0 1 −ty/tz ty/f

)
, (80)

paraperspective projection equation (38) can be
rewritten as

(
x
y

)
= Π

X
Y
Z
f

 . (81)

Computing the metric matrix

Eq. (2) can be rewritten as
(

rκα

fκ

)
=

(
tκ

fκ

)
+

(
iκ

0

)
+

(
jκ

0

)
+

(
kκ

0

)
.

(82)

Hence, the vectors m̃0κ, m̃1κ, m̃2κ, and m̃3κ in
eq. (4) can be written as

m̃0κ = Πκ

(
tκ

fκ

)
, m̃1κ = Πκ

(
iκ

0

)
,

m̃2κ = Πκ

(
jκ

0

)
, m̃3κ = Πκ

(
kκ

0

)
, (83)

where Πκ is the matrix obtained by replacing f and
tz, respectively, by the values fκ and tzκ at time κ in
eq. (80). From the definition of the rotation matrix
Rκ in eq. (49), we obtain

(
m̃1κ m̃2κ m̃3κ

)
= Πκ

(
Rκ

0>

)
. (84)

Since Rκ is an orthogonal matrix, we have
(

m̃1κ m̃2κ m̃3κ

) (
m̃1κ m̃2κ m̃3κ

)>

= Πκ

(
Rκ

0>

) (
R>

κ 0>
)
Π>

κ

= Πκ

(
I

0

)
Π>

κ

=
f2

κ

t2zκ

(
1 + t2xκ/t2zκ txκtyκ/t2zκ

txκtyκ/t2zκ 1 + t2yκ/t2zκ

)
. (85)

In terms of the vectors m†
κ(a) defined in Step 9 of the

main procedure, the above equation can be rewritten
as

(
m†

κ(1) m†
κ(2)

)> (
m†

κ(1) m†
κ(2)

)

=
f2

κ

t2zκ

(
1 + t2xκ/t2zκ txκtyκ/t2zκ

txκtyκ/t2zκ 1 + t2yκ/t2zκ

)
. (86)

Equating individual elements on both sides, we obtain

‖m†
κ(1)‖2 =

f2
κ

t2zκ

(
1 +

t̃2xκ

f2
κ

)
,

‖m†
κ(2)‖2 =

f2
κ

t2zκ

(
1 +

t̃2yκ

f2
κ

)
,

(m†
κ(1), m

†
κ(2)) =

t̃xκt̃yκ

t2zκ

, (87)

where we use the following identities resulting from
the first of eqs. (83):

(
t̃xκ

t̃yκ

)
=

fκ

tzκ

(
txκ

tyκ

)
. (88)

Recalling that M> = A>U> from eq. (15) and in-
troducing the vectors u†κ(a) defined in Step 4 of the

main procedure, we can express the vector m†
κ(a) in

the form of eq. (54). Substituting it into eqs. (87) and
defining ακ, βκ, and γκ by eqs. (39), we obtain

(A>u†κ(1), A
>u†κ(1)) =

f2
κ

ακt2zκ

,

(A>u†κ(2), A
>u†κ(2)) =

f2
κ

βκt2zκ

,

(A>u†κ(1), A
>u†κ(2)) =

γκf2
κ

t2zκ

. (89)

In terms of the metric matrix T (eq. (11)), these are
rewritten as

ακ(u†κ(1),Tu†κ(1)) = βκ(u†κ(2), Tu†κ(2))

=
(u†κ(1),Tu†κ(2))

γκ
=

f2
κ

t2zκ

, (90)

from which we obtain the following two conditions:

ακ(u†κ(1), Tu†κ(1)) = βκ(u†κ(2),Tu†κ(2))

γκ

(
ακ(u†κ(1),Tu†κ(1)) + βκ(u†κ(2),Tu†κ(2))

)

= 2(u†κ(1), Tu†κ(2)). (91)

March 2004 Factorization without Factorization 71

These conditions are arranged so as to preserve the
symmetry between ακ and αβ . We also multiply the
second equation by γκ in order to prevent γκ from
appearing in the denominator, since if t̃xκ or t̃yκ hap-
pens to be 0, we will have γκ = 0.

We now compute the matrix T that minimizes

K =
M∑

κ=1

[(
ακ(u†κ(1), Tu†κ(1))− βκ(u†κ(2), Tu†κ(2))

)2

+
(
γκ

(
ακ(u†κ(1), Tu†κ(1)) + βκ(u†κ(2), Tu†κ(2))

)

−2(u†κ(1),Tu†κ(2))
)2]

. (92)

If we define the tensor B = (Bijkl) by eq. (40), the
above equation has the form of eq. (75). Since the
matrix T = (Tij) has scale indeterminacy as in the
case of weak perspective projection, we do not lose
generality if we normalize it into ‖T ‖ = 1.

In terms of the 6 × 6 symmetric matrix B given
in eq. (23) and the 6-D vector τ defined via eq. (26),
we can write eq. (92) in the form of eq. (76). Since
the condition ‖T ‖ = 1 is equivalent to the condition
‖τ‖ = 1, we compute the unit vector τ that mini-
mizes the quadratic form K in τ , and the solution
is given by the unit eigenvector of B for the small-
est eigenvalue. From it, we obtain the solution T in
the form of eq. (26). However, eigenvectors have sig-
nature indeterminacy, and the matrix T should be
positive semi-definite. So, if det T < 0, we change
the sign of T .

Computing translation

If the metric matrix T is computed, tzκ is given
from eq. (90). However, γκ in the denominator of
the last term may happen to be 0. We also want to
preserve the symmetry between ακ and βκ. So, we
compute tzκ in the form of eq. (33). The remaining
components txκ and tyκ are determined from (88) in
the form of eq. (34).

Computing rotation

As in the case of orthographic and weak perspec-
tive projections, the ith column of the motion matrix
M is given in the form of eq. (16), and the vectors
m†

κ(a) are determined accordingly.

If we transpose both sides of eq. (84) and let r†κ(i)

be the ith column of R>
κ , we obtain from the defini-

tion of m†
κ(a)

(
m†

κ(1) m†
κ(2)

)
=

(
R>

κ 0
)
Π>

κ

=
fκ

tzκ

(
r†κ(1)−

txκ

tzκ
r†κ(3) r†κ(2)−

tyκ

tzκ
r†κ(3)

)
. (93)

Hence, we obtain

tzκ

fκ
m†

κ(1) = r†κ(1) −
txκ

tzκ
r†κ(3),

tzκ

fκ
m†

κ(2) = r†κ(2) −
tyκ

tzκ
r†κ(3). (94)

Since {r†κ(1), r†κ(2), r†κ(3)} is a right-handed orthonor-
mal system, we obtain

t2zκ

f2
κ

m†
κ(1)×m†

κ(2) = r†κ(3)+
txκ

tzκ
r†κ(1)+

tyκ

tzκ
r†κ(2). (95)

Hence, the vectors {r†κ(1), r†κ(2), r†κ(3)} are obtained
by solving the following linear equations:

r†κ(1) − txκ

tzκ
r†κ(3) =

tzκ

fκ
m†

κ(1),

r†κ(2) −
tyκ

tzκ
r†κ(3) =

tzκ

fκ
m†

κ(2),

txκ

tzκ
r†κ(1) +

tyκ

tzκ
r†κ(2) + r†κ(3) =

t2zκ

f2
κ

m†
κ(1) ×m†

κ(2).

(96)

The solution is given by eqs. (42). In the presence
of noise in the data, however, the computed {r†κ(1),

r†κ(2), r†κ(3)} may not necessarily be an exact or-
thonormal system. So, we fit an exact orthonormal
system to them as in the case of orthographic and
weak perspective projections. The SVD in the form
of eq. (43) yields the best approximation to Rκ in the
form of eq. (28).

Computing the shape

Combining the matrix Πκ in eq. (44) and eqs. (49)
and (84), we can rewrite the motion matrix M de-
fined in Step 9 of the main procedure in the form of
eq. (17) and obtain the least-squares solution eq. (18)
as in the case of orthographic and weak perspective
projections.

Computing the mirror image solution

As in the case of orthographic and weak perspec-
tive projections, the solution sα for the shape vector
gives rise to its mirror image solution −sα, for which
the vectors m†

κ(a) change their signs. Then, eq. (84)
implies that we obtain a mirror image solution R′

κ

for the rotation such that Πκ

(
Rκ

0>

)
= −Πκ

(
R′κ
0>

)
.

Transposing both sides and letting Ωκ = R′
κR>

κ , we
obtain

Ωκ

1 0
0 1

−txκ/tzκ −tyκ/tzκ

=

−1 0
0 −1

txκ/tzκ tyκ/tzκ

 . (97)

This means that Ωκ is a rotation matrix that maps
vectors (1, 0,−txκ/tzκ)> and (1, 0,−tyκ/tzκ)> onto
(−1, 0, txκ/tzκ)> and (−1, 0, tyκ/tzκ)>, respectively.
Noting that the vector tκ = (txκ, tyκ, tzκ)> is orthog-
onal to both (1, 0,−txκ/tzκ)> and (1, 0,−tyκ/tzκ)>,
we conclude that Ωκ represents the rotation around
axis tκ by angle 180◦. Hence, we obtain eq. (45).

72 Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

