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We present a new technique for calibrating ultra-wide fisheye lens cameras by imposing the con-
straint that collinear points be rectified to be collinear, parallel lines to be parallel, and orthogonal
lines to be orthogonal. Exploiting the fact that line fitting reduces to an eigenvalue problem, we do
a rigorous perturbation analysis to obtain a Levenberg-Marquardt procedure for the optimization.
Doing experiments, we point out that spurious solutions exist if collinearity and parallelism alone
are imposed. Our technique has many desirable properties. For example, no metric information
is required about the reference pattern or the camera position, and separate stripe patterns can
be displayed on a video screen to generate a virtual grid, eliminating the grid point extraction
processing.

1. Introduction

Fisheye lens cameras are widely used for surveil-
lance purposes because of their wide angles of view.
They are also mounted on vehicles for various pur-
poses including obstacle detection, self-localization,
and bird’s eye view generation [10, 13]. However,
fisheye lens images have a large distortion, so that
in order to apply the computer vision techniques ac-
cumulated for the past decades, one first needs to
rectify the image into a perspective view. Already,
there is a lot of literature for this [2, 5, 7, 8, 11, 12,
13, 14, 17, 18].
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The standard approach is to place a reference
grid plane and match the image with the reference,
whose precise geometry is assumed to be known
[2, 4, 5, 7, 18]. However, this approach is not very
practical for recently popularized ultra-wide fisheye
lenses, because they cover more than 180◦ angles of
view and hence any (even infinite) reference plane
cannot cover the entire field of view. This difficulty
can be circumvented by using the collinearity con-
straint pointed out repeatedly, first by Onodera and
Kanatani [15] in 1992, later by Swaminathan and Na-
yar [17] in 2000, and by Devernay and Faugeras [1] in
2001. They pointed out that camera calibration can
be done by imposing the constraint that straight lines
should be rectified to be straight. This principle was
applied to fisheye lenses by Nakano, et al. [12], Kase
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et al. [8], and Okutsu et al. [13]. Komagata et al. [9]
further introduced the parallelism constraint and the
orthogonality constraint , requiring that parallel lines
be rectified to be parallel and orthogonal lines to be
orthogonal. However, the cost function has been di-
rectly minimized by brute force means such as the
Brent method and the Powell method [16].

In this paper, we adopt the collinearity-
parallelism-orthogonality constraint of Komagata et
al. [9] and optimize it by eigenvalue minimization.
The fact that imposing collinearity implies eigenvalue
minimization and that the optimization can be done
by invoking the perturbation theorem was pointed
out by Onodera and Kanatani [15]. Using this princi-
ple, they rectified perspective images by gradient de-
cent. Here, we consider ultra-wide fisheye lenses and
do a more detailed perturbation analysis to derive the
Levenberg-Marquardt procedure, currently regarded
as the standard tool for efficient and accurate opti-
mization.

The eigenvalue minimization principle has not
been known in the past collinearity-based work [1,
8, 12, 13, 17]. Demonstrating its usefulness for ultra-
wide fisheye lens calibration is the first contribution
of this paper. We also show by experiments that
the orthogonality constraint plays an essential role,
pointing out that a spurious solution exists if only
collinearity and parallelism are imposed. This fact
has not been known in the past collinearity-based
work [1, 8, 12, 13, 15, 17]. Pointing this out is the
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second contribution of this paper.
For data acquisition, we take images of stripes

of different orientations on a large-screen display by
placing the camera in various positions. Like the past
collinearity-based methods [1, 8, 12, 13, 15, 17], our
method is non-metric in the sense that no metric in-
formation is required about the camera position or
the reference pattern. Yet, many researchers pointed
out the necessity of some auxiliary information. For
example, Nakano et al. [11, 12] proposed vanishing
point estimation using conic fitting to straight line
images (recently, Hughes et al. [5] proposed this same
technique again). Okutsu et al. [14] picked out the
images of antipodal points by hand. Such auxiliary
information may be useful to suppress spurious so-
lutions. However, we show that accurate calibra-
tion is possible without any auxiliary information
by our eigenvalue minimization for the collinearity-
parallelism-orthogonality constraint.

This paper is organized as follows. In Sec. 2, we
describe our imaging geometry model. Section 3 gives
derivative expressions of the fundamental quantities,
followed by a detailed perturbation analysis of the
collinearity constraint in Sec. 4, of the parallelism
constraint in Sec. 5, and of the orthogonality con-
straint in Sec. 6. Section 7 describes our Levenberg-
Marquardt procedure for eigenvalue minimization. In
Sec. 8, we experiment our non-metric technique, using
stripe images on a video display. We point out that
a spurious solution arises if only collinearity and par-
allelism are imposed and that it can be eliminated
without using any auxiliary information if orthogo-
nality is introduced. We also show some examples of
real scene applications. In Sec. 9, we conclude.

2. Geometry of Fisheye Lens Imaging

We consider recently popularized ultra-wide fish-
eye lenses with the imaging geometry modeled by the
stereographic projection

r = 2f tan
θ

2
, (1)

where θ is the incidence angle (the angle of the inci-
dent ray of light from the optical axis) and r (in pix-
els) is the distance of the corresponding image point
from the principal point (Fig. 1). The constant f
is called the focal length. We consider (1) merely be-
cause our camera is as such, but the following calibra-
tion procedure is identical whatever model is used.

For a manufactured lens, the value of f is unknown
or may not be exact if provided by the manufacturer.
Also, the principal point may not be at the center
of the image frame. Moreover, (1) is an idealization,
and a real lens may not exactly satisfy it. So, we
generalize (1) into the form

r

f0
+ a1

( r

f0

)3

+ a2

( r

f0

)5

+ · · · =
2f

f0
tan

θ

2
, (2)

f

r

θ m

Figure 1: The imaging geometry of a fisheye lens and the
incident ray vector m.

and determine the values of f , a1, a2, ... along with
the principal point position. Here, f0 is a scale con-
stant to keep the powers rk within a reasonable nu-
merical range (in our experiment, we used the value
f0 = 150 pixels). The linear term r/f0 has no coeffi-
cient because f on the right-hand side is an unknown
parameter; a1 = a2 = · · · = 0 corresponds to the
stereographic projection. Since a sufficient number of
correction terms could approximate any function, the
right-hand side of (2) could be any function of θ, e.g.,
the perspective projection model (f/f0) tan θ or the
equidistance projection model (f/f0)θ. We adopt the
stereographic projection model merely for the ease of
initialization.

In (2), even power terms do not exist, because the
lens has circular symmetry; r is an odd function of
θ. We assume that the azimuthal angle of the projec-
tion is equal to that of the incident ray. In the past,
these two were often assumed to be slightly different,
and geometric correction of the resulting “tangential
distortion” was studied. Currently, the lens manu-
facturing technology is highly advanced so that the
tangential distortion can be safely ignored. If not,
we can simply include the tangential distortion terms
in (2), and the subsequent calibration procedure re-
mains unchanged.

In the literature, the model of the form r = c1θ +
c2θ

3 + c3θ
5 + · · · is frequently assumed [7, 8, 13, 12].

As we see shortly, however, the value of θ for a spec-
ified r is necessary in each step of the optimization
iterations. So, many authors computed θ by solv-
ing a polynomial equation using a numerical means
[7, 8, 13, 12], but this causes loss of accuracy and ef-
ficiency. It is more convenient to express θ in terms
of r from the beginning. From (2), the expression of
θ is given by

θ = 2 tan−1
( f0

2f

( r

f0
+ a1

( r

f0

)3

+ a2

( r

f0

)5

+ · · ·
))

.

(3)

3. Incident Ray Vector

Let m be the unit vector in the direction of the
incident ray of light (Fig. 1); we call m the incident
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ray vector . In polar coordinates, it has the expression

m =

 sin θ cos φ
sin θ sinφ

cos θ

 , (4)

where θ is the incidence angle from the Z-axis and φ
is the azimuthal angle from the X-axis. Since φ, by
our assumption, equals the azimuthal angle on the
image plane, the point (x, y) on which the incident
light focuses is specified by

x − u0 = r cos φ, y − v0 = r sinφ,

r =
√

(x − u0)2 + (y − v0)2, (5)

where (u0, v0) is the principal point. Hence, (4) is
rewritten as

m =

 ((x − u0)/r) sin θ
((y − v0)/r) sin θ

cos θ

 . (6)

Differentiating (5) with respect to u0 and v0, we ob-
tain

∂r

∂u0
= −x − u0

r
,

∂r

∂v0
= −y − v0

r
. (7)

Hence, the derivatives of (6) with respect to u0 and
v0 become

∂m

∂u0
=

−1/r + (x − u0)2/r3

(x − u0)(y − v0)/r3

0

 sin θ

+

 (x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 ∂θ

∂u0
,

∂m

∂v0
=

 (x − u0)(y − v0)/r3

−1/r + (y − v0)2/r3

0

 sin θ

+

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 ∂θ

∂v0
. (8)

Differentiating (3) with respect to u0 and v0 on both
sides, we obtain( 1

f0
+

3a1

f0

( r
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)2

+
5a2

f0

( r

f0

)4

+
7a3
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)6
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) ∂r

∂u0

=
2f

f0

1
2 cos2(θ/2)

∂θ

∂u0
,( 1

f0
+

3a1

f0

( r

f0

)2

+
5a2

f0

( r

f0

)4

+
7a3

f0

( r

f0

)6

+ · · ·
) ∂r

∂v0

=
2f

f0

1
2 cos2(θ/2)

∂θ

∂v0
. (9)

Hence, ∂θ/∂u0 and ∂θ/∂v0 can be written as

∂θ

∂u0
= − 1

f
cos2

θ

2

(
1 +

∞∑
k=1

(2k − 1)ak

( r

f0

)2k)x − u0

r
,

∂θ

∂v0
= − 1

f
cos2

θ

2

(
1 +

∞∑
k=1

(2k − 1)ak

( r

f0

)2k)y − v0

r
.

(10)

Substituting these into (9), we can evaluate ∂m/∂u0

and ∂m/∂v0.
Next, we consider derivation with respect to f .

Differentiating (2) with respect to f on both sides,
we have

0 =
2
f0

tan
θ

2
+

2f

f0

1
2 cos2(θ/2)

∂θ

∂f
. (11)

Hence, we obtain

∂θ

∂f
= − 2

f
sin

θ

2
cos

θ

2
= − 1

f
sin θ. (12)

It follows that the derivative of (6) with respect to f
is

∂m

∂f
= − 1

f
sin θ

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 . (13)

Finally, we consider derivation with respect to ak.
Differentiating (2) with respect to ak on both sides,
we have ( r

f0

)2k+1

=
2f

f0

1
2 cos2(θ/2)

∂θ

∂ak
. (14)

Hence, we obtain

∂θ

∂ak
=

f0

f

( r

f0

)2k+1

cos2
θ

2
. (15)

It follows that the derivation of (6) with respect to
ak is

∂m

∂ak
=

f0

f

( r

f0

)2k+1

cos2
θ

2

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ


(16)

All the cost functions in the subsequent optimization
are expressed in terms of the incident ray vector m.
Hence, we can compute derivatives of any cost func-
tion with respect to any parameter simply by com-
bining the above derivative expressions.

4. Collinearity Constraint

Suppose we observe a collinear point sequence Sκ

(the subscript κ enumerates all existing sequences)
consisting of N points p1, ..., pN , and let m1,..., mN

be their incident ray vectors. If the camera is pre-
cisely calibrated, the computed incident ray vectors
should be coplanar. Hence, if nκ is the unit normal to
the plane passing through the origin O (lens center)
and Sκ, we should have (nκ, mα) = 0, α = 1, ..., N
(Fig. 2). In the following, we denote the inner prod-
uct of vectors a and b by (a, b). If the calibration
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p
1

p
N

O
mN

m1

nκ

Figure 2: The incident ray vectors mα of collinear points
p1, ..., pN are coplanar.

is incomplete, however, (nκ, mα) may not be strictly
zero. So, we adjust the parameters by minimizing∑

α∈Sκ

(nκ, mα)2 =
∑

α∈Sκ

n>
κ mαm>

α nκ

= (nκ,
∑

α∈Sκ

mαm>
α nκ) = (nκ, M (κ)nκ), (17)

where we define

M (κ) =
∑

α∈Sκ

mαm>
α . (18)

Since (17) is a quadratic form of M (κ), its minimum
equals the smallest eigenvalue λ

(κ)
min of M (κ), nκ being

the corresponding unit eigenvector. To enforce the
collinearity constraint for all collinear point sequences
Sκ, we determine the parameters so as to minimize

J1 =
∑
all κ

λ
(κ)
min. (19)

Because we minimize the sum of eigenvalues, we
call our approach eigenvalue minimization, which was
first proposed by Onodera and Kanatani [15] in 1992.
The reason that this technique has not been widely
used may be that at first sight it appears that one
cannot “differentiate” eigenvalues. However, differ-
entiating eigenvalue is very easy, as we now show in
the following, if one uses the perturbation theorem
well known in physics.

4.1 First derivatives

Consider the first derivatives of λ
(κ)
min with respect

to c, which represents the parameters u0, v0, f , a1,
a2, ... Differentiating the defining equation

M (κ)nκ = λ
(κ)
minnκ (20)

with respect to c on both sides, we have

∂M (κ)

∂c
nκ+M (κ) ∂nκ

∂c
=

∂λ
(κ)
min

∂c
nκ+λ

(κ)
min

∂nκ

∂c
. (21)

Computing the inner product with nκ on both sides,
we obtain

(nκ,
∂M (κ)

∂c
nκ) + (nκ,M (κ) ∂nκ

∂c
)

=
∂λ

(κ)
min

∂c
(nκ, nκ) + λ

(κ)
min(nκ,

∂nκ

∂c
). (22)

Since nκ is a unit vector, we have (nκ, nκ) = ‖nκ‖2

= 1. Variations of a unit vector should be orthog-
onal to itself, so (nκ, ∂nκ/∂c) = 0. Since M (κ) is
a symmetric matrix, we have (nκ, M (κ)∂nκ/∂c) =
(M (κ)nκ, ∂nκ/∂c) = λ

(κ)
min(nκ, ∂nκ/∂c) = 0. Thus,

(22) implies

∂λ
(κ)
min

∂c
= (nκ,

∂M (κ)

∂c
nκ). (23)

This result is well known as the perturbation theorem
of eigenvalue problems [6]. From the definition of
M (κ) in (49), we see that

∂M (κ)

∂c
=

N∑
α=1

(∂mα

∂c
m>

α + mα

(∂mα

∂c

)>)
= 2S[

N∑
α=1

∂mα

∂c
m>

α ] ≡ M (κ)
c , (24)

where S[ · ] denotes symmetrization (S[A] = (A +
A>)/2). Thus, the first derivatives of the function J1

with respect to c = u0, v0, f , a1, a2, ... are given as
follows:

∂J1

∂c
=

∑
all κ

(nκ, M (κ)
c nκ). (25)

4.2 Second derivatives

Differentiating (23) with respect to c′ (= u0, v0, f ,
a1, a2, ...), we obtain

∂2λ
(κ)
min

∂c∂c′
= (

∂nκ

∂c′
, M (κ)

c nκ) + (nκ,
∂2M (κ)

∂c∂c′
nκ)

+(nκ, M (κ)
c

∂nκ

∂c′
)

= (nκ,
∂2M (κ)

∂c∂c′
nκ) + 2(

∂nκ

∂c′
,M (κ)

c nκ). (26)

First, consider the first term. Differentiation of
(24) with respect to c′ is

∂2M (κ)

∂c∂c′
= 2S[

N∑
α=1

(∂2mα

∂c∂c′
m>

α +
∂mα

∂c

(∂mα

∂c′

)>)
],

(27)
and hence we have

(nκ,
∂2M (κ)

∂c∂c′
nκ) = 2

N∑
α=1

(
(nκ,

∂2mα

∂c∂c′
)(mα, nκ)

+(nκ,
∂mα

∂c
)(

∂mα

∂c′
, nκ)

)
.(28)
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If the calibration is complete, we should have
(mα, nκ) = 0. In the course of the optimization, we
can expect that (mα,nκ) ≈ 0. Hence, (28) can be
approximated by

(nκ,
∂2M (κ)

∂c∂c′
nκ) ≈ 2

N∑
α=1

(nκ,
∂mα

∂c
)(

∂mα

∂c′
,nκ)

= 2(nκ, M
(κ)
cc′ nκ), (29)

M
(κ)
cc′ ≡

N∑
α=1

(∂mα

∂c

)(∂mα

∂c′

)>
. (30)

This is a sort of the Gauss-Newton approximation.
Next, consider the second term of (26). Because

nκ is a unit vector, its variations are orthogonal to
itself. Let λ

(κ)
1 ≥ λ

(κ)
2 ≥ λ

(κ)
min be the eigenvalues of

M (κ) with nκ1, nκ2, and nκ the corresponding unit
eigenvectors. Since the eigenvectors of a symmetric
matrix are mutually orthogonal, any vector orthogo-
nal to nκ is expressed as a linear combination of nκ1

and nκ2. Hence, we can write

∂nκ

∂c
= β1nκ1 + β2nκ2, (31)

for some β1 and β2. Substitution of (23) and (31)
into (21) results in

M (κ)
c nκ + M (κ)(β1nκ1 + β2nκ2)

= (nκ, M (κ)
c nκ)nκ + λ

(κ)
min(β1nκ1 + β2nκ2). (32)

Noting that M (κ)nκ1 = λ
(κ)
1 nκ1 and M (κ)nκ2 =

λ
(κ)
2 nκ2, we have

β1(λ
(κ)
1 − λ

(κ)
min)nκ1 + β2(λ

(κ)
2 − λ

(κ)
min)nκ2

= (nκ, M (κ)
c nκ)nκ − M (κ)

c nκ. (33)

Computing the inner product with nκ1 and nκ2 on
both sides, we obtain

β1(λ
(κ)
1 − λ

(κ)
min) = −(nκ1, M

(κ)
c nκ),

β2(λ
(κ)
2 − λ

(κ)
min) = −(nκ2, M

(κ)
c nκ). (34)

Thus, (31) is written as follows:

∂nκ

∂c
= − (nκ1,M

(κ)
c nκ)nκ1

λ
(κ)
1 − λ

(κ)
min

− (nκ2, M
(κ)
c nκ)nκ2

λ
(κ)
2 − λ

(κ)
min

.

(35)
This is also a well known result of the perturbation
theorem of eigenvalue problems [6]. Thus, the second
term of (26) can be written as

2(
∂nκ

∂c′
, M (κ)

c nκ) = −
2(nκ1, M

(κ)
c nκ)(nκ1, M

(κ)
c′ nκ)

λ
(κ)
1 − λ

(κ)
min

−
2(nκ2, M

(κ)
c nκ)(nκ2, M

(κ)
c′ nκ)

λ
(κ)
2 − λ

(κ)
min

.

(36)

O

l
nκ l

g
g

Figure 3: The surface normals nκ to the planes defined
by parallel lines are orthogonal to the common direction
lg of the lines.

Combining (29) and (36), we can approximate (26)
in the form

∂2λ
(κ)
min

∂c∂c′
≈ 2

(
(nκ, M

(κ)
cc′ nκ)

−
2∑

i=1

(nκi, M
(κ)
c nκ)(nκi, M

(κ)
c′ nκ)

λ
(κ)
i − λ

(κ)
min

)
. (37)

Thus, the second derivatives of the function J1 with
respect to c and c′ are given by

∂2J1

∂c∂c′
= 2

∑
all κ

(
(nκ, M

(κ)
cc′ nκ)

−
2∑

i=1

(nκi, M
(κ)
c nκ)(nκi, M

(κ)
c′ nκ)

λ
(κ)
i − λ

(κ)
min

)
. (38)

5. Parallelism Constraint

Let Gg be a group of parallel collinear point
sequences (the subscript g enumerates all existing
groups) with a common orientation lg (unit vector).
The normals nκ to the planes passing through the
origin O (lens center) and lines of Gg are all orthog-
onal to lg (Fig. 3). Hence, we should have (lg, nκ)
= 0, κ ∈ Gg, if the calibration is complete. So, we
adjust the parameters by minimizing∑

κ∈Gg

(lg, nκ)2 =
∑
κ∈Gg

l>g nκn>
κ lg

= (lg,
∑
κ∈Gg

nκn>
κ lg) = (lg, N (g)lg), (39)

where we define

N (g) =
∑
κ∈Gg

nκn>
κ . (40)

Since (39) is a quadratic form of N (g), its minimum
equals the smallest eigenvalue µ

(g)
min of N (g), lg be-

ing the corresponding unit eigenvector. To enforce
the parallelism constraint for all groups of parallel
collinear sequences, we determine the parameters so
as to minimize

J2 =
∑
all g

µ
(g)
min. (41)
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lg

g’l

Figure 4: If two sets of parallel lines make right angles,
their directions lg and lg′ are orthogonal to each other.

5.1 First derivatives

Doing the same perturbation analysis as in Sec. 4,
we obtain the first derivatives of the function J2 with
respect to parameters c in the form

∂J2

∂c
=

∑
all g

(lg, N (g)
c lg), (42)

N (g)
c = 2S[

∑
κ∈Gg

∂nκ

∂c
n>

κ ], (43)

where ∂nκ/∂c is given by (35).

5.2 Second derivatives

Doing the same perturbation analysis as in Sec. 4,
we obtain the second derivatives of the function J2

with respect to parameters c and c′ in the form

∂2J2

∂c∂c′
= 2

∑
all g

(
(lg,N

(g)
cc′ lg)

−
2∑

i=1

(lgi, N
(g)
c lg)(lgi,N

(g)
c′ lg)

µ
(g)
i − µ

(g)
min

)
, (44)

N
(g)
cc′ ≡

∑
κ∈Gg

(∂nκ

∂c

)(∂nκ

∂c′

)>
, (45)

where µ
(g)
i , i = 1, 2, are the first and the second

largest eigenvalues of the matrix N (g) and lgi are the
corresponding unit eigenvectors.

6. Orthogonality Constraint

Suppose we observe two groups Gg and Gg′ of par-
allel line sequences with mutually orthogonal direc-
tions lg and lg′ (Fig. 4). The orientation lg of the
sequences in the group Gg is the unit eigenvector of
the matrix N (g) in (40) for the smallest eigenvalue.
If the calibration is complete, we should have (lg, lg′)
= 0, so we adjust the parameters by minimizing

J3 =
∑

all orthogonal
pairs {Gg , G′

g}

(lg, lg′)2. (46)

6.1 First derivatives

The first derivatives of the function J3 with respect
to parameters c are given by

∂J3

∂c
= 2

∑
all orthogonal
pairs {Gg , G′

g}

(lg, lg′)
(
(
∂lg
∂c

, lg′)+(lg,
∂lg′

∂c
)
)
. (47)

The first derivative ∂lg/∂c is given by

∂lg
∂c

= −
2∑

i=1

(lgi, N
(g)
c lg)lgi

µ
(g)
i − µ

(g)
min

, (48)

and ∂lg′/∂c similarly.

6.2 Second derivatives

Using the Gauss-Newton approximation (lg, lg′) ≈
0, we obtain the second derivatives of the function J3

with respect to parameters c and c′ in the form

∂2J3

∂c∂c′
= 2

∑
all orthogonal
pairs {Gg , G′

g}

(
(
∂lg
∂c

, lg′) + (lg,
∂lg′

∂c
)
)

(
(
∂lg
∂c′

, lg′) + (lg,
∂lg′

∂c′
)
)
. (49)

7. Levenberg-Marquardt Procedure

To incorporate all of the collinearity, parallelism,
and orthogonality constraints, we minimize

J =
J1

γ1
+

J2

γ1
+

J3

γ1
, (50)

where γi, i = 1, 2, 3, are the weights to balance the
magnitudes of the three terms. Note that J1 À J2

À J3, since J1 is proportional to the number of all
points, J2 to the number of all lines, and J3 to the
number of orthogonal pairs of parallel lines. In our
experiment, we used as γi the initial value of Ji, so
that J is initially 1 + 1 + 1 = 3. Our collinearity-
parallelism-orthogonality constraint “effectively” fits
straight lines to collinear point sequences, but unlike
the past collinearity-based work [1, 8, 12, 13, 17] we
never explicitly compute the fitted lines; all the con-
straints are expressed in terms of the incident ray
vectors m.

Now that we have derived the first and second
derivatives of all Ji with respect to all the parameters,
we can combine them into the following Levenberg-
Marquardt (LM) procedure [16]:

1. Provide initial values, e.g., let the principal point
(u0, v0) be at the frame center, f be a default
value and, let a1 = a2 = · · · = 0. Let J0 be the
value of the function J for these initial values,
and let C = 0.0001.
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2. Compute the incidence angle θκα of the αth point
pα in the κth sequence Sκ by (3), and compute its
incidence ray vector mκα by (6). Then, compute
the derivatives ∂mκα/∂c by (8), (13), and (16)
for c = u0, v0, f , a1, a2, ... .

3. Compute the first derivatives Jc and the second
derivatives Jcc′ of the function J for c, c′ = u0,
v0, f , a1, a2, ... .

4. Determine the increments ∆u0, ∆v0, ∆f , ∆a1,
... by solving the linear equation

0

B

B

B

B

B

@

(1+C)Ju0u0 Ju0v0 Ju0f Ju0a1 · · ·
Jv0u0 (1+C)Jv0v0 Jv0f Jv0a1 · · ·
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5. Tentatively update the parameter values in the
form

ũ0 = u0 + ∆u0, ṽ = v0 + ∆v0, f̃ = f + ∆f,

ã1 = a1 + ∆a1, ã2 = a2 + ∆a2, ... (52)

and evaluate the resulting value J̃ of the function
J .

6. If J̃ < J0, proceed. Else, let C ← 10C and go
back to Step 4.

7. Let u0 ← ũ0, v0 ← ṽ0, f ← f̃ , a1 ← ã1, a2 ←
ã2, ... . If |∆u0| < ε0, |∆v0| < ε0, |∆f | < εf ,
|∆a1| < ε1, |∆a2| < ε2, ..., return J , u0, v0, f ,
a1, a2, ..., and stop. Else, let J0 ← J and C ←
C/10, and go back to Step 2.

8. Experiments

The four stripe patterns shown in Fig. 5 (above)
were displayed on a large video screen (Fig. 5 below).
We took images by placing the camera in various
positions so that the stripe pattern appears in var-
ious parts of the view (recall that the view cannot be
covered by a single planar pattern image). The four
patterns were cyclically displayed with blank frames
in-between, and the camera is fixed in each position
for at least one cycle to capture the four patterns;
Fig. 6(a) shows one shot. The image size is 640× 480
pixels. From each image, we detected edges; Fig. 6(b)
shows the edges detected from the image in Fig. 6(a).
We manually removed those edges outside the dis-
play area. We also removed too small clusters of edge
points. Then, we ran an edge segmentation algorithm

Figure 5: Stripe patterns in four directions are displayed
on a large video screen.

(a) (b)

Figure 6: (a) Fisheye lens image of a stripe pattern. (b)
Detected edges.

to create connected edge segments. On each segment
was imposed the collinearity constraint; on the seg-
ments in one frame were imposed the parallelism con-
straint; on the segments in one frame and the frame
after the next with the same camera position were
imposed the orthogonality constraint. In all, we ob-
tained 220 segments, consisting of 20 groups of par-
allel segments and 10 orthogonal pairs, to which the
LM procedure was applied.

The conventional approach using a reference grid
board [2, 5, 7, 17, 18] would require precise localiza-
tion of grid points in the image, which is a rather
difficult task. Here, all we need to do is detect “con-
tinuous edges.” We can use a video display instead of
a specially designed grid board, because our method
is non-metric: we need no metric information about
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the pattern or the camera positions. We do not even
know where each edge point corresponds to in the ref-
erence pattern.

Let us call the number K of the terms on the left
hand side of (2) the correction degree, meaning that
the left-hand side of (2) is approximated by a (2K +
1)th degree polynomial. The results up to the fifth
correction degree are shown in Table 1. We set the
frame center to be (0, 0) to specify the principal point
(u0, v0). For the convergence thresholds in Step 7 of
the LM iterations, we let ε0 = εf = 10−3, ε1 = 10−5,
ε2 = 10−6, ε3 = 10−7, ε4 = 10−8, and ε5 = 10−9.
Using various different initial values, we confirmed
that the LM always converges to the same solution
after around 10 to 20 iterations.

Figure 7(a) plots the graph of (3) for different cor-
rection degrees. For the convenience of the subse-
quent applications, we numerically converted (3) to
express the angle θ in terms of the distance r. As we
see, the stereographic projection model in (1) holds
fairly well even without any correction terms (degree
0). The result is almost unchanged for the degrees
3, 4, and 5, i.e., including powers up to r7, r9, and
r11. Thus, there is no need to increase the correction
terms any further.

For comparison, Fig. 7(b) shows the same result
using collinearity alone, i.e., J = J1/γ1 instead of
(50); Fig. 7(c) shows the result using collinearity and
parallelism, i.e., J = J1/γ1 + J2/γ2 instead of (50).
In both cases, the graph approaches, as the degree
increases, some r-θ relationship quite different from
the stereographic projection. In order to see what
this means, we did a rectification experiment. Fig-
ure 8(a) shows a fisheye lens image viewing a square
grid pattern in approximately 30 degree direction,
and Fig. 8(b) is the rectified perspective image, using
the parameters of correction degree 5 in Table 1. The
image is converted to a view as if observed by rotat-
ing the camera by 60 degrees to face the pattern (see
Appendix for this computation). The black area near
the left boundary corresponds to 95 degrees or more
from the optical axis. Thus, we can obtain a correct
perspective image to the very boundary of the view.

For comparison, Fig. 8(c) shows the result ob-
tained by the same procedure using the spurious so-
lution. We can see that collinear points are certainly
rectified to be collinear and parallel lines to be (a
skewed view of) parallel lines. We have confirmed
that this spurious solution is not the result of a local
minimum. Let us call the parameter values obtained
by imposing collinearity, parallelism, and orthogonal-
ity the “correct solution”. The cost functions J =
J1/γ1 and J = J1/γ1 + J2/γ2 are certainly smaller
at the spurious solution than at the correct solution,
meaning that the spurious solution is not attributed
to the minimization algorithm but is inherent in the
formulation of the problem itself.

The fact that spurious solution should exist is eas-

ily understandable if one considers perspective cam-
eras. If no image distortion exists, the 3-D interpreta-
tion of images using wrong camera parameters, such
as the focal length, the principal point, the aspect
ratio, and the skew angle, is a projective transforma-
tion of the real scene, called projective reconstruction
[3]. Projective transformations preserve collinearity
but not parallelism or orthogonality. Imposing paral-
lelism, we obtain affine reconstruction. Further im-
posing orthogonality, we obtain so called Euclidean
reconstruction. Thus, orthogonality is essential for
camera calibration; collinearity and parallelism alone
are insufficient. This fact has been overlooked in the
past collinearity-based work [1, 8, 12, 13, 15, 17],
partly because image distortion is so dominant for
fisheye lens cameras, partly because spurious solu-
tions can be prevented by using auxiliary informa-
tion such as vanishing point estimation [2, 5, 11, 12]
or antipodal point extraction [14], and partly because
usually a small number, typically three, of collection
terms are retained [1, 8, 12, 13, 15, 17], providing
insufficient degrees of freedom to fall into spurious
solution.

The top-left of Fig. 9 is an image of a street scene
taken from a moving vehicle with a fisheye lens cam-
era mounted below the bumper at the car front. The
top-right of Fig. 9 is the rectified perspective image.
The second and third rows show the rectified perspec-
tive images to be observed if the camera is rotated by
90◦ left, right, up and down, confirming that we are
really seeing more than 180◦ angles of view. Using a
fisheye lens camera like this, we can detect vehicles
approaching from left and/or right or create an image
as if viewing the road from above the car.

9. Concluding Remarks

We have presented a new technique for calibrating
ultra-wide fisheye lens cameras. Our method can be
contrasted to the conventional approach of using a
grid board as follows:

1. For ultra-wide fisheye lens cameras with more
than 180◦ degrees of view, the image of any
large (even infinite) plane cannot cover the image
frame. Our method allows us take multiple par-
tial images of the reference by freely moving the
camera so that every part of the frame is covered
by some reference images.

2. The grid-based approach requires detection of
“grid points” in the image, but accurate pro-
cessing of a grid image is rather difficult. In
our method, we only need to detect “continuous
edges” of a stripe pattern.

3. The grid-based approach requires the correspon-
dence of each detected grid point to the location
on the reference. This is often difficult due to the
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Table 1: Computed parameters for each correction degree.

degree 0 1 2 3 4 5

u0 −1.56744 −1.57819 −1.60647 −1.60103 −1.61170 −1.61145
v0 0.529648 0.501021 0.427590 0.431905 0.432015 0.433677
f 146.648 149.567 148.110 146.724 146.793 146.499

a1/10−2 — 0.645886 −0.30601 −1.41625 −1.68918 −1.80625
a2/10−3 — — 2.38948 7.57041 11.1085 9.34660
a3/10−4 — — — −8.05083 −22.2515 −0.40049
a4/10−5 — — — — 18.1185 −61.6432
a5/10−6 — — — — — 0.935930

(a) (b) (c)

Figure 7: The dependence of the distance r (pixels) from the focal point on the incidence angle θ (degree) obtained by
(a) using the collinearity, parallelism, and orthogonality constraints; (b) using only the collinearity constraints; (c) using
the collinearity and parallelism constraints.

periodicity of the grid. In our method, we need
not know where the detected edge points corre-
spond to in the reference.

4. In the grid-based approach, one needs to mea-
sure the camera position relative to the reference
board by a mechanical means or by computing
the homography from image-reference matching
[2, 18]. Our method does not require any infor-
mation about the camera position.

5. In the grid-based approach, one needs to create
a reference pattern. This is not a trivial task. If
a pattern is printed out on a sheet of paper and
pasted to a planar surface, wrinkles and creases
may arise and the glue may cause uneven defor-
mations of the paper. In our method, no metric
information is required about the pattern, so we
can display it on any video screen.

6. In the grid-based approach, one can usually ob-
tain only one image of the reference pattern from
one camera position. In our method, we can fix
the camera anywhere and freely change the ref-
erence pattern on the video screen.

7. The difficulty of processing a grid image with
crossings and branches is circumvented by gen-
erating a “virtual grid” from separate stripe im-
ages of different orientations; each image has no
crossings or branches.

The basic principle of our calibration is the impo-
sition of the constraint that collinear points be rec-
tified to collinear, parallel lines to parallel, and or-
thogonal lines to be orthogonal. Exploiting the fact
that line fitting reduces to eigenvalue problems, we
optimized the constraint by invoking the perturba-
tion theorem, as suggested by Onodera and Kanatani
[15]. Then, we derived a Levenberg-Marquardt pro-
cedure for eigenvalue minimization. By experiments,
we have found that a spurious solution exists if the
collinearity constraint alone is used or even com-
bined with the parallelism constraint. This fact has
not been noticed in existing collinearity-based work
[1, 8, 12, 13, 15, 17]. However, we have shown
that incorporating the orthogonality constraint al-
lows an accurate calibration without using any aux-
iliary information such as vanishing point estimation
[2, 5, 11, 12]. We have also shown a real image exam-
ple using a vehicle-mounted fisheye lens camera. It is
expected that our procedure is going to be a standard
tool for fisheye lens camera calibration.

Define a world XY Z coordinate system with the
origin O at the lens center and the Z-axis along the
optical axis (Fig. 1). As far as the camera imaging
is concerned, the outside scene can be regarded as if
painted inside a sphere of a specified radius R sur-
rounding the lens. The angle θ of the incident ray
from point (X,Y, Z) on the sphere is

θ = tan−1

√
X2 + Y 2

Z
= tan−1

√
R2 − Z2

Z
. (53)
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(a) (b) (c)

Figure 8: (a) Fisheye lens image viewing a square grid pattern in approximately 30 degree direction. (b) Rectified
perspective image to be observed if the camera is rotated by 60 degrees to face the pattern. (c) Similarly rectified image
using a spurious solution.

Original fisheye lens image Rectified front view

Rectified left 90◦ view Rectified right 90◦ view

Rectified down view Rectified up view

Figure 9: Fisheye lens image of an outdoor scene taken
from a moving vehicle, rectified front images, and rectified
images after virtually rotating the camera to left, right,
up, and down.

Let r(θ) be the expression of r in terms of θ described
in Fig. 7. The point (X,Y, Z) is projected to an image
point (x, y) such that

(
x
y

)
=

(
u0

v0

)
+

r(θ)√
R2 − Z2

(
X
Y

)
. (54)

Suppose we want to obtain a rectified perspective im-
age with focal length f̄ . Then, the pixel (x̄, ȳ) of the
rectified image should be the projection of the 3-D

f

(X, Y, Z)

(x, y)

R

ρ

θ

r (u  ,v  )0 0

f

(x, y) (0,0)

(X, Y, Z)

Figure 10: To the pixel (x̄, ȳ) of the rectified perspective
image of focal length f̄ should be an image of the 3-D
point (X, Y, Z), which is actually projected to (x, y) on
the fisheye lens image of focal length f .

point (X,Y, Z) given by

x̄ = f̄
X

Z
, ȳ = f̄

Y

Z
. (55)

From

x̄2 + ȳ2 + f̄2 = f̄2 X2

Z2
+ f̄2 Y 2

Z2
+ f̄2 =

f̄2R2

Z2
, (56)

we see that

Z =
f̄R√

x̄2 + ȳ2 + f̄2
, (57)

and hence X
Y
Z

 =
R√

x̄2 + ȳ2 + f̄2

 x̄
ȳ
f̄

 . (58)

Thus, the rectification can be done as follows
(Fig. 10):

1. For each pixel (x̄, ȳ), compute the 3-D coordi-
nates (X,Y, Z) in (58), where the radius R is
arbitrary (we may let R = 1).

2. Compute the corresponding pixel position (x, y)
by (54) and copy its pixel value to (x̄, ȳ). If (x, y)
are not integers, interpolate its value from sur-
rounding pixels.
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We can also obtain the perspective image to be
observed if the camera is rotated by R. Since rotation
of the camera by R is equivalent to the rotation of the
scene sphere by R−1, the 3-D point (X,Y, Z) given
by (58) on the rotated sphere corresponds to the 3-D
point X

Y
Z

 =
R√

x̄2 + ȳ2 + f̄2
R

 x̄
ȳ
f̄

 . (59)

on the original sphere. Its fisheye lens image should
be held at the pixel (x, y) given by (54). Thus, the
mapping procedure goes as follows:

1. For each pixel (x̄, ȳ), compute the 3-D coordi-
nates (X,Y, Z) in (59).

2. Compute the corresponding pixel position (x, y)
by (54) and copy its pixel value to (x̄, ȳ).
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