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We investigate the meaning of “statistical methods” for geometric inference based on
image feature points. Tracing back the origin of feature uncertainty to image processing
operations, we discuss the implications of asymptotic analysis in reference to “geometric
fitting” and “geometric model selection”. We point out that a correspondence exists
between the standard statistical analysis and the geometric inference problem. We also
compare the capability of the “geometric AIC” and the “geometric MDL” in detecting
degeneracy. Next, we review recent progress in geometric fitting techniques for linear
constraints, describing the “FNS method”, the “HEIV method”, the “renormalization
method”, and other related techniques. Finally, we discuss the “Neyman-Scott problem”
and “semiparametric models” in relation to geometric inference. We conclude that ap-
plications of statistical methods requires careful considerations about the nature of the
problem in question.

1. Introduction

Statistical inference from images is one of the key
components of computer vision research today. Tradi-
tionally, statistical methods have been used for recog-
nition and classification purposes. Recently, however,
there are many studies of statistical analysis for geo-
metric inference based on geometric primitives such
as points and lines extracted by image processing op-
erations.

However, the term “statistical” has somewhat a
different meaning for such geometric inference prob-
lems than for the traditional recognition and classifi-
cation purposes. This difference has often been over-
looked, causing controversies over the validity of the
statistical approach to geometric problems in general.
In Sec. 2, we take a close look at this problem, trac-
ing back the origin of feature uncertainty to image
processing operations. In Sec. 3, we discuss the im-
plications of asymptotic analysis in reference to “ge-
ometric fitting” and “geometric model selection”. In
Sec. 4, we point out that a correspondence exists be-
tween the standard statistical analysis and the geo-
metric inference problem. We also compare the ca-
pability of the “geometric AIC” and the “geometric
MDL” in detecting degeneracy. In Sec. 5, we review
recent progress in geometric fitting techniques for lin-
ear constraints, describing the “FNS method”, the
“HEIV method”, the “renormalization method”, and
other related techniques. In Sec. 6, we discuss the
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“Neyman-Scott problem” and “semiparametric mod-
els” in relation to geometric inference. Sec. 7 presents
our concluding remarks. The derivation of the geo-
metric AIC and the geometric MDL is summarized in
the Appendix.

2. What is Geometric Inference?

2.1 Ensembles for geometric inference

The goal of statistical methods is not to study the
properties of observed data themselves but to infer
the properties of the ensemble from which we regard
the observed data as sampled. The ensemble may be a
collection of existing entities (e.g., the entire popula-
tion), but often it is a hypothetical set of conceivable
possibilities. When a statistical method is employed,
the underlying ensemble is often taken for granted.
However, this issue is very crucial for geometric infer-
ence based on feature points.

Suppose, for example, we extract feature points,
such as corners of walls and windows, from an image
of a building and want to test if they are collinear.
The reason why we need a statistical method is that
the extracted feature positions have uncertainty. So,
we have to judge the extracted feature points as
collinear if they are sufficiently aligned. We can also
evaluate the degree of uncertainty of the fitted line by
propagating the uncertainty of the individual points.
What is the ensemble that underlies this type of in-
ference?

This question reduces to the question of why the



40 Kenichi KANATANI MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

(a) (b)

Figure 1: (a) A feature point in an image of a building.
(b) Its enlargement and the uncertainty of the feature
location

uncertainty of the feature points occurs at all. After
all, statistical methods are not necessary if the data
are exact. Using a statistical method means regarding
the current feature position as sampled from a set of
its possible positions. But where else could it be if
not in the current position?

2.2 Uncertainty of feature extraction

Many algorithms have been proposed for extract-
ing feature points including the Harris operator [13]
and SUSAN [49], and their performance has been ex-
tensively compared [4, 44, 48]. However, if we use, for
example, the Harris operator to extract a particular
corner of a particular building image, the output is
unique (Fig. 1). No matter how many times we repeat
the extraction, we obtain the same point because no
external disturbances exist and the internal parame-
ters (e.g., thresholds for judgment) are unchanged. It
follows that the current position is the sole possibility.
How can we find it elsewhere?

If we closely examine the situation, we are com-
pelled to conclude that other possibilities should ex-
ist because the extracted position is not necessarily
correct. But if it is not correct, why did we extract
it? Why didn’t we extract the correct position in the
first place? The answer is: we cannot .

2.3 Image processing for computer vision

The reason why there exist so many feature extrac-
tion algorithms, none of them being definitive, is that
they are aiming at an intrinsically impossible task. If
we were to extract a point around which, say, the in-
tensity varies to the largest degree in such and such
a measure, the algorithm would be unique; variations
may exist in intermediate steps, but the final output
should be the same.

However, what we want is not “image properties”
but “3-D properties” such as corners of a building,
but the way a 3-D property is translated into an im-
age property is intrinsically heuristic. As a result, as
many algorithms can exist as the number of heuristics
for its 2-D interpretation. If we specify a particular
3-D feature to extract, say a corner of a window, its
appearance in the image is not unique. It is affected
by many properties of the scene including the details
of its 3-D shape, the viewing orientation, the illumi-

nation condition, and the light reflectance properties
of the material. A slight variation of any of them can
result in a substantial difference in the image.

Theoretically, exact extraction would be possible if
all the properties of the scene were exactly known, but
to infer them from images is the very task of computer
vision. It follows that we must make a guess in the
image processing stage. For the current image, some
guesses may be correct, but others may be wrong.
The exact feature position could be found only by
an (non-existing) “ideal” algorithm that could guess
everything correctly.

This observation allows us to interpret the “possi-
ble feature positions” to be the positions that would
be located by different (non-ideal) algorithms based on
different guesses. It follows that the set of hypo-
thetical positions should be associated with the set
of hypothetical algorithms. The current position is
regarded as produced by an algorithm sampled from
it. This explains why one always obtains the same
position no matter how many times one repeats ex-
traction using that algorithm. To obtain a different
position, one has to sample another algorithm.

Remark 1 We may view the statistical ensemble in
the following way. If we repeat the same experiment,
the result should always be the same. But if we de-
clare that the experiment is the “same” if such and
such are the same while other things can vary; those
variable conditions define the ensemble. The conven-
tional view is to regard the experiment as the same
if the 3-D scene we are viewing is the same while
other properties, such as the lighting condition, can
vary. Then, the resulting image would be different
for each (hypothetical) experiment, so one would ob-
tain a different output each time, using the same im-
age processing algorithm. The expected spread of the
outputs measures the robustness of that algorithm.

Here, however, we are viewing the experiment as
the same if the image is the same. Then, we could
obtain different results only by sampling other algo-
rithms. The expected spread of the outputs measures
the uncertainty of feature detection from that image.
We take this view, because we are analyzing the relia-
bility of geometric inference from a particular image,
while the conventional view is suitable for assessing
the robustness of a particular algorithm.

2.4 Covariance matrix of a feature point
The performance of feature point extraction de-

pends on the image properties around that point. If,
for example, we want to extract a point in a region
with an almost homogeneous intensity, the result-
ing position may be ambiguous whatever algorithm is
used. In other words, the positions that potential al-
gorithms would extract should have a large spread. If,
on the other hand, the intensity greatly varies around
that point, any algorithm could easily locate it accu-
rately, meaning that the positions that the hypothet-



March 2004 Uncertainty Modeling and Geometric Inference 41

ical algorithms would extract should have a strong
peak. It follows that we may introduce for each fea-
ture point its covariance matrix that measures the
spread of its potential positions.

Let V [pα] be the covariance matrix of the αth fea-
ture point pα. The above argument implies that we
can estimate the qualitative characteristics of uncer-
tainty but not its absolute magnitude. So, we write
the covariance matrix V [pα] in the form

V [pα] = ε2V0[pα], (1)

where ε is an unknown magnitude of uncertainty,
which we call the noise level . The matrix V0[pα],
which we call the (scale) normalized covariance ma-
trix , describes the relative magnitude and the depen-
dence on orientations.

Remark 2 The decomposition of V [pα] into ε2 and
V0[pα] involves scale ambiguity. In practice, this scale
is implicitly determined by the image process opera-
tion for estimating the feature uncertainty applied to
all the feature points in the same manner (see [29] for
the details). The subsequent analysis does not de-
pend on particular normalizations, slong as they are
done in such a way that ε is much smaller than the
data themselves.

2.5 Covariance matrix estimation

If the intensity variations around pα are almost the
same in all directions, we can think of the probabil-
ity distribution as isotropic, a typical equiprobability
line, known as the uncertainty ellipses, being a circle
(Fig. 1(b)).

On the other hand, if pα is on an object bound-
ary, distinguishing it from nearby points should be
difficult whatever algorithm is used, so its covariance
matrix should have an elongated uncertainty ellipse
along that boundary.

However, existing feature extraction algorithms
are usually designed to output those points that have
large image variations around them, so points in a
region with an almost homogeneous intensity or on
object boundaries are rarely chosen. As a result,
the covariance matrix of a feature point extracted by
such an algorithm can be regarded as nearly isotropic.
This has also been confirmed by experiments [29], jus-
tifying the use of the identity as the normalized co-
variance matrix V0[pα].

Remark 3 The intensity variations around different
feature points are usually unrelated, so their uncer-
tainty can be regarded as statistically independent.
However, if we track feature points over consecutive
video frames, it has been observed that the uncer-
tainty has strong correlations over the frames [50].

Remark 4 Many interactive applications require
humans to extract feature points by manipulating a

(a) (b)

Figure 2: (a) An indoor scene. (b) Detected edges.

mouse. Extraction by a human is also an “algorithm”,
and it has been shown by experiments that humans
are likely to choose “easy-to-see” points such as iso-
lated points and intersections, avoiding points in a
region with an almost homogeneous intensity or on
object boundaries [29]. In this sense, the statistical
characteristics of human extraction are very similar
to machine extraction. This is no surprise if we recall
that image processing for computer vision is essen-
tially a heuristic that simulates human perception. It
has also been reported that strong microscopic cor-
relations exist when humans manually select corre-
sponding feature points over multiple images [37].

2.6 Image quality and uncertainty
The uncertainty of feature points has often been

identified with “image noise”, giving a misleading im-
pression as if the feature locations were perturbed by
random intensity fluctuations. Of course, we may ob-
tain better results using higher-quality images what-
ever algorithm is used. However, the task of com-
puter vision is not to analyze “image properties” but
to study the “3-D properties” of the scene. As long
as the image properties and the 3-D properties do
not correspond one to one, any image processing in-
evitably entails some degree of uncertainty, however
high the image quality may be, and the result must
be interpreted statistically. The underlying ensemble
is the set of hypothetical (inherently imperfect) algo-
rithms of image processing. Yet, the performance of
image processing algorithms has often been evaluated
by adding independent Gaussian noise to individual
pixels.

Remark 5 This also applies to edge detection, whose
goal is to find the boundaries of 3-D objects in
the scene. In reality, all existing algorithms seek
edges, i.e., lines and curves across which the inten-
sity changes discontinuously (Fig. 2). Yet, this is
regarded by many as an objective image processing
task, and the detection performance is often evalu-
ated by adding independent Gaussian noise to indi-
vidual pixels. From the above considerations, we con-
clude that edge detection is also a heuristic and hence
no definitive algorithm will ever be found.

3. Asymptotic Analysis

3.1 What is asymptotic analysis?
As stated earlier, statistical estimation refers to

estimating the properties of an ensemble from a finite
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Figure 3: (a) For the standard statistical analysis, it is desired that the accuracy increases rapidly as the number of
experiments n→∞, because admissible accuracy can be reached with a smaller number of experiments. (b) For geometric
inference, it is desired that the accuracy increases rapidly as the noise level ε → 0, because larger data uncertainty can
be tolerated for admissible accuracy.

number of samples, assuming some knowledge, or a
model , about the ensemble.

If the uncertainty originates from external condi-
tions, as in experiments in physics, the estimation
accuracy can be increased by controlling the measure-
ment devices and environments. For internal uncer-
tainty, on the other hand, there is no way of increas-
ing the accuracy except by repeating the experiment
and doing statistical inference. However, repeating
experiments usually entails costs, and in practice the
number of experiments is often limited.

Taking account of this, statisticians usually eval-
uate the performance of estimation asymptotically ,
analyzing the growth in accuracy as the number n
of experiments increases. This is justified because
a method whose accuracy increases more rapidly as
n → ∞ can reach admissible accuracy with a fewer
number of experiments (Fig. 3(a)).

In contrast, the ensemble for geometric inference
is, as we have seen, the set of potential feature po-
sitions that could be located if other (hypothetical)
algorithms were used. As noted earlier, however, we
can choose only one sample from the ensemble as long
as we use a particular image processing algorithm. In
other words, the number n of experiments is 1. Then,
how can we evaluate the performance of statistical es-
timation?

Evidently, we want a method whose accuracy is
sufficiently high even for large data uncertainty . This
implies that we need to analyze the growth in accu-
racy as the noise level ε decreases, because a method
whose accuracy increases more rapidly as ε → 0 can
tolerate larger data uncertainty for admissible accu-
racy (Fig. 3(b)).
3.2 Geometric fitting

We now illustrate the above consideration in more
specific terms. Let {pα}, α = 1, ..., N , be the ex-
tracted feature points. Suppose each point should
satisfy a parameterized constraint

F (pα, u) = 0 (2)

when no uncertainty exists. In the presence of un-
certainty, eq. (2) may not hold exactly. Our task is
to estimate the parameter u from observed positions
{pα} in the presence of uncertainty.

A typical problem of this form is to fit a line or a
curve to given N points in the image, but this can be
straightforwardly extended to multiple images. For
example, if a point (xα, yα) in one image corresponds
to a point (x′α, y′α) in another, we can regard them as
a single point pα in a 4-dimensional joint space with
coordinates (xα, yα, x′α, y′α) (Fig. 4). If the camera
imaging geometry is modeled as perspective projec-
tion, the constraint (2) corresponds to the epipolar
equation; the parameter u is the fundamental matrix
[14]. This will be discussed in more detail in Sec. 5.1.

General geometric fitting

The above problem can be stated in abstract terms
as geometric fitting as follows. We view a feature
point in the image plane or a set of feature points in
the joint space as an m-dimensional vector x; we call
it a “datum”. Let {xα}, α = 1, ..., N , be observed
data. Their true values {x̄α} are supposed to satisfy
r constraint equations

F (k)(x̄α, u) = 0, k = 1, ..., r, (3)

parameterized by a p-dimensional vector u. We call
eq. (3) the (geometric) model . The domain X of the
data {xα} is called the data space; the domain U of
the parameter u is called the parameter space. The
number r of the constraint equations is called the rank
of the constraint. The r equations F (k)(x, u) = 0, k
= 1, ..., r, are assumed to be mutually independent,
defining a manifold S of codimension r parameterized
by u in the data space X . Eq. (3) requires that the
true values {x̄α} be all in the manifold S. Our task
is to estimate the parameter u from the noisy data
{xα} (Fig. 5(a)).

Maximum likelihood estimation

Let
V [xα] = ε2V0[xα] (4)

be the covariance matrix of xα, where ε and V0[xα]
are the noise level and the normalized covariance ma-
trix, respectively. If the distribution of uncertainty is
Gaussian, which we assume hereafter, the probability
density of the data {xα} is given by

P ({xα}) = C

N∏
α=1

e−(xα−x̄α,V [xα]−1(xα−x̄α))/2, (5)
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(a) (b)

Figure 4: (a) Two images of a building and extracted feature points. (b) Optical flow consisting of segments connecting
corresponding feature points (black dots correspond to the positions in the left image). The two endpoints can be
identified with a point in a four-dimensional space.
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Figure 5: (a) Fitting a manifold S to the data {xα}. (b) Estimating {x̄α} and u by minimizing the sum of squared
Mahalanobis distance with respect to the normalized covariance matrices V0[xα].

where C is a normalization constant. Throughout
this paper, we denote the inner product of vectors a
and b by (a, b).

Maximum likelihood (ML) estimation is to find the
values of {x̄α} and u that maximize the likelihood ,
i.e., eq. (6) into which the data {xα} are substituted,
or equivalently minimize the sum of the squared Ma-
halanobis distances in the form

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)) (6)

subject to the constraint (3) (Fig. 5(b)). The solution
is called the maximum likelihood (ML) estimator . If
the uncertainty is small, which we assume hereafter,
the constraint (3) can be eliminated by introducing
Lagrange multipliers and applying first order approx-
imation. After some manipulations, we obtain the
following form [15]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα,u)F (l)(xα, u). (7)

Here, W
(kl)
α is the (kl) element of the inverse

of the r × r matrix whose (kl) element is
(∇xF

(k)
α , V0[xα]∇xF

(l)
α ); we symbolically write

(
W (kl)

α

)
=

(
(∇xF (k)

α , V0[xα]∇xF (l)
α )

)−1

, (8)

where ∇xF (k) is the gradient of the function F (k)

with respect to x. The subscript α means that x =
xα is substituted.

Remark 6 The data {xα} may be subject to some
constraints. For example, each xα may be a unit
vector. The above formulation still holds if the inverse
V0[xα]−1 in eq. (6) is replaced by the (Moore-Penrose)
generalized (or pseudo) inverse V0[xα]− [15].

Similarly, the r constraints in eq. (3) may be redun-
dant, say only r′ (< r) of them are independent. The
above formulation still holds if the inverse in eq. (8)
is replaced by the generalized inverse of rank r′ with
all but r′ largest eigenvalues are replaced by zero [15].

Accuracy of the ML estimator

It can be shown [15] that the covariance matrix of
the ML estimator û has the form

V [û] = ε2M(û)−1 + O(ε4), (9)

where

M(u) =
N∑

α=1

r∑

k,l=1

W (kl)
α ∇uF (k)

α ∇uF (k)>
α . (10)

Here, ∇uF (k) is the gradient of the function F (k) with
respect to u. The subscript α means that x = xα is
substituted.

Remark 7 It can be proved that no other estima-
tors could reduce the covariance matrix further than
eq. (9) except for the higher order term O(ε4) [15, 18].
The ML estimator is optimal in this sense. Recall
that we are focusing on the asymptotic analysis for ε
→ 0. Thus, what we call the “ML estimator” should
be understood to be a first approximation to the true
ML estimator for small ε.
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Remark 8 The p-dimensional parameter vector u
may be constrained. For example, it may be a unit
vector. If it has only p′ (< p) degrees of freedom, the
parameter space U is a p′-dimensional manifold inRp.
In this case, the matrix M(u) in eq. (9) is replaced
by P uM(u)P u, where P u is the projection matrix
onto the tangent space to the parameter space U at
u [15]. The inverse M(û)−1 in eq. (9) is replaced by
the generalized inverse M(û)−1 of rank p′ [15].

3.3 Geometric model selection
Geometric fitting is to estimate the parameter u

of a a given model. If we have multiple candidate
models

F
(k)
1 (x̄α,u1) = 0, F

(k)
2 (x̄α, u2) = 0, ..., (11)

from which we are to select an appropriate one for
the observed data {xα}, the problem is (geometric)
model selection [15, 17, 19].

Suppose, for example, we want to fit a curve to
given points in two dimensions. If they are almost
collinear, a straight line may fit fairly well, but a
quadratic curve may fit better, and a cubic curve even
better. Which curve should we fit? A naive idea is to
compare the residual (sum of squares), i.e., the min-
imum value Ĵ of J in eq. (6); we select the one that
has the smallest residual Ĵ . This does not work, how-
ever, because the ML estimator û is so determined as
to minimize the residual Ĵ , and the residual Ĵ can be
made arbitrarily smaller if the model is equipped with
more parameters to adjust. So, the only conclusion
would be to fit a curve of a sufficiently high degree
passing through all the points.

Geometric AIC

The above observation leads to the idea of com-
pensating for the negative bias of the residual caused
by substituting the ML estimator. This is the prin-
ciple of Akaike’s AIC (Akaike information criterion)
[1], which is derived from the asymptotic behavior of
the Kullback-Leibler information (or divergence) as
the number n of experiments goes to infinity. Do-
ing a similar analysis to Akaike’s and examining the
asymptotic behavior as the noise level ε goes to zero,
we can obtain the following geometric AIC [15, 16]
(see Appendix A for the derivation):

G-AIC = Ĵ + 2(Nd + p)ε2 + O(ε4). (12)

Here, d is the dimension of the manifold S defined by
the constraint (3) in the data space X , and p is the
dimension of u (i.e., the number of unknowns). The
model for which eq. (12) is the smallest is regarded
as the best. The derivation of eq. (12) is based on
the following facts [15, 16] (see Appendix A for the
details):

• The ML estimator û converges to its true value
as ε → 0.

• The ML estimator û obeys a Gaussian distribu-
tion under linear constraints, because the noise
is assumed to be Gaussian. For nonlinear con-
straints, linear approximation can be justified
in the neighborhood of the solution if ε is suf-
ficiently small.

• A quadratic form in standardized Gaussian ran-
dom variables is subject to a χ2 distribution,
whose expectation is equal to its degree of free-
dom.

Geometric MDL

Another well known criterion for model selection is
Rissanen’s MDL (Minimum description length) [45,
46, 47], which measures the goodness of a model by
the minimum information theoretic code length of the
data and the model. The basic idea is simple, but the
following difficulties must be resolved for applying it
in practice:

• Encoding a problem involving real numbers re-
quires an infinitely long code length.

• The probability density, from which a minimum
length code can be obtained, involves unknown
parameters.

• The exact form of the minimum code length is
very difficult to compute.

Rissanen [45, 46, 47] avoided these difficulties by
quantizing the real numbers in a way that does not de-
pend on individual models and substituting the ML
estimators for the parameters. They, too, are real
numbers, so they are also quantized. The quanti-
zation width is so chosen as to minimize the total
description length (the two-stage encoding). The re-
sulting code length is evaluated asymptotically as the
data length n goes to infinity. If we analyzes the
asymptotic behavior of encoding the geometric fitting
problem as the noise level ε goes to zero, we obtain
the following geometric MDL [21] (see Appendix B
for the derivation):

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

+ O(ε2). (13)

Here, L is a reference length chosen so that its ratio
to the magnitude of data is O(1), e.g., L can be taken
to be the image size for feature point data. Its exact
determination requires an a priori distribution that
specifies where the data are likely to appear (we will
discuss this more in Sec. 4.1), but it has been observed
that the model selection is not very much affected by
L as long as it is within the same order of magnitude
[21] (see Appendix B for the details):

4. Standard vs. Geometric Analysis

We now point out that a correspondence exists be-
tween the standard statistical analysis and the geo-
metric inference problem. We also compare the capa-
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bility of the geometric AIC and the geometric MDL
in detecting degeneracy.
4.1 Standard statistical analysis

The asymptotic analysis in Sec. 3 bears a strong re-
semblance to the standard statistical estimation prob-
lem: after observing n data x1, x2, ..., xn, we want
to estimate the parameter θ of the probability den-
sity P (x|θ) called the (stochastic) model , according
to which each datum is assumed to be sampled inde-
pendently.

Maximum likelihood (ML) estimation is to find the
value θ that maximizes

∏n
i=1 P (xi|θ), or equivalently

minimizes its negative logarithm −∑n
i=1 log P (xi|θ).

It can be shown that the covariance matrix V [θ̂] of
the resulting ML estimator θ̂ converges, under a mild
condition, to O as the number n of experiments goes
to infinity (consistency) in the form

V [θ̂] = I(θ)−1 + O
( 1

n2

)
, (14)

where we define the Fisher information matrix I(θ)
by

I(θ) = nE[(∇θ log P (x|θ))(∇θ log P (x|θ))>]. (15)

The operation E[ · ] denotes expectation with re-
spect to the density P (x|θ). The first term in the
right-hand side of eq. (14) is called the Cramer-Rao
lower bound (CRLB), describing the minimum degree
of fluctuations in all estimators. Thus, the ML esti-
mator is optimal if n is sufficiently large (asymptotic
efficiency).

If we have multiple candidate models

P1(x|θ1), P2(x|θ2), P3(x|θ3), ..., (16)

from which we are to select an appropriate one for the
observations x1, x1, ..., xn, the problem is (stochas-
tic) model selection. Akaike’s AIC has the following
form:

AIC = −2
N∑

i=1

log P (xi|θ̂) + 2k + O
( 1

n

)
. (17)

The model for which this quantity is the smallest is
regarded as the best. The derivation of eq. (17) is
based on the following facts [1]:

• The maximum likelihood estimator θ̂ converges
to its true value as n → ∞ (the law of large
numbers).

• The maximum likelihood estimator θ̂ asymptot-
ically obeys a Gaussian distribution as n → ∞
(the central limit theorem).

• A quadratic form in standardized Gaussian ran-
dom variables is subject to a χ2 distribution,
whose expectation is equal to its degree of free-
dom.

The Rissanen’s MDL has the following form [46,
47]:

MDL = −
n∑

i=1

log P (xi|θ̂) +
k

2
log

n

2π

+ log
∫

T

√
|I(θ)|dθ + O(1). (18)

Here, θ̂ is the ML estimator; the symbol O(1) de-
notes terms of order 0 in n in the limit n → ∞. In
order that the integration in the right-hand side of
eq. (18) exists, the domain T of the parameter θ must
be compact. In other words, we must specify in the
k-dimensional space of θ a finite region T in which
the true value of θ is likely to exist. This is noth-
ing but the Bayesian standpoint that requires a prior
distribution for the parameter to estimate. If it is
not known, we must introduce an appropriate expe-
dient to suppress an explicit dependence on the prior.
Such an expedient is also necessary for the geometric
MDL, i.e., the introduction of the reference length L
in eq. (18).

4.2 Dual interpretations

We have seen that the limit n → ∞ for the stan-
dard statistical analysis corresponds to the limit ε
→ 0 for geometric inference. For example, the co-
variance matrix of the ML estimator agrees with the
Cramer-Rao lower bound up to O(1/n2) for n → ∞
(see eq. (14)), while for geometric inference it agrees
with the lower bound bound up to O(ε4) for ε → 0
(see eq. (9)). If follows that 1/

√
n for the standard

statistical analysis plays the same role as ε for geo-
metric inference.

The same correspondence exists for model selec-
tion, too. The unknowns for geometric inference
are the p parameters of the constraint plus the N
true positions specified by the d coordinates of the
d-dimensional manifold S defined by the constraint.
If eq. (12) is divided by ε2, we have Ĵ/ε2 + 2(Nd +
p) + O(ε2), which is (−2 times the logarithmic likeli-
hood)+2(the number of unknowns), the same form as
Akaike’s AIC (17). The same holds for eq. (13), which
corresponds to Rissanen’s MDL (18) if ε is replaced
by 1/

√
n [21].

This correspondence can be interpreted as follows.
Since the underlying ensemble is hypothetical, we can
actually observe only one sample as long as a partic-
ular algorithm is used. Suppose we hypothetically
sample n different algorithms to find n different po-
sitions. The optimal estimate of the true position
under the Gaussian model is their sample mean. The
covariance matrix of the sample mean is 1/n times
that of the individual samples. Hence, this hypothet-
ical estimation is equivalent to dividing the noise level
ε in eq. (4) by

√
n.

In fact, there were attempts to generate a hypo-
thetical ensemble of algorithms by randomly varying
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the internal parameters (e.g., the thresholds for judg-
ments), not adding random noise to the image [5, 6].
Then, one can compute their means and covariance
matrix. Such a process as a whole can be regarded
as one operation that effectively achieves higher ac-
curacy.

Thus, the asymptotic analysis for ε → 0 is equiv-
alent to the asymptotic analysis for n → ∞, where
n is the number of hypothetical observations. As a
result, the expression · · ·+O(1/

√
nk) in the standard

statistical analysis turns into · · ·+O(εk) in geometric
inference.
4.3 Noise level estimation

In order to use the geometric AIC or the geomet-
ric MDL, we need to know the noise level ε. If not
known, it must be estimated. Here arises a sharp
contrast between the standard statistical analysis and
our geometric inference.

For the standard statistical analysis, the noise
magnitude is a model parameter , because “noise” is
defined to be the random effects that cannot be ac-
counted for by the assumed model . Hence, the noise
magnitude should be estimated, if not known, accord-
ing to the assumed model . For geometric inference,
on the other hand, the noise level ε is a constant that
reflects the uncertainty of feature detection. So, it
should be estimated independently of individual mod-
els.

If we know the true model, it can be estimated
from the residual Ĵ using the knowledge that Ĵ/ε2 is
subject to a χ2 distribution with rN − p degrees of
freedom in the first order [15]. Specifically, we obtain
an unbiased estimator of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (19)

The validity of this formula has been confirmed by
many simulations.

One may wonder if model selection is necessary
at all when the true model is known. In practice,
however, a typical situation where model selection
is called for is degeneracy detection. In 3-D analy-
sis from images, for example, the constraint (3) cor-
responds to our knowledge about the scene such as
rigidity of motion. However, the computation fails
if degeneracy occurs (e.g., the motion is zero). Even
if exact degeneracy does not occur, the computation
may become numerically unstable in near degeneracy
conditions. In such a case, the computation can be
stabilized by switching to a model that describes the
degeneracy [17, 22, 27, 28, 34, 42, 56].

Degeneracy means addition of new constraints,
such as some quantity being zero. It follows that the
manifold S degenerates into a submanifold S ′ of it.
Since the general model still holds irrespective of the
degeneracy, i.e. S ′ ⊂ S, we can estimate the noise
level ε from the residual Ĵ of the general model S,
which we know is true, using eq. (19).

Figure 6: Fitting a line, a circle, and an ellipse.

Remark 9 Eq. (19) can be intuitively understood
as follows. Recall that Ĵ is the sum of the square
distances from {xα} to the manifold Ŝ defined by
the constraint F (k)(x,u) = 0, k = 1, ..., r. Since Ŝ
has codimension r (the dimension of the orthogonal
directions to it), the residual Ĵ should have expec-
tation rNε2. However, Ŝ is fitted by adjusting its
p-dimensional parameter u, so the expectation of Ĵ
reduces to (rN − p)ε2.

Note that we need more than bp/rc data for this
estimation. For example, if we know that the true
model is a planar surface, we need to observe more
than three points for degeneracy detection.

Remark 10 It may appear that the residual Ĵ of
the general model cannot be stably computed in the
presence of degeneracy. However, what is unstable is
model specification, not the residual. For example, if
we fit a planar surface to almost collinear points in
3-D, it is difficult to specify the fitted plane stably;
the solution is very susceptible to noise. Yet, the
residual is stably computed, since unique specification
of the fit is difficult because all the candidates have
almost the same residual .

Note that the noise level estimation from the gen-
eral model S by eq. (19) is still valid even if degen-
eracy occurs, because degeneracy means shrinkage of
the model manifold S ′ within S, which does not af-
fect the data deviations in the “orthogonal” directions
(in the Mahalanobis sense) to S that account for the
residual Ĵ .

4.4 Comparing the geometric AIC/MDL

We now illustrate the different characteristics of
the geometric AIC and the geometric MDL in detect-
ing degeneracy.

Detection of Circles and Lines

Consider an ellipse that is tangent to the x-axis at
the origin O with the minor radius 50 in the y direc-
tion and eccentricity 1/β. On it, we take eleven points
with equally spaced x coordinates. Adding Gaussian
noise of mean 0 and variance ε2 to the x and y coor-
dinates of each point independently, we fit an ellipse,
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Figure 7: The ratio (%) of detecting a line by the geometric AIC (solid lines with +) and the geometric MDL
(dotted lines with ×) using (a) the true noise level and (b) the estimated noise level.

0

20

40

60

80

100

0.7 0.8 0.9 1 1.1 1.2 1.3

[%
]

β

G-AIC
G-MDL

0

20

40

60

80

100

0.7 0.8 0.9 1 1.1 1.2 1.3

[%
]

β

G-AIC
G-MDL

(a) (b)

Figure 8: The ratio (%) of detecting a circle by the geometric AIC (solid lines with +) and the geometric MDL
(dotted lines with ×) using (a) the true noise level and (b) the estimated noise level.

a circle, and a line in a statistically optimal manner
[25, 26], using a technique called renormalization1 [15]
(we will discuss this in Sec. 5.6). Fig. 6 shows one in-
stance for β = 2.5 and ε = 0.1. Note that a line and
a circle are degeneracies of an ellipse.

Lines, circles, and ellipses define 1-dimensional (ge-
ometric) models with 2, 3, and 5 degrees of freedom,
respectively. Their geometric AIC and the geometric
MDL for N points are

G-AICl = Ĵl + 2(N + 2)ε2,

G-AICc = Ĵc + 2(N + 3)ε2,

G-AICe = Ĵe + 2(N + 5)ε2,

G-MDLl = Ĵl − (N + 2)ε2 log
( ε

L

)2

,

G-MDLc = Ĵc − (N + 3)ε2 log
( ε

L

)2

,

G-MDLe = Ĵe − (N + 5)ε2 log
( ε

L

)2

, (20)

where the subscripts l, c, and e refer to lines, circles,
and ellipses, respectively. For each β, we compute the

1The program is available at:
http://www.suri.it.okayama-u.ac.jp/e-program.html

geometric AIC and the geometric MDL of the fitted
line, circle, and ellipse and choose the one that has
the smallest value. We used the reference length L =
1.

Fig. 7(a) shows the percentage of choosing a line
for ε = 0.01 after 1000 independent trials for each
β. If there were no noise, it should be 0% for β 6=
0 and 100% for β = 0. In the presence of noise, the
geometric AIC produces a sharp peak, indicating a
high capability of distinguishing a line from an ellipse.
However, it judges a line to be an ellipse with some
probability. The geometric MDL judges a line to be
a line almost 100%, but it judges an ellipse to be a
line over a wide range of β.

In Fig. 7(a), we used the true value of ε2. If it
is unknown, it can be estimated from the residual of
the general ellipse model by eq. (19). Fig. 7(b) shows
the result using its estimate. Although the sharpness
is somewhat lost, similar performance characteristics
are observed.

Fig. 8 shows the percentage of choosing a circle for
ε = 0.01. If there were no noise, it should be 0% for β
6= 1 and 100% for β = 1. In the presence of noise, as
we see, it is difficult to distinguish a circular arc from
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Figure 9: Fitting a space line and a plane to points in
space.

an elliptic arc for β < 1. Yet, the geometric AIC can
detect a circle very sharply, although it judges a circle
to be an ellipse with some probability. In contrast,
the geometric MDL almost always judges an ellipse
to be a circle for β < 1.1.

Detection of Space Lines

Consider a rectangular region [0, 10] × [−1, 1] on
the xy plane in the xyz space. We randomly take
eleven points in it and magnify the region A times
in the y direction. Adding Gaussian noise of mean
0 and variance ε2 to the x, y, and z coordinates of
each point independently, we fit a space line and a
plane in a statistically optimal manner (Fig. 9). The
rectangular region degenerates into a line segment as
A → 0.

A space line is a 1-dimensional model with four
degrees of freedom; a plane is a 2-dimensional model
with three degrees of freedom. Their geometric AIC
and geometric MDL are

G-AICl = Ĵl + 2(N + 4)ε2,

G-AICp = Ĵp + 2(2N + 3)ε2,

G-MDLl = Ĵl − (N + 4)ε2 log
( ε

L

)2

,

G-MDLp = Ĵp − (2N + 3)ε2 log
( ε

L

)2

, (21)

where the subscripts l and p refer to lines and planes,
respectively. For each A, we compare the geometric
AIC and the geometric MDL of the fitted line and
plane and choose the one that has the smaller value.
We used the reference length L = 1.

Fig. 10(a) shows the percentage of choosing a line
for ε = 0.01 after 1000 independent trials for each A.
If there were no noise, it should be 0% for A 6= 0 and
100% for A = 0. In the presence of noise, the geomet-
ric AIC has a high capability of distinguishing a line
from a plane, but it judges a line to be a plane with
some probability. In contrast, the geometric MDL
judges a line to be a line almost 100%, but it judges
a plane to be a line over a wide range of A.

In Fig. 10(a), we used the true value of ε2.
Fig. 10(b) shows the corresponding result using its
estimate obtained from the general plane model by
eq. (19). We observe somewhat degraded but similar
performance characteristics.

Observations

We can observe from the above examples that the
geometric AIC has a higher capability for detecting
degeneracy than the geometric MDL, but the general
model is chosen with some probability when the true
model is degenerate. In contrast, the percentage for
the geometric MDL to detect degeneracy when the
true model is really degenerate approaches 100% as
the noise decreases. This is exactly the dual state-
ment to the well known fact, called the consistency
of the MDL, that the percentage for Rissanen’s MDL
to identify the true model converges to 100% in the
limit of an infinite number of observations. Rissanen’s
MDL is regarded by many as superior to Akaike’s AIC
because the latter lacks this property.

At the cost of this consistency, however, the geo-
metric MDL regards a wide range of nondegenerate
models as degenerate. This is no surprise, since the
penalty−(Nd+p)ε2 log(ε/L)2 for the geometric MDL
in eq. (13) is heavier than the penalty 2(Nd + p)ε2

for the geometric AIC in eq. (12). As a result, the
geometric AIC is more faithful to the data than the
geometric MDL, which is more likely to choose a de-
generate model. This contrast has also been observed
in many applications [34, 24].

Remark 11 Despite the fundamental difference
of geometric model selection from the standard
(stochastic) model selection, many attempts have
been made in the past to apply Akaike’s AIC and
their variants to computer vision problems based on
the asymptotic analysis of n → ∞, where the inter-
pretation of n is different from problem to problem
[51, 52, 53, 54, 55]. Rissanen’s MDL is also used in
computer vision applications. Its use may be jus-
tified if the problem has the standard form of lin-
ear/nonlinear regression [3, 35]. Often, however, the
solution having a shorter description length was cho-
sen with a rather arbitrary definition of the complex-
ity [12, 30, 36].

Remark 12 One may wonder why we are forced to
choose one from the two asymptotic analyses, n →
∞ or ε → 0. Why don’t we use the general form
of the AIC or the MDL rather than worrying about
their asymptotic expressions? The answer is that we
cannot .

The starting principle of the AIC is the Kullback-
Leibler distance of the assumed probability distribu-
tion from the true distribution. We cannot compute
it exactly, because we do not know the true distribu-
tion. So, Akaike approximated it, invoking the law of
large numbers and the central limit theorem, thereby
estimating the true distribution from a large number
of observations, while the geometric AIC is obtained
by assuming that the noise is very small, thereby iden-
tifying the data as their true values to a first approx-
imation.

Similarly, the exactly shortest code length is diffi-
cult to compute if real numbers are involved, so Ris-
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Figure 10: The rate (%) of detecting a space line by the geometric AIC (solid lines) and the geometric MDL (dashed
lines) with (a) the true noise level and (b) the estimated noise level.

sanen approximated it by omitting higher order terms
in the data length n. The geometric MDL is obtained
by omitting higher order terms in the noise level ε.

Thus, analysis of asymptotic expressions in one
form or another is inevitable if the principle of the
AIC or the MDL is to be applied in practice.

Remark 13 Note that one cannot say one model se-
lection criteria is superior to another, because each
is based on its own logic. Also, if we want to com-
pare the performance of two criteria in practice, we
must formulate them in such a way that they con-
form to a common assumption. In this sense, one
cannot compare Akaike’s AIC with the geometric AIC
or Rissanen’s MDL with the geometric MDL, because
the underlying asymptotic limits are different. Sim-
ilarly, if we want to compare the geometric AIC or
the geometric MDL with other existing criteria, e.g.,
Schwarz’ BIC, derived in the asymptotic limit n →
∞, they must be formulated in the asymptotic limit
ε → 0.

Note also that one cannot prove that a particular
criterion works at all. In fact, although Akaike’s AIC
and Rissanen’s MDL are based on rigorous mathe-
matics, there is no guarantee that they work well in
practice. The mathematical rigor is in their reduction
from their starting principles (the Kullback-Leibler
distance and the minimum description length prin-
ciple), which are beyond proof. What one can tell
is which criterion is more suitable for a particular
application when used in a particular manner. The
geometric AIC and the geometric MDL have shown
to be effective in many computer vision applications
[20, 23, 24, 27, 28, 34, 42, 56], but other criteria may
be better in other applications.

5. Linear Geometric Fitting

Now, we consider a special type of geometric fit-
ting problem that most frequently arises in computer
vision applications: the constraint is linear in both
data and unknowns. We systematically review exist-
ing methods.

5.1 Linear constraints
In many geometric inference problems of computer

vision, the constraint (3) has the form

(ξ(x̄α),u) = 0, (22)

where ξ( · ) is generally a nonlinear mapping from an
m-dimensional vector to a p-dimensional vector. Ev-
idently, the magnitude of u is unconstrained, so we
normalize it to a unit vector: ‖u‖ = 1.

Example 1 Suppose we are given N points
{(xα, yα)}, α = 1, ..., N , in two dimensions. Their
true positions {(x̄α, ȳα)} are assumed to be on a
conic (a circle, an ellipse, a parabola, a hyperbola, or
their degeneracy). Our task is to estimate the curve
from the noisy data {(xα, yα)} (see Fig. 6). The
constraint on {(x̄α, ȳα)} is

Ax̄2
α +2Bx̄αȳα +Cȳ2

α +2(Dx̄α +Eȳα)+F = 0 (23)

for some coefficients A, B, ..., D, not all being zero.
This constraint reduces to eq. (22) if we put

ξ(x, y) =
(

x2 2xy y2 2x 2y 1
)>

,

u =
(

A B C D E F
)>

. (24)

The data space X is a 2-dimensional manifold in the
6-dimensional space R6; the parameter space U is the
5-dimensional unit sphere S6 centered on the origin
of R6.

Example 2 Suppose N points in a 3-D scene are
projected to (xα, yα) in the first image and (x′α, y′α)
in the second, α = 1, ..., N . If the camera imag-
ing geometry is perspective projection, there exists a
matrix F of determinant 0 such that

(




x̄α

ȳα

1


 , F




x̄′α
ȳ′α
1


) = 0, (25)

which is called the epipolar equation [14]. The ma-
trix F is known as the fundamental matrix . For



50 Kenichi KANATANI MEM.FAC.ENG.OKA.UNI. Vol. 38, Nos. 1 & 2

3-D reconstruction from the images, we need to esti-
mate the fundamental matrix F from the noisy data
{(xα, yα)} and {(x′α, y′α)} (see Fig. 4). Eq. (25) re-
duces to eq. (22) if we put

ξ (x, y, x′, y′) =
(
xx′ xy′ x yx′ yy′ y x′ y′ 1

)>
,

u =
(
F11 F12 F13 F21 F22 F23 F31 F32 F33

)>
. (26)

The data space X is a 4-dimensional manifold in the
9-dimensional space R9; the parameter space U is
a 7-dimensional manifold defined by det F = 0 and
‖F ‖ = 1, where the matrix norm is define by ‖F ‖ =√∑3

i,j=1 F 2
ij .

For the linear constraint (22), the function J in
eq. (7) reduces to

J =
N∑

α=1

(ξα, u)2

(u, V0[ξα]u)
, (27)

where V0[ξα] is the normalized covariance matrix of
ξα; we use the abbreviation ξα = ξ(xα). The matrix
V0[ξα] can be expressed to a first approximation in
the form

V0[ξα] = ∇xξ|>x=xα
V0[xα]∇xξ|x=xα , (28)

where ∇xξ is the m× p Jacobian matrix of ξ(x):

∇xξ =




∂ξ1/∂x1 · · · ∂ξp/∂x1

...
...

∂ξ1/∂xm · · · ∂ξp/∂xm


 . (29)

The covariance matrix V [û] of the ML estimator û
given by eq. (9) now reads

V [û] = ε2
( N∑

α=1

P uξαξ>α P u

(u, V0[ξα]u)

)−
+ O(ε4), (30)

where the superscript − denotes the (Moore-Penrose)
generalized inverse. The matrix P u denotes projec-
tion onto the tangent space to the parameter space
U at u (cf. Remark 8). Since the leading term is the
lower bound on the covariance matrix of any estima-
tion (Remark 7), the ML estimator is optimal up to
higher order terms in ε.

Remark 14 Since we are focusing on the asymptotic
analysis for ε → 0, what we call the “ML estimator”
is a first approximation to the true ML estimator for
small ε (Remark 7). Note that if the parameter u
is not constrained, the generalized inverse in eq. (30)
can be replaced by the usual inverse, and the pro-
jection matrix P u is not necessary. However, u is
at least constrained to be a unit vector, and often
additional constraints exist, e.g., det F = 0 on the
fundamental matrix F . If no constraints exist other
than ‖u‖ = 1, the covariance matrix V [û] has rank
p− 1, and its null space is in the direction of u. The
projection matrix P n in this case is

P u = I − uu>. (31)

5.2 Least-squares method
If u is constrained, the minimization of eq. (27)

should be carried out subject to the constraint, but
this is very difficult in many cases. A practical ap-
proach to this is to ignore all the constraints except
the normalization ‖u‖ = 1 and do minimization over
the (p−1)-dimensional sphere Sp−1 inRp. This expe-
dient is motivated by the fact that if the data {xα}
are exact, the solution should automatically satisfy
the remaining constraints. It follows that if the data
uncertainty is very small, which we always assume,
the resulting solution û should satisfy all the con-
straints up to higher order terms in ε.

However, the minimization of eq. (27) is still non-
linear even if all constraints other than ‖u‖ = 1 are
ignored. The simplest approach is to solve eqs. (22)
directly by (total) least squares, minimizing

JLS =
N∑

α=1

(ξα,u)2. (32)

If we define the second-order moment matrix

M =
N∑

α=1

ξαξ>α , (33)

eq. (32) is rewritten as

JLS = (u, Mu). (34)

The unit vector u that minimizes this is the unit
eigenvector of M for the smallest eigenvalue. The re-
sulting LS (least-squares) solution ûLS is a very crude
approximation to the ML estimator û. However, be-
cause of the ease of the computation, it is often used
as an initial guess for computing the ML estimator û
by iterations.
5.3 Naive method

If we define

M(u) =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, (35)

eq. (27) is written as

J = (u,M(u)u). (36)

This inspires the following iterations for computing
the ML estimator:

1. Guess an appropriate initial value u0, say the LS
solution ûLS.

2. Assuming that ui−1 is obtained (initially i = 1),
let ui be the unit eigenvector of M(ui−1) for the
smallest eigenvalue.

3. Return ui if ui is sufficiently close to ui−1 except
for the sign. Otherwise, let ui−1 ← ui, and go
back to Step 2.
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This scheme does not work, however, because the
resulting solution û is the value u that minimizes
(u, M(û)u), not (u, M(u)u). In other words,

(û, M(û)û) < (û + ∆u, M(û)(û + ∆u)) (37)

for any nonzero perturbation ∆u, but not

(û, M(û)û) < (û+∆u, M(û+∆u)(û+∆u)). (38)

A detailed analysis shows that û is biased by O(ε2)
[15]. Namely, if the fluctuations of the data {xα} are
centered on their true values {x̄α}, the corresponding
fluctuations of û are around a value different from its
true value by O(ε2). This causes inadmissible errors
in many practical applications.

5.4 FNS method

If the constraint on u is ignored, the solution that
minimizes eq. (27) is obtained by solving ∇uJ = 0.
Since

∇uJ =
N∑

α=1

2(ξα, u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u
(u, V0[ξα]u)2

,

(39)
the equation ∇uJ = 0 is written in the form

X(u)u = 0, (40)

where

X(u) =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

−
N∑

α=1

(ξα, u)2V0[ξα]
(u, V0[ξα]u)2

. (41)

From this, we have the following scheme for solving
eq. (40):

1. Guess an appropriate initial value u0, say the LS
solution ûLS.

2. Assuming that ui−1 is obtained (initially i = 1),
solve the eigenvalue problem

X(ui−1)u = λu. (42)

Let ui be the unit eigenvector for the eigenvalue
λ closest to 0.

3. Return ui if ui is sufficiently close to ui−1 except
for the sign. Otherwise, let ui−1 ← ui, and go
back to Step 2.

The resulting solution û satisfies eq. (40). In fact,
the value û produced by the above iterations should
satisfy

X(û)û = λû (43)

for some λ. Taking the inner product of û and both
sides, we have

(û, X(û)û) = λ. (44)

Eq. (41) implies that

(û, X(û)û) =
N∑

α=1

(û, ξα)2

(û, V0[ξα]û)

−
N∑

α=1

(ξα, û)2(û, V0[ξα]û)
(û, V0[ξα]û)2

= 0, (45)

meaning that λ = 0. Thus, û is indeed the solution
of eq. (40). This method was proposed by Chojnacki
et al. [7] and called the FNS (fundamental numerical
scheme) method . Usually, the iterations converges
very quickly.

Remark 15 Eq. (45) is a consequence of the fact
that the right-hand side of eq. (27) is a homogeneous
function of degree 0 in u. Since multiplying u by any
nonzero constant does not change the value of J , the
gradient ∇uJ is necessarily orthogonal to u. Thus,
(u,∇uJ) = 2(u, X(u)u) is identically 0.

5.5 HEIV method
Eq. (40) can also be written as

M(u)u = L(u)u, (46)

where

M(u) =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

,

L(u) =
N∑

α=1

(ξα, u)2V0[ξα]
(u, V0[ξα]u)2

. (47)

This implies the following scheme.

1. Guess an appropriate initial value u0, say the LS
solution ûLS.

2. Assuming that ui−1 is obtained (initially i = 1),
solve the generalized eigenvalue problem

M(ui−1)u = λL(ui−1)u. (48)

Let ui be the generalized eigenvector for the gen-
eralized eigenvalue closest to 1. The norm of ui

is normalized to

(ui, L(ui−1)ui) = 1. (49)

3. Return ui if ui is sufficiently close to ui−1 except
for the sign. Otherwise, let ui−1 ← ui, and go
back to Step 2.

The resulting solution û should satisfy

M(û)û = λL(û)û, (50)

for some λ. Taking the inner product of û and both
sides, we have

(û, M(û)û) = λ, (51)
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due to the normalization convention (49), which im-
plies from the second of eqs. (47) that

1 = (û, L(û)û) =
N∑

α=1

(ξα,u)2(û, V0[ξα]û)
(u, V0[ξα]u)2

=
N∑

α=1

(ξα,u)2

(u, V0[ξα]u)
. (52)

From the first of eqs. (47), we see that

(û,M(û)û) =
N∑

α=1

(û, ξα)2

(u, V0[ξα]u)
= 1, (53)

meaning that λ = 1. Thus, û is indeed the solu-
tion of eq. (46). However, the matrix L(u) is usually
singular, because the matrix V0[xα] in the second of
eqs. (47) is likely to degenerate. This is easily seen
from eq. (28): the dimension p of ξα is generally larger
than the dimension m of xα. Hence, the generalized
eigenvalue problem (48) need to be reduced to sub-
problems of smaller dimensions. The reduced form
(we omit the details, see [9]) was proposed by Leedan
and Meer [31] and Matei and Meer [33] and called
called the HEIV (heteroscedastic errors-in-variables)
method .
5.6 Renormalization method

The reason why the solution of the naive method of
Sec. 5.3 is biased is that the matrix M(u) in eq. (35)
is biased. If we decompose the datum ξα into its true
value ξ̄α and the noise term ∆ξα, the expectation of
eq. (35) is

E[ξαξ>α ]
= E[(ξ̄α + ∆ξα)(ξ̄α + ∆ξα)>]

= E[ξ̄αξ̄
>
α ] + E[ξ̄α∆ξ>α ] + E[∆ξαξ̄

>
α ] + E[∆ξα∆ξ>α ]

= ξ̄αξ̄
>
α + V0[ξα]. (54)

Thus,

E[M(u)] = M̄(u) + ε2N(u) + O(ε4), (55)

where M̄(u) is the value of M(u) evaluated using
the true values {ξ̄α} and

N(u) =
N∑

β=1

V0[ξβ ]
(u, V0[ξβ ]u)

. (56)

Eq. (55) implies that an unbiased solution can be ob-
tained if the matrix M(u) in eq. (36) is replaced by

M̂(u) = M(u)− ε2N(u). (57)

The square noise level ε2 is unknown, but if we note
that the smallest eigenvalue of M̄(u) is 0, we can
estimate ε2 so that the smallest eigenvalue of M̂(u)
is 0. Thus, we obtain the following scheme

1. Guess an appropriate initial value u0, say the LS
solution ûLS, and let c0 = 0.

2. Assuming that ui−1 and ci−1 are obtained (ini-
tially i = 1), solve the eigenvalue problem

(M(ui−1)− ci−1N(ui−1))u = λu. (58)

Let ui be the unit eigenvector for the smallest
eigenvalue λ.

3. Return ui if λ is sufficiently close to 0. Other-
wise, let

ci = ci−1 +
λ

(ui,N(ui−1)ui)
. (59)

4. Let ui−1 ← ui and go back to Step 2.

Eqs. (58) and (59) imply that if ci is close to 0 we
have

(M(ui−1)− ciN(ui−1))ui = 0. (60)

In fact, the inner product of ui and the left-hand side
is

(ui, (M(ui−1)− ciN(ui−1))ui)
= (ui, (M(ui−1)− ci−1N(ui−1))ui)

−λ(ui,N(ui−1)ui)
(ui, N(ui−1)ui)

= λ− λ = 0. (61)

If ci is close to 0, the matrix M(ui−1) − ciN(ui−1)
is positive semidefinite, so eq. (61) implies that ui is
included in the null space of M(ui−1) − ciN(ui−1),
proving eq. (60). Hence, the solution satisfies

(M(û)− cN(û))û = 0, (62)

and c gives an estimate of ε2. This scheme was pro-
posed by Kanatani [15] and called renormalization.

Remark 16 Historically, this method was proposed
first; the HEIV and FNS methods were proposed as
an refinement to it. However, the renormalization
solution and the HEIV/FNS solution (FNS and HEIV
produce the same value) are both optimal in the sense
that their covariance matrices differ only in the term
O(ε4) in eq. (30) [15]. This is confirmed by numerical
simulations [7, 8, 9].

Remark 17 Renormalization tries to eliminate the
bias term in eq. (55) by “subtraction” in the form of
eq. (57). An alternative strategy would be to remove
the bias by “division”. In fact, if we let M̃(u) =
N(u)−1/2M(u)N(u)−1/2 (the negative square root
is defined by replacing all its eigenvalues λ by 1/

√
λ

in the canonical form), E[M̄(u)] and M̃(u) share the
same eigenvectors up to O(ε4). If ũ is an eigenvector
of M̃(u), the corresponding eigenvector of M(u) is
N(u)−1/2ũ. This implies that an unbiased solution
is obtained by applying the naive method of Sec. 5.3
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to M̃(u). This strategy is known as equilibration or
whitening . However, the matrix N(u) is often sin-
gular due to the degeneracy of V0[ξα] (cf. Sec. 5.1),
so N(u)−1/2 cannot be computed. Still, it has been
applied to a few problems for which N(u) does not
degenerate [32, 38, 39].

5.7 Optimal correction
In deriving the FNS, HEIV, and renormalization

methods, we ignored all constraints on u except ‖u‖
= 1. Let the remaining constraints be

φ(k)(u) = 0, k = 1, ..., r. (63)

From eq. (30), the normalized covariance of the ML
estimator û is given by

V0[û] =
(
P ûM(û)P û

)−
, (64)

where M(u) is defined in eq. (35) (or in eqs. (46)).
The maximum likelihood solution of u that satisfies
the constraint (63) is obtained to a first approxima-
tion by minimizing

J = (û− u, V0[û]−(û− u)) (65)

subject to eq. (63). Introducing Lagrange multipliers
and first order approximation, we obtain the following
solution [15]:

u∗ = û− V0[û]
r∑

k,l=1

w(kl)φ̂(k)∇uφ̂(l). (66)

Here, w(kl) is the (kl) element of the inverse of the r×
r matrix whose (kl) element is (∇uφ̂(k), V0[û]∇uφ̂(l)),
i.e.,

(
w(kl)

)
=

(
(∇uφ̂(k), V0[û]∇uφ̂(l))

)−1

. (67)

The hat means that the ML estimator û is substi-
tuted for u. The normalized covariance matrix of the
corrected value u∗ of eq. (66) is

V0[u∗] = V0[û]

−
r∑

k,l=1

w(kl)(V0[û]∇uφ̂(k))(V0[û]∇uφ̂(k))> (68)

up to O(ε2) [15]. For a single constraint, eqs. (66)
and (68) reduce to

u∗ = û− φ̂V0[û]∇uφ̂

(∇uφ̂, V0[û]∇uφ̂)
, (69)

V0[u∗] = V0[û]− (V0[û]∇uφ̂)(V0[û]∇uφ̂)>

(∇uφ̂, V0[û]∇uφ̂)
. (70)

Remark 18 If the r constraints in eq. (63) are re-
dundant, say only r′ (< r) of them are independent,
the inverse in eq. (67) is replaced by the generalized
inverse of rank r′ (cf. Remark 6).

Remark 19 If all the r constraints in eq. (63) are
independent, the rank of the matrix V0[u∗] given by
eq. (66) is smaller than V0[û] by r. Intuitively, the
ellipsoid that represents the uncertainty of u in Rp

“collapses” in the r directions in which the constraint
(63) is violated, while it keeps its shape in the direc-
tions orthogonal to them. Hence, the optimality of
the ML estimator is not affected by doing this type
of posterior correction [15].

Remark 20 Eq. (66) enforces all the constraints
only to a first approximation, so φ(k)(u∗), k = 1, ...,
r, may not exactly be 0, and u∗ may not exactly be
a unit vector. Such higher order discrepancies can be
eliminated by iterating eqs. (69) and (70) in the form

u∗ ← N [û− φ̂V0[û]∇uφ̂

(∇uφ̂, V0[û]∇uφ̂)
], (71)

V0[u∗]←Pu∗
(
V0[û]− (V0[û]∇uφ̂)(V0[û]∇uφ̂)>

(∇uφ̂, V0[û]∇uφ̂)

)
Pu∗ ,

(72)
where N [ · ] denotes normalization to a unit vector
(N [v] = v/‖v‖), and P u∗ is the projection matrix
defined by eq. (31). Eq. (72) makes the null space of
the V0[u∗] exactly compatible with u∗.

6. Other Uncertainty Modelings

Finally, we discuss some new topics related to the
use of statistical methods for geometric inference.
6.1 Asymptotic parameters

The number n that appears in the standard sta-
tistical analysis is the number of experiments. It is
also called the number of trials, the number of obser-
vations, and the number of samples. Evidently, the
properties of the ensemble are revealed more precisely
as more data are sampled from it.

However, the number n is often called the number
of data, which has caused considerable confusion. For
example, if we observe a 100-dimensional vector da-
tum in one experiment, one may think that the “num-
ber of data” is 100, but this is wrong: the number n of
experiments is 1. We are observing one sample from
an ensemble of 100-dimensional vectors.

For character recognition, the underlying ensemble
is the set of possible character images, and the learn-
ing process concerns the number n of training steps
necessary to establish satisfactory responses. This is
independent of the dimension N of the vector that
represents each character. The learning performance
is evaluated asymptotically as n → ∞, not N → ∞.

For geometric inference, however, many re-
searchers have taken the dimension of the data as
the “number of data” perhaps because the ensemble
is hypothetical and one cannot sample more than one
datum from it. However, if we extract, for example,
50 feature points, they constitute a 100-dimensional
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vector consisting of their x and y coordinates. If
no other information, such as the image intensity, is
used, the image is completely characterized by that
vector. Applying a statistical method means regard-
ing it as a sample from a hypothetical ensemble of
100-dimensional vectors.

6.2 Neyman-Scott problem

In the past, many computer vision researchers have
analyzed the asymptotic behavior as N →∞ without
explicitly mentioning what the underlying ensemble
is. This is perhaps motivated by a similar formulation
in the statistical literature. Suppose, for example, a
rod-like structure lies on the ground in the distance.
We emit a laser beam toward it and estimate its posi-
tion and orientation by observing the reflection of the
beam, which is contaminated by noise. We assume
that the laser beam can be emitted in any orientation
any number of times but the emission orientation is
measured with noise. The task is to estimate the po-
sition and orientation of the structure as accurately
as possible by emitting as small a number of beams
as possible. Naturally, the estimation performance
should be evaluated in the asymptotic limit n → ∞
with respect to the number n of emissions.

The underlying ensemble is the set of all response
times for all possible directions of emission. Usually,
we are interested in the position and orientation of
the structure but not the exact orientation of each
emission, so the variables for the former are called
the structural parameters, which are fixed in number,
while the latter are called the nuisance parameters,
which increase indefinitely as the number n of exper-
iments increases [2]. Such a formulation is called the
Neyman-Scott problem [40]. Since the constraint is an
implicit function in the form of eq. (3), we are con-
sidering an errors-in-variables model [11]. If we lin-
earize the constraint by changing variables, the noise
characteristics differs for each data component, so the
problem is heteroscedastic [31].

To solve this problem, one can introduce a para-
metric model for the distribution of possible laser
emission orientations, regarding the actual emissions
as random samples from it. This formulation is called
a semiparametric model [2]. An optimal solution can
be obtained by finding a good estimating function
[2, 43].

6.3 Semiparametric models

Since the semiparametric model has something dif-
ferent from the geometric inference problem described
in Sec. 3.2, a detailed analysis is required for exam-
ining if application of a semiparametric model to ge-
ometric inference will yield a desirable result [43, 41].
In any event, one should explicitly state what kind
of ensemble (or ensemble of ensembles) is assumed
before doing statistical analysis.

This is not merely a conceptual issue. It also af-
fects the performance evaluation of simulation exper-

iments. In doing a simulation, one can freely change
the number N of feature points and the noise level ε.
If the accuracy of Method A is higher than Method
B for particular values of N and ε, one cannot con-
clude that Method A is superior to Method B, be-
cause opposite results may come out for other values
of N and ε. Here, we have two alternatives for per-
formance evaluation: fixing ε and varying N to see if
admissible accuracy is attained for a smaller number
of feature point; fixing N and varying ε to see if larger
data uncertainty can be tolerated for admissible ac-
curacy. These two types of evaluation have different
meanings. Our conclusion is that the results of one
type of evaluation cannot directly be compared with
the results of the other.

7. Conclusions

We have investigated the meaning of “statistical
methods” for geometric inference based on image fea-
ture points. Tracing back the origin of feature uncer-
tainty to image processing operations, we discussed
the implications of asymptotic analysis in reference
to “geometric fitting” and “geometric model selec-
tion”. We pointed out that a correspondence exists
between the standard statistical analysis and the ge-
ometric inference problem. We also compared the
capability of the “geometric AIC” and the “geomet-
ric MDL” in detecting degeneracy. Next, we reviewed
recent progress in geometric fitting techniques for lin-
ear constraints, describing the “FNS method”, the
“HEIV method”, the “renormalization method”, and
other related techniques. Finally, we discussed the
“Neyman-Scott problem” and “semiparametric mod-
els” in relation to geometric inference.

From these discussions, we conclude that applica-
tions of statistical methods requires careful consid-
erations about the nature of the problem in question
and that different statistical theories are necessary for
different classes of problems. In this sense, there is
much room for new statistical theories to emerge as
the scope of computer vision research expands. The
important thing is, however, to always make clear the
underlying hypotheses and assumptions, not simply
using the methods in the statistical literature.

In Appendix, we summarize the derivation of the
geometric AIC and the geometric MDL.
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Appendix

A. Derivation of the Geometric AIC

A.1 Goodness of a Model
Akaike [1] adopted as the measure of the goodness

of the model

P ({Xα}) =
N∏

α=1

e−(Xα−x̄α,V0[xα]−1(Xα−x̄α))/2ε2

√
(2πε2)m|V0[xα]| ,

(73)
the Kullback-Leibler distance (or divergence) the true
distribution from it:

D =
∫
· · ·

∫
PT ({Xα}) log

PT ({Xα})
P ({Xα}) dX1 · · · dXN

= E[log PT ({Xα})]− E[log P ({Xα})]. (74)

Here, E[ · ] denotes expectation with respect to the
true (unknown) probability density PT ({Xα}). The
assumed model is regarded as good if D is small.

Substituting eq. (73) into eq. (74) and noting that
E[log PT ({Xα})] does not depend on individual mod-
els, we regard the model as good if

−E[log P ({Xα})]

=
1

2ε2
E[

N∑
α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]

+
mN

2
log 2πε2 +

1
2

N∑
α=1

log |V0[xα]| (75)

is small. The last two terms on the right-hand side
do not depend on individual models. So, multiplying
the first term by 2ε2, we seek a model that minimizes
the expected residual

E = E[
N∑

α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]. (76)

A.2 Evaluation of Expectation
The difficulty of using eq. (76) as a model selection

criterion is that the expectation E[ · ] must be evalu-
ated using the true density, which we do not know.
Here arises a sharp distinction between the standard
statistical analysis, in which Akaike was interested,
and the geometric inference problem, in which we are
interested, as to how to evaluate the expectation.

For the standard statistical analysis, we assume
that we could, at least in principle, observe as
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many data as desired. If we are allowed to sam-
ple independent instances x1, x2, ..., xn according
to a density PT (X), the expectation E[Y (X)] =∫

Y (X)PT (X)dX of a statistic Y (X) can be approx-
imated by the sample mean (1/n)

∑n
i=1 Y (xi), which

converges to the true expectation in the limit n →∞
(the law of large numbers). Akaike’s AIC is based on
this principle.

In contrast, we can obtain only one instance
{xα} of {Xα} for geometric inference, so we
cannot replace expectation by the sample mean.
However, we are interested only in the limit
ε → 0. So, the expectation E[Y ({Xα})] =∫ · · · ∫ Y ({Xα})PT ({Xα})dX1 · · · dXN can be ap-
proximated by Y ({xα}), because as ε → 0 we have
PT ({Xα}) →

∏N
α=1 δ(Xα− x̄α), where δ( · ) denotes

the Dirac delta function. It follows that we can ap-
proximate E as follows (note that 1/N is not neces-
sary):

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)). (77)

A.3 Bias Removal

There is still a difficulty using eq. (77) as a crite-
rion: the model parameters {x̄α} and u need to be
estimated. If we view eq. (77) as a measure of the
goodness of the model, we should compute their ML
estimators {x̂α} and û, minimizing eq. (77) subject
to the constraint (3). Substituting {x̂α} and û for
{x̄α} and u in eq. (77), we obtain the residual (sum
of squares):

Ĵ =
N∑

α=1

(xα − x̂α, V0[xα]−1(xα − x̂α)). (78)

Here, a logical inconsistency arises. Eq. (3) defines
not a particular model but a class of models parame-
terized by {x̄α} and u. If we choose particular values
{x̂α} and û (i.e., the ML-estimators), we are given a
particular model. According to the logic in Sec. A.1,
its goodness should be evaluated by E[

∑N
α=1(Xα −

x̂α, V0[xα]−1(Xα − x̂α))]. According to the logic in
Sec. A.2, the expectation can be approximated using
a typical instance of {Xα}. However, {x̂α} and û
were computed from {xα}, so {xα} cannot be a typ-
ical instance of {Xα}. In fact, Ĵ is generally smaller
than E[

∑N
α=1(Xα − x̂α, V0[xα]−1(Xα − x̂α))], be-

cause {x̂α} and û were so determined as to minimize
Ĵ .

This is the difficulty that Akaike encountered in
the derivation of his AIC. His strategy for resolving
this can be translated in our setting as follows.

Ideally, we should approximate the expectation us-
ing an instance {x∗α} of {Xα} generated indepen-
dently of the current data {xα}. In other words, we

should evaluate

J∗ =
N∑

α=1

(x∗α − x̂α, V0[xα]−1(x∗α − x̂α)). (79)

Let us call {x∗α} the future data; they are “another”
instance of {Xα} that might occur if we did a hypo-
thetical experiment. In reality, we have the current
data {xα} only2. So, we try to compensate for the
bias in the form

Ĵ∗ = Ĵ + bε2. (80)

Both Ĵ∗ and Ĵ are O(ε2), so b is O(1). Since Ĵ∗ and Ĵ
are random variables, so is b. It can be proved [15, 16]
that

E∗[E[b]] = 2(Nd + p) + O(ε2), (81)

where E[ · ] and E∗[ · ] denote expectations for {xα}
and {x∗α}, respectively, and d = m−r is the dimension
of the manifold S defined the constraint F (k)(x, u) =
0, k = 1, ..., r (recall that p is the dimension of the
parameter vector u).

Thus, we obtain an unbiased estimator of Ĵ∗ in the
first order in the form

G-AIC = Ĵ + 2(Nd + p)ε2, (82)

which is the geometric AIC of Kanatani [15, 16], who
derived eq. (81) directly. Here, we have given a new
justification by going back to the Kullback-Leibler
distance (74).

B. Derivation of the Geometric MDL

B.1 Two-Stage Encoding

If the data {xα} are sampled according to the
probability density (73), they can be encoded, after
their domain is quantized, in a shortest prefix code of
length

− log P =
J

2ε2
+

mN

2
log 2πε2 +

1
2

N∑
α=1

log |V0[xα]|,
(83)

up to a constant that depends only on the domain and
the width of the quantization. Here, J is the sum of
the square Mahalanobis distances in eq. (6). Using
the natural logarithm, we take log2 e bits as the unit
of length.

Note the similarity and contrast to the geometric
AIC, which minimizes the expectation of eq. (83) (see
eq. (75)), while here eq. (83) is directly minimized
with a different interpretation.

In order to do encoding using eq. (73), we need the
true values {x̄α} and the parameter u. Since they are
unknown, we use their ML estimators that minimize

2If such data {x∗α} actually exist, the test using them is
called cross-validation. We can also generate equivalent data
by a computer. Such a simulations is called bootstrap [10].
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eq. (83) (specifically J). The last two terms of eq. (83)
do not depend on individual models, so the minimum
code length is Ĵ/2ε2 up to a constant, where Ĵ is
the residual in eq. (78). For brevity, we hereafter call
“the code length determined up to a constant that
does not depend on individual models” simply the
description length.

Since the ML estimators {x̂α} and û are real num-
bers, they also need to be quantized. If we use
a larger quantization width, their code lengths be-
come shorter, but the description length Ĵ/2ε2 will
increase. So, we take the width that minimizes the
total description length. The starting point is the fact
that eq. (7) can be written as follows [15]:

J = Ĵ +
N∑

α=1

(xα − x̂α, V0[x̂α]−(xα − x̂α))

+(u− û, V0[û]−1(u− û)) + O(ε3). (84)

Here, the superscript − denotes the (Moore-Penrose)
generalized inverse, and V0[x̂α] and V0[ûα] are, re-
spectively, the a posteriori covariance matrices of the
ML estimators x̂α and û given as follows [15]:

V0[x̂α] = V0[xα]

−
r∑

k,l=1

W (kl)
α (V [xα]∇xF (k)

α )(V [xα]∇xF (k)
α )>,

V0[û] =
( N∑

α=1

r∑

k,l=1

W (kl)
α (∇uF (k)

α )(∇uF (l)
α )>

)−1

. (85)

The symbol W
(kl)
α has the same meaning as in eq. (7).

It is easily seen that V0[x̂α]− is a singular matrix
of rank d whose domain is the tangent space to the
optimally fitted manifold Ŝ at x̂α.
B.2 Encoding Parameters

In order to quantize û, we introduce appropriate
(generally curvilinear) coordinates (ui), i = 1, ..., p,
into the p-dimensional parameter space U and quan-
tize it into a grid of width δui. Suppose û is in a
(curvilinear) rectangular region of sides Li. There
are

∏p
i=1(Li/δui) grid vertices inside, so specifying

one from these requires the code length

log
p∏

i=1

Li

δui
= log Vu −

p∑

i=1

log δui, (86)

where Vu =
∏p

i=1 Li is the volume of the rectangu-
lar region. We could reduce eq. (86) using a large
width δui, but eq. (84) implies that replacing û by the
nearest vertex would increase the description length
Ĵ/2ε2 by (δu, V0[û]−1δu)/2ε2 in the first order in ε,
where we define δu = (δui). So, we choose such δu
that minimizes the sum of (δu, V0[û]−1δu)/2ε2 and
eq. (86). Differentiating this sum with respect to δui

and letting the result be 0, we obtain

1
ε2

(
V0[û]−1δu

)
i
=

1
δui

, (87)

where ( · )i designates the ith component. If the co-
ordinate system of U is so taken that V0[û]−1 is diag-
onalized, eq. (87) reduces to

δui =
ε√
λi

, (88)

where λi is the ith eigenvalue of V0[û]−1. It follows
that the volume of one grid cell is

vu =
p∏

i=1

δui =
εp

√
|V0[û]−1| . (89)

Hence, the number of cells inside the region Vu is

Nu =
∫

Vu

du

vu
=

1
εp

∫

Vu

√
|V0[û]−1|du. (90)

Specifying one from these requires the code length

log Nu = log
∫

Vu

√
|V0[û]−1|du− p

2
log ε2. (91)

B.3 Encoding True Values
For quantizing the ML-estimators {x̂α}, we need

not quantize the entire m-dimensional data space X ,
because they are constrained to be in the optimally
fitted d-dimensional manifold Ŝ (⊂ X ) specified by
û, which we have already encoded. So, we only need
to quantize Ŝ. To this end, we introduce appropriate
curvilinear coordinates in it. Since each x̂α has its
own normalized covariance matrix V0[x̂α] (eqs. (85)),
we introduce different coordinates (ξiα), i = 1, ..., d,
for each α. Then, they are quantized into a (curvilin-
ear) grid of width δξiα.

Suppose x̂α is in a (curvilinear) rectangular region
of sides liα. There are

∏d
i=1(liα/δξiα) grid vertices

inside, so specifying one from these requires the code
length

log
d∏

i=1

liα
δξiα

= log Vxα −
d∑

i=1

log δξiα, (92)

where Vxα =
∏d

i=1 liα is the volume of the rectan-
gular region. We could reduce eq. (92) using a large
width δξiα, but replacing x̂α by its nearest vertex
would increase the description length Ĵ/2ε2. Let
δx̄α be the m-dimensional vector that expresses the
displacement {δξiα} on Ŝ in the (original) coordi-
nates of X . Eq. (84) implies that the increase in
Ĵ/2ε2 is (δx̄α, V0[x̂α]−δx̄α)/2ε2 in the first order in
ε, so we choose such {δξiα} that minimize the sum of
(δx̄α, V0[x̂α]−δx̄α)/2ε2 and eq. (92). Differentiating
this sum with respect to δξiα and letting the result
be 0, we obtain

1
ε2

(
V0[x̂α]−δx̄α

)
i
=

1
δξiα

. (93)

Let the coordinates (ξiα) be such that the d basis
vectors at x̂α form an orthonormal system. Also, let
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the coordinates of X be such that at x̂α ∈ Ŝ the m
basis vectors consist of the d basis vectors of Ŝ plus
m−d additional basis vectors orthogonal to Ŝ. Then,
the first d components of δx̄α coincide with {δξiα},
i = 1, ..., d; the remaining components are 0. If,
furthermore, the coordinates (ξiα) are so defined that
V0[x̂α]− is diagonalized, the solution δξiα of eq. (93)
is given by

δξiα =
ε√
λiα

, (94)

where λ1α, ..., λdα are the d positive eigenvalues of
V0[x̂α]−. It follows that the volume of one grid cell is

vxα =
d∏

i=1

δξiα =
εd

√
|V0[x̂α]−|d

, (95)

where |V0[x̂α]−|d denotes the product of its d positive
eigenvalues. Hence, the number of cells inside the
region Vxα is

Nα =
∫

Vxα

dx

vxα
=

1
εd

∫

Vxα

√
|V0[x̂α]−|d dx. (96)

Specifying one from these requires the code length

log Nα = log
∫

Vxα

√
|V0[x̂α]−|d dx− d

2
log ε2. (97)

B.4 Geometric MDL

From eqs. (91) and (97), the total code length for
{x̂α} and û becomes

N∑
α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx + log

∫

Vu

√
|V0[û]−1|du

− Nd + p

2
log ε2 (98)

The accompanying increase in the descrip-
tion length Ĵ/2ε2 is (δx̄α, V0[x̂α]−δx̄α)/2ε2 +
(δu, V0[û]−1δu)/2ε2 in the first order in ε. If we
substitute eqs. (88) and (94) together with V0[x̂α]−

= diag(1/λ1α, ..., 1/λdα, 0, ..., 0) and V0[û]−1 =
diag(1/λ1, ..., 1/λp), this increase is

(δx̄α, V0[x̂α]−δx̄α)
2ε2

+
(δu, V0[û]−1δu)

2ε2
=

Nd + p

2
.

(99)
Since eqs. (88) and (94) are obtained by omitting
terms of o(ε), the omitted terms in eq. (99) are o(1).
It follows that the total description length is

Ĵ

2ε2
− Nd + p

2
log ε2 +

N∑
α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx

+ log
∫

Vu

√
|V0[û]−1|du +

Nd + p

2
+ o(1). (100)

Multiplying this by 2ε2, which does not affect model
selection, we obtain

Ĵ−(Nd+p)ε2 log ε2+2ε2
( N∑

α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx

+ log
∫

Vu

√
|V0[û]−1|du

)
+ (Nd + p)ε2 + o(ε2).

(101)

B.5 Scale Choice
In practice, it is difficult to use eq. (101) as a cri-

terion because of the difficulty in evaluating the third
term. If we note that − log ε2 À 1 as ε → 0, we may
omit terms of O(ε2) and define

G-MDL = Ĵ − (Nd + p)ε2 log ε2. (102)

This is the form suggested by Matsunaga and
Kanatani [34]. However, the problem of scale arises.
If we multiply the unit of length by, say, 10, both
ε2 and Ĵ are multiplied by 1/100. Since N , d, and
p are nondimensional constants, G-MDL should also
be multiplied by 1/100. But log ε2 reduces by log 100,
which could affect model selection3. In eq. (101), in
contrast, the influence of scale is canceled between
the second and third terms.

To begin with, the logarithm can be defined only
for a nondimensional quantity, so eq. (102) should
have the form

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

, (103)

where L is a reference length. In theory, it can be
determined from the third term of eq. (101), but its
evaluation is difficult. So, we adopt a practical com-
promise, choosing a scale L such that xα/L is O(1).
We may interpret this as introducing a prior distri-
bution in a region of volume Lm in the data space X .
For example, if {xα} are image coordinate data, we
can take L to be the image size. We call eq. (103) the
geometric MDL.

Recall that for asymptotic analysis as ε → 0, it
is essential to fix the scale of the normalized covari-
ance matrix V0[xα] in eq. (4) in such a way that the
noise level ε is much smaller than the data them-
selves (Remark 2). So, we have − log(ε/L)2 À 1. If
we use a different scale L′ = γL, we have − log(ε/L′)2

= − log(ε/L)2 + log γ2 ≈ − log(ε/L)2 as long as the
scale is of the same order of magnitude. It has been
confirmed that the scale choice does not practically
affect model selection in most applications. Nonethe-
less, the introduction of the scale is a heuristic com-
promise, and more studies about this will be neces-
sary.

3The preference is unchanged if the candidate models have
the same d and p, but we usually compare models of different
d and p.
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