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Geometric BIC
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The author introduced the “geometric AIC” and the “geometric MDL” as model selection
criteria for geometric fitting problems. These correspond to Akaike’s “AIC” and Rissanen’s
“BIC”, respectively, well known in the statistical estimation framework. Another criterion well
known is Schwarz’ “BIC”, but its counterpart for geometric fitting has been unknown. This
paper introduces the corresponding criterion, which we call the “geometric BIC”, and shows
that it is of the same form as the geometric MDL. We present the underlying logical reasoning
of Bayesian estimation.

1. Introduction

The basic principle of computer vision is to as-
sume a certain structure, or a model , in the ob-
served scene, such as certain objects being there, and
to do inference by extracting characteristics of the
assumed structure from observed images, estimat-
ing such properties of the scene as categories, num-
bers, sizes, shapes, and the positions and orientations.
However, we sometimes do not know what the model
should be. In such a case, selecting an appropriate
model from multiple candidates is called model selec-
tion.

If the model has a form of standard statistical esti-
mation such as regression, various types of model se-
lection criteria have been proposed. The best known
are Akaike’s AIC (Akaike Information Criterion) [1],
Schwarz’ BIC (Bayesian Information Criterion) [18],
and Rissanen’s MDL (Minimum Description Length)
[17].

However, geometric inference for computer vision,
typically structure from motion, does not have the
standard form of statistical estimation [3, 9, 10]. For
this, the author introduced the geometric AIC [3, 7]
and geometric MDL [9], which correspond to Akaike’s
AIC and Rissanen’s MDL in the traditional statistical
estimation framework.
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The main motivation of traditional statistical esti-
mation is to do precise inference using a large but lim-
ited number of data, while the main goal of geometric
inference is to do precise but robust estimation that
can tolerate noise [3, 9, 10]. This is a sort of “dual”
relationship. Hence, while the AIC and the MDL are
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derived from asymptotic analysis with respect to the
number N of data, the geometric AIC and the geo-
metric MDL are derived from perturbation analysis
with respect to the noise level ε [3, 9, 10].

Then, a question arises. What corresponds to
Schwarz’ BIC? The BIC is also derived from asymp-
totic analysis with respect to the number N of data.
What criterion results if we do perturbation analysis
with respect to the noise level ε?

It has already been conjectured [9] that because
the BIC and the MDL have the same form up to
higher order terms in 1/

√
N , the geometric AIC and

the “geometric BIC” should have the same form up to
higher order terms in ε. However, the concrete form
has not been shown.

In this paper, we present a rigorous derivation of
the geometric BIC based on Schwarz’ BIC principle
and confirm that it indeed has the same form as the
geometric MDL. This illuminates the Bayesian logic
of model selection for geometric estimation.

First, we briefly summarize Akaike’s AIC, Schwarz’
BIC, and Rissanen’s MDL in Section 2 and the ge-
ometric AIC and the geometric MDL in Section 3.
Then, we describe the mathematical framework of ge-
ometric fitting in Section 4. Section 5 is the main part
of this paper, where we derive the geometric BIC. We
discuss its applications in Section 6 and conclude in
Section 7.

2. AIC, BIC, and MDL

We first give a brief review of the AIC, the BIC,
and the MDL.
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2.1 Statistical Inference and Model Selection

A probability density p(x|θ) parameterized by un-
known θ is called a (statistical) model . The goal
of statistical estimation is to estimate θ from mul-
tiple data x1, ..., xN assumed to be independently
sampled from p(x|θ). Maximum likelihood (ML) is
to find the value of θ that maximizes the likeli-
hood

∏N
α=1 p(xα|θ). When we have multiple candi-

date models1 p1(x|θ), ..., pM (x|θ), (statistical) model
selection is to find the most appropriate one from
among them.

2.2 Statistical Model Selection Criteria

The AIC, the BIC, and the MDL have the forms

AIC = −2
N∑

α=1

log p(xα|θ̂) + 2k, (1)

BIC = −
N∑

α=1

log p(xα|θ̂) +
k

2
log N, (2)

MDL = −
N∑

α=1

log p(xα|θ̂) +
k

2
log N, (3)

where k is the degree of freedom of the model (=
the dimension of θ) and θ̂ is the ML estimator of
θ obtained by assuming that model. These criteria
are computed for each candidate model, and the one
that has the smallest value is adopted as the most
appropriate.

AIC. Akaike’s AIC principle is to choose the model
that is the closest to the true model measured in
the Kullback-Leibler (KL) distance (or divergence)
[1]. Since the true model is unknown, it is approx-
imated by p(x|θ̂), plugging in the ML estimator θ̂.
This is justified when the number N of data is large
(consistency of ML). Since the KL distance is de-
fined by expectation involving the true model, it is
approximated by summation over the data, which is
justified when N is large. However, if we use the
same data for computing the ML estimator θ̂ and ap-
proximating the expectation, mutual correction gives
rise to statistical bias. Akaike [1] estimated the bias
by doing asymptotic expansion, assuming that N is
large, and omitting high order terms in 1/

√
N . Sub-

tracting it from the estimate of the KL distance, he
obtained his AIC in the form of Eq. (1), excluding
model-independent terms.

BIC. Schwarz’ BIC principle is to assume an a prior
probability of the model, evaluate the a posteriori
probability using the Bayes rule, and choose the

1The same symbol � is used for the convenience of descrip-
tion, but it may have a different dimension from model to
model.

model that has the largest value of it. Schwarz [18]
assumed equal prior probabilities for the candidate
models and analyzed asymptotic expansion of the
(logarithmic) posterior, noting that the distribution
of θ concentrates on a small neighborhood of the ML
estimator θ̂ when N is large. Omitting higher or-
der terms in 1/

√
N and excluding model-independent

terms, he obtained his BIC in the form of Eq. (2) in-
dependent of the a priori probability of θ.

MDL. Rissanen’s MDL principle is to choose the
model that gives the shortest description when it
is optimally encoded along with the data [17]. Ac-
cording to information theory, the data {xα} are
optimally encoded using its occurrence probability
p(x|θ), but since the true value θ is unknown, the ML
estimator θ̂ is substituted for it. Since the data {xα}
and the ML estimator θ̂ are both real numbers, which
require an infinitely long description length, they are
quantized into discrete values, and the quantization
width is determined so that the resulting code length
is the shortest. As the model (i.e., θ̂) is better approx-
imated, the code length of the data {xα} becomes
shorter and approaches the information theoretical
limit. However, the description of the model requires
a larger code length for that. Rissanen [17] evalu-
ated their optimal balance, analyzed its asymptotic
expansion, omitting higher order terms in 1/

√
N , and

obtained his MDL in the form of Eq. (3), excluding
model-independent terms2.

3. Geometric AIC and Geometric MDL

Here, we give a brief review of the geometric AIC
and the geometric MDL.

3.1 Geometric Model Selection

Given N data {xα}, geometric fitting is the prob-
lem of estimating the law that constrains their true
values {x̄α} in the form of an “implicit” equation

F (x; u) = 0, (4)

parameterized by unknown u. Equation (4) is called
the (geometric) model .

Many computer vision problems fall in this cate-
gory. The model in the form of Eq. (4) may describe
curves or shapes in the image or relationships among
multiple images such as the epipolar constraint. By
estimating the parameter u (e.g., coefficients of equa-
tions, and the fundamental matrix for two images) so
that Eq. (4) fits the data {xα} well, we can infer the
structure of the scene or its motion [2].

2Eq. (3) is a crude approximation. A more detailed form
involves integration involving the Fisher information matrix
I(�) [17].
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When we have multiple candidate models3

F 1(x, u) = 0, ..., F M (x, u) = 0, (geometric) model
selection is to find the most appropriate one from
among them.

3.2Geometric Model Selection Criteria

The author introduced the following geometric
AIC and the geometric MDL [3, 7, 9]:

G-AIC = Ĵ + 2(Nd + p)ε2, (5)
G-MDL = Ĵ − (Nd + p)ε2 log ε2. (6)

Here, Ĵ is the residual (the sum of squares of the
Mahalanobis distances) of the fitted model from the
data {xα}, d is the dimension of the manifold defined
by the model, p is the degree of freedom of the model
(= the dimension of u), and ε is the noise level. Their
precise definitions are given later.

Geometric AIC. The geometric AIC is derived from
Akaike’s AIC principle, minimizing the KL distance
of the candidate model from the true model. Since
the true model is unknown, we replace the true val-
ues {x̄α} and the unknown u by their ML estima-
tors {x̂α} and û, respectively, evaluating the resulting
bias, and subtracting it. The only difference from the
AIC is that while the AIC is based on the asymptotic
expansion in 1/

√
N , the geometric AIC is obtained

by perturbation expansion in the noise level ε. The
integration for evaluating the KL distance is approx-
imated by summation over data. This is justified be-
cause the true values {x̄α} are very close to their ML
estimators {x̂α} when ε is small. Omitting higher
order terms in ε and excluding model-independent
terms, we obtain the geometric AIC in the form of
Eq. (5) [3, 7].

Geometric MDL. The geometric MDL is derived
from Rissanen’s MDL principle, minimizing the de-
scription length of both the data and the model when
optimally encoded. The data {xα} and the ML es-
timators {x̂α} and û are quantized, and the quanti-
zation width is determined so that the resulting code
length is minimized. The only difference from the
MDL is that while the MDL is based on the the
asymptotic expansion in 1/

√
N , the geometric MDL

is obtained by perturbation expansion in the noise
level ε. Omitting higher order terms in ε and exclud-
ing model-independent terms, we obtain the geomet-
ric MDL in the form of Eq. (3) [9].

One problem is that Eq. (6) involves logarithm of
ε, which has the dimension of length (in pixels). This
anomaly is caused by our crude order comparison: the
scale factor to divide ε for canceling the dimensional-
ity is separated due to the additivity of the logarithm

3As before, the same symbol u is used for convenience, but
it may have a different dimension from model to model.

and discarded4, because it increases less rapidly than
O(log ε) as ε ≈ 0. This anomaly could be compen-
sated for if higher order terms in ε were included,
but that would cause much complication. A real-
istic compromise is to introduce a typical reference
length L, such as the image size, and replace log ε2

by log(ε/L)2. No practical problem arises by that [9].

4. Geometric Fitting

We now describe a mathematical framework in
which the geometric BIC is derived.

4.1 Geometric Models

Let {xα}, α = 1, ..., N , be m-dimensional vector
data5, which are assumed to be purturbed from their
true values {x̄α} by independent Gaussian noise of
mean 0 and covariance matrix

V [xα] = ε2V0[xα], (7)

where ε, which we call the noise level , is a noise mag-
nitude independent of the data, and V0[xα], which
we call the normalized covariance matrix , is a matrix
that depends only on the true value x̄α but not on
noise. Thus, ε is a statistical quantity, while V0[xα]
is a geometric quantity.

Let Eq. (4) be r-dimensional equation, and write
componentwise as

F (k)(x;u) = 0, k = 1, ..., r. (8)

These r equations define a manifold (an algebraic va-
riety) S parameterized by u in the m-dimensional
space of the variable x, which we call the data space
and denote by X . If the r equations in Eq. (8) are
algebraically independent6, the dimension of S is d =
m − r. Geometric fitting is regarded as the problem
of adjusting u so that the manifold S passes by the
obseved data {xα} as closely as possible in the data
space X .

4This problem also arises to Rissanen’s MDL: if we combine
multiple data, e.g., a consecutive pair, into one, the apparent
number N of data decreases, so the MDL changes its value.
This effect is compensated for by higher order terms in 1/

√
N

involving the Fisher information matrix I(θ). See footnote 2).
5The following argument holds if each xα is constrained

to have a smaller degree m′ (< m) of freedom, e.g., being a
unit vector. We only need to introduce degenerate covariance
matrices, pseudoinverse, and projection on to the constrained
space [3]. Here, for similicity, we assume that no such intrinsic
constraints exist.

6The following argument holds if the r equations in Eq. (8)
has redundancy with only r′ (< r) being independent. We only
need to introduce pseudoinverse and projection operation op-
erators [3]. Here, for simplicity, we assume that the r equations
are independent.
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xα
S

xα

Figure 1: Fitting a manifold Ŝ closest to xα measured
in the Mahalanobis distance. The point x̂α on it closest
to xα in the Mahalanobis distance is its ML estimator.
The ellipsoids represent equal probability surfaces (xα −
x̂α, V0[xα]−1(xα − x̂α)) = constant.

4.2 Maximum Likelihood

From the above assumptions, the probability den-
sity of the data {xα} given their true values {x̄α} and
the parameter u is

p({xα}|{x̄α}, u) =
e−J/2ε2

√
(2π)Nmε2m|V0[xα]|N , (9)

where we define

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)). (10)

Throughout this paper, we denote the inner product
of vectors a and b by (a, b).

Equation (9) is the likelihood function if it is re-
garded as a function of {x̄α} and u given the data
{xα}. The values {x̄α} and u that maximize Eq. (9)
are their ML estimators. They are the minimizer of
the function J in Eq. (10) subject to

F (k)(x̄α;u) = 0, k = 1, ..., r, α = 1, ..., N. (11)

Let Ĵ be the resulting minimum value of J .
Geometrically, ML is to adjust u to fit a manifold

Ŝ closest to points xα in X measured in the sum
of the square Mahalanobis distances in the form of
Eq. (10) (Fig. 1). The resulting value û of u is the
ML estimator of u, and the points x̂α on Ŝ closest to
xα measured in Eq. (10) are their ML estimators

4.3 Two-Stage Estimation

We compute ML in two stages. First, we fix u
and minimize Eq. (10) with respect to {x̄α} subject
to Eq. (11). Let J̃(u) be the resulting minimum of
Eq. (10). Next, we minimize

J̃(u) =
N∑

α=1

(xα − x̃α(u), V0[xα]−1(xα − x̃α(u))),

(12)
with respect to u; we no longer need to consider
Eq. (11), which is identically satisfied by {x̃α(u)}.

The value û that minimizes Eq. (12) is the ML esti-
mator of u. The corresponding {x̃α(û)} are the ML
estimators of {x̄α}, and J̃(û) equals the minimum Ĵ
of J .

4.4 A Posteriori Covariance Matrices

Since {x̃α(u)} identically satisfy Eq. (11), they
are constrained to be in the d-dimensional manifold
S in the data space X . Hence, although the origi-
nal data {xα} have m degrees of freedom in X , the
points {x̃α(u)} have only d degrees of freedom. They
are projections of {xα} onto S defined by the Ma-
halanobis distance minimization. The normalized co-
variance matrix V0[x̃α] of x̃α(u) is the associated pro-
jection of xα(u) onto the tangent space Tx̃α

(S) to S
at x̃α and has the following form [3, 7]:

V0[x̃α] = V0[xα]

−
r∑

k,l=1

W (kl)
α (V0[xα]∇xF (k)

α )(V0[xα]∇xF (l)
α )>. (13)

Here, ∇xF (k) denotes gradient of F (k) in Eq. (8) with
respect to x. The subscript α of F (k) means its eval-
uation at x = xα, and W

(kl)
α is the (kl) element of

the inverse of the r × r matrix whose (kl) element is
(∇xF

(k)
α , V0[xα]∇xF

(l)
α ): we symbolically write this

as
(
W (kl)

α

)
=

(
(∇xF (k)

α , V0[xα]∇xF (l)
α )

)−1

. (14)

Note that V0[x̃α] in Eq. (13) is an m × m matrix
but has rank d (< m), because it is the projection of
V0[xα] onto the d-dimensional tangent space Tx̃α(S)
to S.

On the other hand, the posterior covariance matrix
of the ML estimator û of u is evaluated as follows
[3, 7]:

V [û] = ε2M̂
−1

+ O(ε4), (15)

M̂ =
N∑

α=1

r∑

k,l=1

Ŵ (kl)
α ∇uF̂ (k)

α ∇uF̂ (l)>
α . (16)

Here, ∇uF (k) denotes gradient of F (k) in Eq. (8) with
respect to u, and the subscript α of F (k) means eval-
uation at x = xα. The hats on W

(kl)
α and F

(k)
α mean

substitution of û for u.
If we replace xα and û in the expression of M̂ in

Eq. (16) by their true values x̄α and u, respectively,
the first term on the right-hand side of Eq. (15) gives
the KCR lower bound on the covariance matrix of any
unbiased estimator of u [3, 8, 10].

5. Geometric BIC

The above mathematical framework is the same as
the one used to derive the geometric AIC and the
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geometric MDL [3, 7, 9]. We now derived the geo-
metric BIC in the same framework. The following is
the originality of this paper.

5.1 A Priori and A Posteriori Probabilities

Suppose we have M models M1, ..., MM . Let
p(Mi) be the a priori probability for the model Mi,
p(u|Mi) the a priori probability density for its pa-
rameter u, and p({x̄α}|u,Mi) the a priori probabil-
ity density7 of the true values {x̄α} given u.

The likelihood p({xα}|{x̄α},u,Mi) of the data
{xα} given the parameter u and the true values {x̄α}
for model Mi is given by Eq. (9). According to the
Bayes rule, the a posteriori probability p(Mi|{xα})
of model Mi given the data {xα} is given by

p(Mi|{xα}) =
∫∫
· · ·

∫
p({xα}|{x̄α}, u,Mi)

p({x̄α}|u,Mi)p(u|Mi)dx̄1 · · · dx̄Ndup(Mi)
/ M∑

i=1

p({xα},Mi), (17)

where p({xα},Mi) in the denominator is the expres-
sion in the numerator. We assume each model has the
same a priori probability and choose the model that
maximizes Eq. (17). Since the denominator does not
depend on individual models, we choose the model
that maximizes

L =
∫

e−Jp({x̄α}|u)p(u)dx̄Ndu, (18)

where and hereafter we omit Mi and denote∫ ∫ · · · ∫ dx̄1 · · · dx̄Ndu by
∫

dx̄Ndu to avoid nota-
tional clutter.

5.2 Expansion around ML Estimators

In order to simplify the notation, we introduce the
following inner product and norm associated with the
Mahalanobis distance:

(a, b)α ≡ (a, V0[xα]−1b), ‖a‖α ≡
√

(a, a)α. (19)

Then, Eq. (10) is written as

J =
N∑

α=1

‖xα − x̄α‖2α

=
N∑

α=1

‖(xα − x̃α) + (x̃α − x̄α)‖2α

=
N∑

α=1

‖xα − x̃α‖2α +
N∑

α=1

‖x̃α − x̄α‖2α + · · · , (20)

7Strictly, we need the subscript i for the parameter u and
the functions p( · ) and p( · | · · · ), because they are different
from model to model. However, we omit the subscript i to
avoid notational complications.

S

xα

xα
∼

xα

xα∼δxα

S

Figure 2: Measured in the Mahalanobis distance, x̃α and
x̂α are the closest points in the true manifold S and the

fitted manifold Ŝ, respectively, from the data point xα.
The true position x̄α is in S.

where x̃α is a shorthand of x̃α(u), and “· · ·” de-
notes higher order terms in ε. The reasoning behind
Eq. (20) is as follows. Since x̃α is, by definition, the
point in S “closest” to xα measured in the norm ‖·‖α,
the displacement xα − x̃α is “orthogonal” to S with
respect to the inner product ( · , · )α. Since the ML
estimator x̃α ∈ S is in the O(ε) neighborhood of its
true position x̄α ∈ S for small noise level ε, the de-
viation x̃α − x̄α is in higher order contact with S at
x̃α. Hence, Eq. (20) holds8 (Fig. 2).

Consider the first term
∑N

α=1 ‖xα − x̃α‖2α (=∑N
α=1 ‖xα − x̃α(u)‖2α) in the last line of Eq. (20).

Letting u = û + δu, we expand the first term in δu
around the ML estimator û. Since by definition û
minimizes this term, the first order term in δu van-
ishes. From Eq. (15), we obtain

N∑
α=1

‖xα − x̃α‖2α = Ĵ + (δu, M̂δu) + · · · , (21)

where “· · ·” denotes higher order terms in ε. This is
seen as follows. Equation (15) implies that the a pos-
teriori probability density of u should be proportional
to e−(δu,V [û]−1δu) = e−(δu,M̂δu)/2ε2

except for higher
order terms in ε. Hence, the likelihood in Eq. (10)
should have the same expansion form.

Similarly, the second term ‖x̃α − x̄α‖2α in the last
line of Eq. (20) is written from Eq. (13) in the form

‖x̃α − x̄α‖2α = (δxα, V0[x̃α]−δxα) + · · · , (22)

where we put δxα = x̃α − x̄α, and V0[x̃α]− is the
pseudoinverse9 of V0[x̃α].

8This argument could be precisely formalized by rigorous
order analysis, but what we need later is only the leading terms.
So, higher order details are omitted.

9The matrix V0[x̃α] in Eq. (13) is singular and has rank d.
Its domain is the d-dimensional tangent space Tx̃α (S) to S,
whose orthogonal complement is the null space of V0[x̃α]; no
deviations are allowed in it. The pseudoinverse V0[x̃α]− means
the inverse operation within Tx̃α (S), preserving the same null
space.
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Thus, Eq. (20) has the following expansion:

J = Ĵ + (δu, M̂δu) +
N∑

α=1

(δx̃α, V0[x̃α]−δx̃α) + ....

(23)
The reasoning we invoked above is essentially the
same as that Kanatani [3, 7, 9] used to derive his
geometric AIC and geometric MDL [3, 7, 9].

5.3 Expansion of A Posteriori Probability

Substituting Eq. (23) and omitting higher order
terms in ε, we can write Eq. (18) as follows.

L = e−Ĵ/2ε2
∫

e−(δu,M̂δu)/2ε2

(∫
e−
PN

α=1(δx̃α,V0[x̃α]−δx̃α)/2ε2

p({x̄α}|u)dx̄N
)
p(u)du

= e−Ĵ/2ε2
∫

e−(u−û,M̂(u−û))/2ε2

N∏
α=1

(∫
e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2

p({x̄α}|u)dx̄α

)
p(u)du. (24)

The expression e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2
in x̄α

takes values close to 1 only in the O(ε) neighborhood
of the ML estimator x̃α and exponentially decays to 0
outside it. The a priori probability p({x̄α}|u) repre-
sents the state of our knowledge about true position
of xα given u, e.g., that the feature point we seek
may be detected around this region in the image if
the scene has the structure specified by u. Hence, we
may assume that p({x̄α}|u) varies smoothly around
the ML estimator x̂α unless specific evidence for
otherwise exists. Thus, if we expand p({x̄α}|u)
around x̂α into p({x̂α}|u) + (∇xp({x̂α}|u), x̄α −
x̂α) + · · ·, we can ignore the second and higher or-
der terms. Since the first order term is an odd func-
tion around x̂α, integration of it after multiplication
by e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2

around x̂α vanishes.
The integration of the 0th order term p({x̂α}|u)
is evaluated from the normalization relation of the
Gaussian distribution in the form

∫
e−(x̄α−x̃α,V0[x̃α]−(x̄α−x̃α))/2ε2

p({x̂α}|u)dx̄α

=
√

(2π)dε2d|V0[x̃α]|+p({x̂α}|u), (25)

where |V0[x̃α]|+ denotes the product of positive eigen-
values of |V0[x̃α]|, i.e., its determinant restricted to its
domain Tx̃α(S).

Next, we compute the product
∏N

α=1 of Eq. (25),
multiply it by e−(δu,M̂δu)/2ε2

p(u), and integrate the

resulting expression with respect to u. Again, the
expression e−(u−û,M̂(u−û))/2ε2

in u has values close
to 1 only in the O(ε) neighborhood of the ML es-
timator û and exponentially decays to 0 outside it.
Also, |V0[x̃α]|+, p({x̂α}|u), and p(u) can be regarded
as smooth functions of u around û, so their sec-
ond and higher order expansion terms can be ig-
nored. The first order terms are odd functions of u
around û, so integration of them after multiplication
by e−(δu,M̂δu)/2ε2

vanishes. Hence, we only need to
integrate the 0th order terms of |V0[x̃α]|+, p({x̂α}|u),
and p(u) multiplied by e−(δu,M̂δu)/2ε2

. Using the nor-
malization relation of the Gaussian distribution, we
obtain
∫

e−(δu,M̂δu)/2ε2
N∏

α=1

√
(2π)dε2d|V0[x̃α]|+p({x̂α}|u)

×p(u)du =
√

(2π)pε2p|M̂ |−p
+

×
N∏

α=1

√
(2π)dε2d|V0[x̂α]|+p({x̂α}|û) + · · · , (26)

where |V0[x̂α]|+ denotes the value of |V0[x̃α]|+ (=
|V0[x̃α(u)]|+) evaluated at u = û.

The reasoning we invoked above is essentially the
same as that Schwartz [18] used to derive his BIC.

5.4 Geometric BIC

Thus, Eq. (24) is evaluated except for higher order
terms in ε in the following form:

L = e−Ĵ/2ε2
√

(2π)pε2p|M̂ |−p
+ p(û)

N∏
α=1

√
(2π)dε2d|V0[x̂α]|+p({x̂α}|û). (27)

Its logarithm takes the form

log L = − Ĵ

2ε2
+

p

2
log 2π +

p

2
log ε2 − p

2
log |M̂ |+

+ log p(û) +
Nd

2
log 2π +

Nd

2
log ε2

+
1
2

N∑
α=1

log |V0[x̂α]|+ +
N∑

α=1

log p({x̂α}|û). (28)

The model that has the largest value of log L can
be regarded as the most appropriate. Multiplying
Eq. (28) by −2ε2, we obtain

Ĵ − (Nd + p)ε2 log ε2

+ε2
(
p log |M̂ |+ −

N∑
α=1

log |V0[x̂α]|+

−(Nd + p) log 2π − 2 log p(û)

−2
N∑

α=1

log p({x̂α}|û)
)
. (29)
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The last term ε2( · · · ) approaches 0 more quickly than
the preceding term of O(ε2 log ε2) as ε→ 0. Omitting
the last term, we obtain the geometric BIC

G-BIC = Ĵ − (Nd + p)ε2 log ε2, (30)

which has the same form as the geometric MDL in
Eq. (6). The situation corresponds to the fact that
Rissanen’s MDL has the same form as Schwartz’ BIC
as far as the leading terms are concerned, in spite
of the fact that they are derived by quite different
reasonings: one from information theory, the other
from the Bayes rule.

Equation (30) has the same apparent anomaly as
Eq. (6) in that logarithm is taken for ε2, which has
the dimension of square length. This is caused be-
cause we omit all terms of O(ε2). As in the case of
the geometric MDL, this can be remedied by intro-
ducing a characteristic reference length L, such as the
image size, and replacing log ε2 by log(ε/L)2, which
has little effect on model selection in practice.

6. Applications

The geometric AIC and the geometric MDL have
been used for model selection of various problems
for computer vision, including fitting lines, curves,
planes, and surfaces to 2-D and 3-D points [9], reli-
ability evaluation of 3-D computation using a mov-
ing camera [5], detecting symmetry of 2-D shapes [4],
segmenting a curve into line segments [6], inferring
object shapes by stereo vision [12], moving object
detection from optical flow [16], camera motion es-
timation for virtual studio systems [15], correspon-
dence detection between images [14], automatic regu-
larity enforcement on 2-D figures [20], automatic im-
age mosaicing [13], and multibody motion segmenta-
tion [11, 19].

Almost all these applications are for degeneracy de-
tection. For particular parameter values, the model
degenerates and has a lower degree of freedom, or the
manifold it defines has a lower dimension. For ex-
ample, curves and surfaces degenerate into lines and
planes if some of the coefficients vanish. Depending
on the parameter values, rigid motions may degen-
erate into pure rotations, and projective transforma-
tions into affine transformations. If such degeneracy
occurs, the computation based on a nondegenerate
model may fail. For example, 3-D reconstruction fails
if the assumed rigid camera motion degenerates into
a pure rotation. In such a case, one needs to switch to
the computation based on the degenerate model. To
this, geometric model selection is called for: because
the nondegenerate model always has a smaller resid-
ual than the degenerate model, the models cannot be
compared by the residual alone.

For such applications, the following has been
known [9].
• The geometric AIC tends to select a model that

is faithful to the data. It almost always judges
a nondegenerate model to be nondegenerate but
sometimes judges a degenerate model to be non-
degenerate.

• The geometric MDL prefers the simplicity of the
model to the faithfulness to the data. It almost
always judges a degenerate model to be degener-
ate but very often judges a nondegenerate model
to be degenerate.

Hence, the choice between the geometric AIC and the
geometric MDL should be based on which the user
gives preference, detecting degeneracy or nondegen-
eracy.

Since the geometric BIC introduced in this paper
has the same form as the geometric MDL, no essen-
tially new results are obtained by it. However, we
obtain a new “interpretation” that the use of the ge-
ometric MDL can be regarded also as the use of the
geometric BIC, affirmatively resolving the suspicion
if the geometric BIC to be defined would have the
same form as the geometric MDL.

7. Conclusions

This paper has answered the question as to what
Schwarz’ BIC in the traditional statistical estima-
tion framework corresponds to in the geometric fit-
ting framework in the same way Akaike’s AIC and
Rissanen’s MDL corresponds to the geometric AIC
and the geometric MDL, respectively.

We first described the difference between the tra-
ditional statistical estimation framework and the ge-
ometric fitting framework, pointing out that the
asymptotic analysis as the number N of data goes
to ∞ in the former corresponds to the perturbation
analysis as the noise level ε goes to 0 in the latter.
Then, we introduced the Bayesian logic for geometric
model selection and derived the geometric BIC using
it. We found that it has the same form as the geomet-
ric MDL. We also discussed applications of geometric
model selection.
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