
Memoirs of the Faculty of Engineering, Okayama University, Vol. 44, pp. 50–59, January 2010
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We present highly accurate least-squares (LS) alternatives to the theoretically optimal maximum
likelihood (ML) estimator for homographies between two images. Unlike ML, our estimators are
non-iterative and yield solutions even in the presence of large noise. By rigorous error analysis, we
derive a “hyperaccurate” estimator which is unbiased up to second order noise terms. Then, we
introduce a computational simplification, which we call “Taubin approximation”, without incurring
a loss in accuracy. We experimentally demonstrate that our estimators have accuracy surpassing
the traditional LS estimator and comparable to the ML estimator.

1. INTRODUCTION

Computing a homography between two images is
the first step in many computer vision applications
including panoramic image generation, camera cali-
bration using reference planes, 3-D reconstruction of
objects that have planar faces, and detecting obsta-
cles on a planar surface.

The simplest and most widely used method for
estimating homographies is the least squares (LS),
which minimizes the algebraic distance [3], but it has
limited accuracy in the presence of noise. A more
accurate solution can be obtained by maximum like-
lihood (ML), which under independent and isotropic
Gaussian noise reduces to minimization of the repro-
jection error subject to the homography constraint
(Gold standard [3]). However, all ML-based estima-
tors are iterative and may not converge for very large
noise levels. In addition, an appropriate initial guess
is needed to start the iterations. Thus, an accurate
algebraic estimator which yields analytical solutions
is desired.
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Similar circumstances also arise in other problems
including fitting a circle/ellipse to a noisy point se-
quence and estimating fundamental matrices from
noisy point correspondences. For such problems, the
Taubin estimator [15] has emerged as an accurate al-
gebraic alternative with accuracy comparable to ML
[6, 8]. However, the Taubin estimator is defined only
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Figure 1: Computing a homography between two images.

for a single constraint equation, while a homogra-
phy is described by multiple equations. It was only
recently that Rangarajan and Papamichalis [13] re-
vealed the existence of a “Taubin-like” estimator for
homographies, but they failed to rigorously analyze
the accuracy of their estimator.

Recently, Al-Sharadqah and Chernov [1] and Ran-
garajan and Kanatani [12] proposed a highly accurate
LS estimator for circle fitting based on the perturba-
tion theory of Kanatani [6]. Their “hyperaccurate”
estimator improves the accuracy by eliminating the
bias of the fitted circle up to second order noise terms.
The contribution of this paper is to extend their hy-
peraccurate circle fitting to homographies. The big
difference between circle fitting and homography es-
timation is that a circle is represented by a quadratic
polynomial, while a homography is represented by a
set of bilinear polynomials. Consequently, as we show
later, the bias due to the nonlinearity of the constraint
is smaller for homographies than for circles.

Our task is to compute a 9-D vector h that encodes
the homography for given N point correspondences
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(xα, yα) and (x′
α, y′

α), α = 1, ..., N . We will show
that an accurate value of h is obtained by solving the
generalized eigenvalue problem

Nh = µMh, (3)

for the generalized eigenvalue µ with the largest ab-
solute value, where N and M are 9 × 9 symmetric
matrices in Eqs. (4) and (5), respectively, and f0 is
a scale constant to be explained later. The key to
the accuracy improvement is the choice of the matrix
N . We show in Sec. 7 how to choose N to achieve
“hyperaccuracy”. Eq. (4) is its “Taubin approxima-
tion”. In Sec. 8, we experimentally demonstrate that
our hyperaccurate estimator and its Taubin approx-
imation have accuracy surpassing the traditional LS
estimator and comparable to the ML estimator.

2. HOMOGRAPHY

A homography is an image mapping in the form

x′=f0
h11x+h12y+h13f0

h31x+h32y+h33f0
, y′=f0

h21x+h22y+h23f0

h31x+h32y+h33f0
,

(4)
where f0 is a scale constant chosen so that all terms
have nearly equal magnitude; its absence would in-
cur serious accuracy loss in finite precision numerical
computation. If we define 3-D homogeneous coordi-
nate vectors

x =

 x/f0

y/f0

1

 , x′ =

 x′/f0

y′/f0

1

 , (5)

Eqs. (4) can be equivalently written as

x′ ∼= Hx, (6)

where H is a 3 × 3 matrix with elements hij , and ∼=
denotes equality up to a nonzero constant. Equation
(6) states that vectors x′ and Hx are parallel, so we
can equivalently write this as

x′ × Hx = 0. (7)

If we define 9-D vectors

ξ(1)=
(
0 0 0 −f0x −f0y −f2

0 xy′ yy′ f0y
′ )> ,

ξ(2)=
(
f0x f0y f2

0 0 0 0 −xx′ −yx′ −f0x
′ )> ,

ξ(3)=
(
−xy′ −yy′ −f0y

′ xx′ yx′ f0x
′ 0 0 0

)>
, (8)

the three components of Eq. (7) are, after multiplica-
tion of f2

0 ,

(ξ(1), h) = 0, (ξ(2), h) = 0, (ξ(3), h) = 0, (9)

where h is a 9-D vector with components h11, h12,
..., h99. Throughout this paper, we denote the inner
product of vectors a and b by (a, b).
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3. ALGEBRAIC SOLUTION

Let ξ(k)
α be the value of ξ(k), k = 1, 2, 3, for

{(xα, yα), (x′
α, y′

α)}, α = 1, ..., N . Our task is to
estimate an h such that (ξ(k)

α , h) ≈ 0, k = 1, 2, 3, α
=1, ..., N . We minimize the algebraic distance

J=
1
N

N∑
α=1

3∑
k=1

(ξ(k)
α , h)2 =

1
N

N∑
α=1

3∑
k=1

h>ξ(k)
α ξ(k)>

α h

=(h, Mh), (10)

where we define the 9 × 9 matrix M by

M =
1
N

N∑
α=1

3∑
k=1

ξ(k)
α ξ(k)>

α . (11)

Evidently, we need scale normalization on h; other-
wise, Eq. (10) is minimized by h = 0. A frequently
used convention is h33 = 1, and

∑3
i,j=1 h2

ij = 1 is also
used, but many other normalizations are conceivable.
The important fact is that the solution depends on the
normalization. Al-Sharadqah and Chernov [1] and
Rangarajan and Kanatani [12] exploited this freedom
for circle fitting and “optimized” the normalization
so that the solution has the highest accuracy. In this
paper, we do this for homography estimation.

As Al-Sharadqah and Chernov [1] and Rangarajan
and Kanatani [12], we consider the class of normal-
izations in the form

(h, Nh) = constant, (12)

for some 9 × 9 symmetric matrix N . If we let N
= I (unit matrix), we require that ‖h‖ = constant.
In the following, we call this standard least-squares,
or simply LS . If N is positive definite, Eq. (12) is
positive, so no generality is lost if we set it to 1. As
Al-Sharadqah and Chernov [1] and Rangarajan and
Kanatani [12], however, we do not restrict N to be
positive definite. As is well known, the solution h that
minimizes Eq. (10) subject to Eq. (12) is obtained by
solving the generalized eigenvalue problem

Mh = λNh. (13)

The solution h has scale indeterminacy, so we nor-
malize it to ‖h‖ = 1 rather than Eq. (12). Our task
is to select an appropriate N that gives rise to the
best solution h, applying the perturbation theory of
Kanatani [6] to Eq. (13).

4. ERROR ANALYSIS
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where the 9 × 4 Jacobi matrices T (k)
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−ȳ′
α 0 0 −x̄α

0 −ȳ′
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We define the covariance matrices of ξ(k)
α by
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where E[ · ] denotes expectation and we put
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The second order error terms ∆2ξ
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5. PERTURBATION ANALYSIS

Substituting Eq. (14) into Eq. (11), we obtain
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where M̄ is the noise-free term, and · · · denotes terms
of order 3 or higher in noise. The first and second
order terms ∆1M and ∆2M are

∆1M =
1
N

N∑
α=1

3∑
k=1
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Accordingly, we expand h and λ in Eq. (13) in the
form

h= h̄+∆1h+∆2h+· · · , λ= λ̄+∆1λ+∆2λ+· · · . (23)

Substituting Eqs. (20) and (23) into Eq. (13), we have

(M̄ +∆1M +∆2M +· · ·)(h̄+∆1h+∆2h+· · ·)
=(λ̄+∆1λ+∆2λ+· · ·)N(h̄+∆1h+∆2h+· · ·). (24)

Expanding both sides and equating terms of equal
degrees in noise, we obtain

M̄h̄ = λ̄Nh̄, (25)

M̄∆1h + ∆1Mh̄ = λ̄N∆1h + ∆1λNh̄, (26)

M̄∆2h + ∆1M∆1h + ∆2Mh̄

=λ̄N∆2h + ∆1λN∆1h + ∆2λNh̄. (27)

Since (ξ̄(k)
α , h̄) = 0 for noise-free data, we have M̄h̄

= 0 and hence λ̄ = 0 from Eq. (25). We see from
Eq. (21) that (h̄, ∆1Mh̄) = 0. Computing the inner
product of h̄ and Eq. (26), we see that ∆1λ = 0.
Multiplying Eq. (26) by the pseudoinverse M̄

− from
left, we obtain

∆1h = −M̄
−∆1Mh̄, (28)

where we have noted that h̄ is a null vector of M̄
and hence P h̄ ≡ M̄

−
M̄ is the projection matrix in

the direction of h̄. We have also noted that ∆1h
is orthogonal to h̄ and hence P h̄∆1h = ∆1h; this
is easily seen by picking out first order terms from
‖h̄ + ∆1h + ∆2h + · · · ‖2 = 1.

Substituting Eq. (28) into Eq. (27), we see that
∆2λ is

∆2λ=
(h̄,∆2Mh̄)−(h̄, ∆1MM̄

−∆1Mh̄)
(h̄, Nh̄)

=
(h̄, T h̄)
(h̄, Nh̄)

,

(29)
where we define

T ≡ ∆2M − ∆1MM̄
−∆1M . (30)

Next, we consider the second order error ∆2h.
Since the magnitude of h is fixed to 1, we are only
interested in the component orthogonal to h̄, which
we denote by

∆2h
⊥ = P h̄∆2h (= M̄

−
M̄∆2h). (31)

Multiplying Eq. (27) by M̄
− from left and substitut-

ing Eq. (28), we obtain
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−
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−

T h̄. (32)

6. COVARIANCE AND BIAS

From Eq. (28), the leading term of the covariance
matrix of the solution h is given by
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where we define

M̄
′ =

1
N

N∑
α=1

3∑
k,l=1

(h̄, V
(kl)
0 [ξα]h)ξ̄(k)

α ξ̄
(l)>
α . (34)

In the above derivation, we have used our assumption
that the noise in ξα is independent for each α and that
E[∆1ξ

(k)
α ∆1ξ

(l)>
β ] = δαβσ2V

(kl)
0 [ξα], where δαβ is the

Kronecker delta. The important observation is that
V [h] does not depend on the normalization weight N .
Thus, all algebraic methods have the same covariance
matrix in the leading order , so we are unable to re-
duce the covariance of h by adjusting N . This leads
us to focus on the bias.

Since E[∆1h] = 0, the leading bias is E[∆2h
⊥]. To

evaluate this, we first compute the expectation E[T ]
of T in Eq. (30). From Eq. (22), E[∆2M ] becomes

E[∆2M ]=
1
N

N∑
α=1

3∑
k=1

(
ξ̄

(k)
α E[∆2ξ

(k)
α ]>

53



January 2010 High Accuracy Homography Computation without Iterations

+E[∆1ξ
(k)
α ∆1ξ
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α ] + E[∆2ξ
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)
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where we put
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N
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V
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The term E[∆1MM̄
−∆1M ] is evaluated as follows

(see Appendix A for the derivation):

E[∆1MM̄
−∆1M ]
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)
. (37)

Here, tr[ · ] denotes the trace, and S[ · ] means sym-
metrization (S[A] = (A + A>)/2). From Eqs. (35)
and (37), the expectation of T in Eq. (30) is written
as

E[T ]=σ2
(
NT−

1
N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

))
.

(38)
Hence, the expectation of ∆2h

⊥ in Eq. (32) is

E[∆2h
⊥] = M̄

−
( (h̄, E[T ]h̄)

(h̄, Nh̄)
Nh̄ − E[T ]h̄

)
. (39)

7. HIGH ACCURACY ALGEBRAIC
METHOD

Careful observation of Eqs. (38) and (39) reveals
that if we choose N to be

N = NT − 1
N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
,

(40)
then E[T ] = σ2N from Eq. (38), and hence Eq. (39)
becomes

E[∆2h
⊥] = σ2M̄

−
( (h̄, Nh̄)

(h̄, Nh̄)
N − N

)
h̄ = 0. (41)

Since Eq. (40) contains the true values ξ̄
(k)
α and M̄ ,

we evaluate them by replacing the true values (x̄α, ȳα)
and (x̄′

α, ȳ′
α) in their definitions by the observations

Figure 2: Simulated images of a planar surface.
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Figure 3: RMS error of the computed homography vs.
the standard deviation σ of the added noise. 1. LS. 2.
Hyperaccuracy method. 3. Taubin approximation. 4.
ML. The halfway termination of the ML plot means that
it did not converge beyond that noise level. The dotted
line indicates the KCR lower bound.

(xα, yα) and (x′
α, y′

α), respectively. This does not af-
fect the result, because expectations of odd-order er-
ror terms vanish and hence the error in Eq. (41) is at
most O(σ4). Thus, the second order bias is exactly 0.
After Al-Sharadqah and Chernov [1] and Rangarajan
and Kanatani [12], we call this solution “hyperaccu-
rate”.

Standard linear algebra routines for solving gen-
eralized eigenvalue problems in the form of Eq. (13)
assume that N is positive definite, but the matrix N
in Eq. (40) is not guaranteed to be positive definite.
However, this poses no problem, as Eq. (13) can be
rewritten as

Nh = (1/λ)Mh. (42)

Since the matrix M in Eq. (11) is positive definite for
noisy data, we can solve Eq. (42) instead of Eq. (13).
If the smallest eigenvalue of M happens to be 0, it in-
dicates that the data are all exact; any method, e.g.,
LS, gives an exact solution. The perturbation analy-
sis of Kanatani [6] is based on the assumption that λ
≈ 0, so we compute the unit generalized eigenvector
for λ with the smallest absolute value.

The second term on the right-hand side of Eq. (40)
is O(1/N) and hence is expected to be small when N
is large. We call the omission of this term Taubin
approximation. Letting N = NT and putting µ =
1/λ, we obtain Eq. (3).

8. EXPERIMENTS

Figure 2 shows simulated images of a planar sur-
face viewed from different directions. The image size
is assumed to be 800× 800 pixels with focal length f
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h

∆ h

h

O

Figure 4: The error component ∆h of the computed

value ĥ orthogonal to the true value h̄.

= 600 pixels. We added independent Gaussian noise
of mean 0 and standard deviation σ (pixels) to the
x and y coordinates of the grid points and computed
the homography h from them. We measured the error
of the computation by

∆h = P h̄ĥ, P h̄ ≡ I − h̄h̄
>

, (43)

where ĥ and h̄ are the computed and the true values,
respectively, and P h̄ is the projection matrix onto the
direction orthogonal to h̄; we are only interested in
the error of ĥ, which is a unit vector, orthogonal to
h̄ (Fig. 4). For each σ, we evaluated the root-mean-
square (RMS) error E of ∆h over 1000 independent
trials,

E =

√√√√ 1
1000

1000∑
a=1

‖∆h(a)‖2, (44)

where the superscript (a) indicates the ath value.
Figure 3 plots, for σ on the horizontal axis, the
RMS error E of different methods: 1. least squares
(LS), 2. our hyperaccuracy method using Eq. (40),
3. Taubin approximation, and 4. ML, for which we
derived a new method by extending the FNS prin-
ciple of Chojnacki [2] (see Appendix B). The dotted
line shows the KCR lower bound [4, 5, 6]. The in-
terrupted plot of ML means that the iterations failed
to converge for σ larger than that. We can see from
Fig. 3 that LS performs very poorly. In contrast, our
hyperaccuracy method and its Taubin approximation
almost compare with ML. Being algebraic, they do
not fail for whatever noise. Our methods and ML (if
it converges) almost achieve the theoretical accuracy
bound.

Figure 5(a) shows images of a planar scene taken
from different directions. From these, we computed
the homography from the left image to the right. Fig-
ure 5(b) is the generated panoramic image by ML,
manually choosing 21 corresponding points. We used
cvWarpPerspective1 of OpenCV for image genera-
tion. The five marks in Figure 5(a) are corresponding
points extracted by autopano-sift2. Figure 5(c) is
the panoramic image computed from them by LS, and
Fig. 5(d),(e), and (f) are the corresponding results

1http://opencv.jp/opencv-1.0.0/document/opencvref cv

sampling.html#decl cvWarpPerspective
2http://user.cs.tu-berlin.de/ nowozin/autopano-sift/

(a)

(b)

(c) (d)

(e) (f)

(c) (d) (e) (f)
0.399 0.089 0.433 0.439

Figure 5: Panoramic image generation. (a) Input images
of a planar surface and the corresponding points extracted
by SIFT. (b) Ground truth. (c) LS. (f) ML. (d) Hyper
accuracy method. (e) Taubin approximation. The table
lists numerical errors of the computed homography.

by ML, our hyperaccuracy method, and its Taubin
approximation, respectively. Regarding the homog-
raphy h̄ for Figure 5(b) by ML as the ground truth,
we computed the error ∆h in Eqs. (43) and listed
at the bottom of Fig. 5 the values of ‖∆h‖ for the
four methods. In this example, LS is relatively good
and ML is the best, while our method and its Taubin
approximation exhibit similar accuracy.

Figure 6 shows another example. The number of
corresponding points is seven, and Fig. 6(b) is created
by manually choosing 26 corresponding points. For
this example, that LS is the worst, while ML, our
method, and its Taubin approximation exhibit similar
accuracy.

9. CONCLUSIONS

We presented highly accurate LS alternatives to
the theoretically optimal ML estimator for homogra-
phies3. Unlike ML, our hyperaccurate estimator and
its Taubin approximation are non-iterative and yield
solutions even in the presence of large noise. This is
made possible by adjusting the normalization weight
matrix N so as to eliminate the bias of the solution
up to second order noise terms. By simulation, we

3The code is available at: http://www.... (our site).
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(a)

(b)

(c) (d)

(e) (f)

(b) (c) (d) (e)
0.378 0.246 0.210 0.204

Figure 6: Panoramic image generation. (a) Input images
of a planar surface and the corresponding points extracted
by SIFT. (b) Ground truth. (c) LS. (d) ML. (e) Hyper-
accuracy method. (f) Taubin approximation. The table
lists numerical errors of the computed homography.

demonstrated that our estimators outperform the tra-
ditional LS and has accuracy comparable to ML. We
demonstrated that our estimators could be used to
create better panoramic images.
Acknowledgments. This work was supported in part by
the Ministry of Education, Culture, Sports, Science, and
Technology, Japan, under a Grant in Aid for Scientific
Research C (No. 21500172).
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APPENDIX

A. Derivation of Eq. (37)

The term E[∆1MM̄
−∆1M ] is computed as fol-

lows:

E[∆1MM̄
−∆1M ]

=E[
1
N

N∑
α=1

3∑
k=1

(
ξ̄

(k)
α ∆1ξ

(k)>
α +∆1ξ

(k)
α ξ̄

(k)>
α

)
M̄

−

1
N

N∑
β=1

3∑
l=1

(
ξ̄

(l)
β ∆1ξ

(l)>
β +∆1ξ

(l)
β ξ̄

(l)>
β

)
]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[(ξ̄(k)
α ∆1ξ

(k)>
α +∆1ξ

(k)
α ξ̄

(k)>
α )M̄−

(ξ̄(l)
β ∆1ξ

(l)>
β +∆1ξ

(l)
β ξ̄

(l)>
β )]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[ξ̄(k)
α ∆1ξ

(k)>
α M̄

−
ξ̄

(l)
β ∆1ξ

(l)>
β

+ξ̄
(k)
α ∆1ξ

(k)>
α M̄

−∆1ξ
(l)
β ξ̄

(l)>
β

+∆1ξ
(k)
α ξ̄

(k)>
α M̄

−
ξ̄

(l)
β ∆1ξ

(l)>
β
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+∆1ξ
(k)
α ξ̄

(k)>
α M̄

−∆1ξ
(l)
β ξ̄

(l)>
β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[ξ̄(k)
α (∆1ξ

(k)
α , M̄

−
ξ̄

(l)
β )∆1ξ

(l)>
β

+ξ̄
(k)
α (∆1ξ

(k)
α , M̄

−∆1ξ
(l)
β )ξ̄(l)>

β

+∆1ξ
(k)
α (ξ̄(k)

α , M̄
−

ξ̄
(l)
β )∆1ξ

(l)>
β

+∆1ξ
(k)
α (ξ̄(k)

α , M̄
−∆1ξ

(l)
β )ξ̄(l)>

β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[(∆1ξ
(k)
α , M̄

−
ξ̄

(l)
β )ξ̄(k)

α ∆1ξ
(l)>
β

+(∆1ξ
(k)
α ,M̄

−∆1ξ
(l)
β )ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )∆1ξ

(k)
α ∆1ξ

(l)>
β

+∆1ξ
(k)
α (M̄−∆1ξ

(l)
β , ξ̄

(k)
α )ξ̄(l)>

β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[ξ̄(k)
α ((M̄−

ξ̄
(l)
β )>∆1ξ

(k)
α )∆1ξ

(l)>
β

+tr[M̄−∆1ξ
(l)
β ∆1ξ

(k)>
α ]ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )∆1ξ

(k)
α ∆1ξ

(l)>
β

+∆1ξ
(k)
α (∆1ξ

(l)>
β M̄

−
ξ̄

(k)
α )ξ̄(l)>

β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

(
ξ̄

(k)
α ξ̄

(l)>
β M̄

−
E[∆1ξ

(k)
α ∆1ξ

(l)>
β ]

+tr[M̄−
E[∆1ξ

(l)
β ∆1ξ

(k)>
α ]]ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )E[∆1ξ

(k)
α ∆1ξ

(l)>
β ]

+E[∆1ξ
(k)
α ∆1ξ

(l)>
β ]M̄−

ξ̄
(k)
α ξ̄

(l)>
β

)
=

σ2

N2

N∑
α,β=1

3∑
k,l=1

(
ξ̄

(k)
α ξ̄

(l)>
β M̄

−
δαβV

(kl)
0 [ξα]

+tr[M̄−
δαβV

(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )δαβV

(kl)
0 [ξα]

+δαβV
(kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
β

)
=

σ2

N2

N∑
α=1

3∑
k,l=1

(
ξ̄

(k)
α ξ̄

(l)>
α M̄

−
V

(kl)
0 [ξα]

+tr[M̄−
V

(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]

+V
(kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α

)
=

σ2

N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]

+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
. (45)

Thus, Eq. (37) is obtained.

B. ML Homography Estimation

B.1 Formulation

If we assume that noise in ξ(k)
α , k = 1, 2, 3, α

= 1, ..., N , is independent, isotropic, and Gaussian,
maximum likelihood (ML) of homography estimation
reduces to minimizing the following Mahalanobis dis-
tance, which equals the negative logarithm of the like-
lihood function up to a positive multiplicative con-
stant and an additive constant:

JML =
1
N

N∑
α=1

( ξ(1)
α −ξ̄

(1)
α

ξ(2)
α −ξ̄

(2)
α

ξ(3)
α −ξ̄

(3)
α

 ,

V
(11)
0 [ξα]V (12)

0 [ξα]V (13)
0 [ξα]

V
(21)
0 [ξα]V (22)

0 [ξα]V (23)
0 [ξα]

V
(31)
0 [ξα]V (32)

0 [ξα]V (33)
0 [ξα]


−

4

 ξ(1)
α −ξ̄

(1)
α

ξ(2)
α −ξ̄

(2)
α

ξ(3)
α −ξ̄

(3)
α

)
. (46)

Here, V
(kl)
0 [ξα] are defined from the covariance ma-

trices of ∆ξ(k)
α by Eq. (18). The notation ( · )−4 de-

notes pseudoinverse of rank 4 with eigenvalues ex-
cept the largest 4 ones being 0: The 27 × 27 matrix
in Eq. (46) has rank 4 because the independent vari-
ables in ∆ξ(k)

α , k = 1, 2, 3, are only xα, yα, x′
α, and

y′
α. We minimize Eq. (46) for ξ(k)

α , k = 1, 2, 3, α =
1, ..., N , and h subject to the constraint

(ξ̄(k)
α , h) = 0. (47)

The computational procedure for this was prescribed
by Scoleri et al. [14], but their description is rather ab-
stract, using Kronecker products and symbolic differ-
entiations. Here, we evaluate all derivatives directly
and write down all equations explicitly, using only
standard arithmetics. This will more clearly reveal
the underlying mathematical structure of the prob-
lem.

If we define 27-D vectors ξα and 9 × 27 matrices
I(1), I(2), and I(3) by

ξα =

 ξ(1)
α

ξ(2)
α

ξ(3)
α

 , (48)

I(1) =

 I
O
O

 , I(2) =

O
I
O

 , I(3) =

 O
O
I

 ,

(49)
where I is the 9×9 unit matrix, Eq. (47) is rewritten
as

(ξ̄α, I(1)h) = 0, (ξ̄α, I(2)h) = 0, (ξ̄α, I(3)h) = 0,
(50)

where ξ̄α is the true value of ξα. Equation (46) is
now rewritten as

JML =
1
N

N∑
α=1

(ξα − ξ̄α, V0[ξα]−4 (ξα − ξ̄α)), (51)
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where V0[ξα]−4 is the 27 × 27 matrix in Eq. (46). In-
troducing Lagrange multipliers λ

(k)
α to Eqs. (50), we

differentiate
1
2
NJML −

3∑
k=1

λ(k)
α (ξ̄α, I(k)h), (52)

with respect to ξ̄α and set the result to 0. We obtain

−V0[ξα]−4 (ξα − ξ̄α) −
3∑

k=1

λ(k)
α I(k)h = 0. (53)

Multiply this with V0[ξα] from left, we obtain

−(ξα − ξ̄α) −
3∑

k=1

λ(k)
α V0[ξα]I(k)h = 0, (54)

where we have noted that the variation ξα−ξ̄α due to
noise is in the domain of the covariance matrix V0[ξα]
and hence is invariant to the projection V0[ξα]V0[ξα]−4
onto the domain of V0[ξα]. Substituting the expres-
sion of V0[ξα]−4 (ξα − ξ̄α) obtained from Eq. (53) and
the expression of ξα − ξ̄α obtained from Eq. (54) into
Eq. (51), we can write JML in the form

JML=
1
N

N∑
α=1

(
3∑

k=1

λ(k)
α V0[ξα]I(k)h,

3∑
l=1

λ(l)
α I(l)h)

=
1
N

N∑
α=1

3∑
k,l=1

λ(k)
α λ(l)

α (h, I(kl)>V0[ξα]I(k)h)

=
1
N

N∑
α=1

3∑
k,l=1

λ(k)
α λ(l)

α (h, V
(kl)
0 [ξα]h)

=
1
N

N∑
α=1

3∑
k,l=1

λ(k)
α λ(l)

α V (kl)
α , (55)

where we put

V (kl)
α = (h, V

(kl)
0 [ξα]h). (56)

If we substitute the expression of ξ̄α obtained from
Eq. (54) into Eqs. (50), we have

3∑
l=1

V (kl)
α λ(l)

α =−(ξα, I(k)h)=−(ξ(k)
α ,h), k = 1, 2, 3,

(57)
which provides simultaneous linear equations for λ

(k)
α .

However, the rank of the coefficient matrix V α =
(V (kl)

α ) drops to 2 if there is no noise (as described
shortly). So, we solve Eq. (57) by least squares, which
is equivalent to using the pseudoinverse W α = (V α)−2
of rank 2. We obtain

λ(k)
α = −

3∑
l=1

W (kl)
α (ξ(l)

α , h). (58)

Substituting this into Eq. (55), we obtain

JML=
1
N

N∑
α=1

3∑
k,l=1

( 3∑
m=1

W (km)
α (ξ(m)

α , h)
)

( 3∑
n=1

W (ln)
α (ξ(n)

α , h)
)
V (kl)

α

=
1
N

N∑
α=1

3∑
m,n=1

( 3∑
k,l=1

W (km)
α V (kl)

α W (ln)
α

)
(ξ(m)

α , h)(ξ(n)
α , h)

=
1
N

N∑
α=1

3∑
m,n=1

W (mn)
α (ξ(m)

α , h)(ξ(n)
α , h), (59)

where we have used the identity for pseudo inverse:
W αV αW α = W α(W α)−2 W α = W α.

The expression of this type is called the Sampson
error . Note that no approximation has been intro-
duced to derive Eq. (59). However, we assumed in
the beginning that noise in ξ(k)

α are Gaussian. This is
not strictly true if ∆xα, ∆yα, ∆x′

α, and ∆y′
α is Gaus-

sian. It has been confirmed in many problems that
the Gaussian approximation of noise in ξ(k)

α , or the
Sampson approximation, does practically not affect
the solution of the strict ML solution [7].

B.2 Minimizing Eq. (59)

It is easily seen from the definition of ξ(k)
α that

x′
αξ(1)

α + y′
αξ(2)

α + f0ξ
(3)
α = 0 (60)

holds identically. Computing the inner product with
h on both sides, we obtain

(x′
αξ(1)

α + y′
αξ(2)

α + f0ξ
(3)
α ,h) = 0. (61)

This is an identity in xα, yα, x′
α, and y′

α, so its deriva-
tives with respect to these is also identities. Hence,
the following identically holds if there is no noise:

(x′
α[T (1)

α ]1 + y′
α[T (2)

α ]1 + f0[T (3)
α ]1, h)=0,

(x′
α[T (1)

α ]2 + y′
α[T (2)

α ]2 + f0[T (3)
α ]2, h)=0,

(x′
α[T (1)

α ]3 + y′
α[T (2)

α ]3 + f0[T (3)
α ]3, h)=0,

(x′
α[T (1)

α ]4 + y′
α[T (2)

α ]4 + f0[T (3)
α ]4, h)=0. (62)

Here, [T (k)
α ]i is the ith column of T (k)

α (= the Jacobi
matrix of ξ(k)

α ), and we have noted that (ξ(k)
α , h) =

0 in the absence of noise. From these four equations,
we conclude that

(x′
αT (1)

α + y′
αT (2)

α + f0T
(3)
α )>h = 0. (63)

If we multiply T (k)
α with this and note the definition

V
(kl)
0 [ξα] ≡ T (k)

α T (l)>
α , we obtain

(x′
αV

(k1)
0 [ξα] + y′

αV
(k2)
0 [ξα] + f0V

(k3)
0 [ξα])h = 0.

(64)
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We write the 3 × 3 matrix having (h, V
(kl)
0 [ξα]h) as

its (kl) element as V α. Computing the inner product
of h and Eq. (64), we obtain

V α

 x′
α

y′
α

f0

 = 0. (65)

Thus, x′
α =

(
x′

α y′
α f0

)> is a null vector of V α.
From the definition of pseudoinverse, it is also a null
vector of W α = (V α)−2 . It follows that W αV α and
V αW α are both projection matrices onto the sub-
space orthogonal to x′

α. Hence, we can write

W αV α = V αW α = I −N [x′
α]N [x′

α]>, (66)

where N [ · ] denotes normalization into unit norm.
Differentiating Eq. (66) with respect to hi, we obtain

∂V α

∂hi
W α + V α

∂W α

∂hi
= O. (67)

Multiplying this by W α from left and noting that
∂W α/∂hi also has x′

α as its null vector and hence
is invariant to the projection W αV α, we obtain the
following identity:

∂W α

∂hi
= −W α

∂V α

∂hi
W α. (68)

Now, if we define the 9 × 3 matrix

Ξα =
(

ξ(1)
α ξ(2)

α ξ(3)
α

)
, (69)

Eq. (59) can be rewritten as follows:

JML =
1
N

N∑
α=1

(h,ΞαW αΞ>
α h). (70)

Differentiating this with respect to hi and using
Eq. (68), we obtain

∂JML

∂hi
=

2
N

N∑
α=1

(ΞαW αΞ>
α h)i

− 2
N

N∑
α=1

(h,ΞαW α
∂V α

∂hi
W αΞ>

α h), (71)

where ( · )i denotes the ith component. If we put

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)

α , h), (72)

and define vα to be the 3-D vector with components
v
(k)
α , k = 1, 2, 3, Eq. (72) is written as

vα = W αΞ>
α h. (73)

From the definition of the matrix V α, we see that
∂V α/∂hi is a 3 × 3 matrix whose (kl) element is

2
∑9

j=1 V
(kl)
0 [ξα]ijhj . Hence, the last term of the

right-hand side of Eq. (71) is

2
N

N∑
α=1

(h,ΞαW α
∂V α

∂hi
W αΞ>

α h)=
2
N

N∑
α=1

(vα,
∂V α

∂hi
vα)

=
9∑

j=1

( 2
N

N∑
α=1

3∑
k,l=1

V
(kl)
0 [ξα]ijv(k)

α v(l)
α

)
hj . (74)

If we define 9 × 9 matrices MML and LML by

MML =
1
N

N∑
α=1

W (kl)
α ξ(k)

α ξ(l)>
α , (75)

LML =
1
N

N∑
α=1

N∑
k,l=1

v(k)
α v(l)

α V
(kl)
0 [ξα], (76)

the first term on the right-hand side of Eq. (71) is
simply 2MML. Equation (74) is written as 2LMLh.
Thus, we obtain the following expression of the
derivative of JML in Eq. (70):

∇hJML = 2(MML − LML)h. (77)

It follows that to minimize JML we need to solve

(MML − LML)h = 0. (78)

In the above derivation, we have assumed that
there is no noise. In the presence of noise, the only
difference is that Eq. (65) does not exactly hold, and
V α is nonsingular with the smallest eigenvalue close
to 0. So, we regard the definition of W α = (V α)−2 as
obtained by curtailing the smallest eigenvalue of V α

to 0.

B.3 Solving Eq. (78)

In order to solve Eq. (78), we use the FNS principle
of Chojnacki et al. [2], though we may as well use the
HEIV principle of Leedan and Meer [10] and Matei
and Meer [11]. The FNS procedure goes as follows:

1. Provide an initial value h0 for h (e.g., by LS).
2. Compute the matrices MML and LML in

Eqs. (75) and (76).
3. Solve the eigenvalue problem

(MML − LML)h = λh, (79)

and compute the unit eigenvector h for the small-
est eigenvalue λ.

4. If h ≈ h0, return h and stop. Else, let h0 ←
N [h0 + h], and go back to Step 2.

The term N [h0 + h] means N [(h0 + h)/2]. This
average taking, not originally shown by Chojnacki et
al. [2], was shown to stabilize the convergence in many
problems [9].
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