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Robust Image Matching under a Large Disparity
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We present a new method for detecting point matches between two images without
using any combinatorial search. Our strategy is to impose various local and non-local
constraints as “soft” constraints by introducing their “confidence” measures via “mean-
field approximations”. The computation is a cascade of evaluating the confidence values
and sorting according to them. In the end, we impose the “hard” epipolar constraint by
RANSAC. We also introduce a model selection procedure to test if the image mapping
can be regarded as a homography. We demonstrate the effectiveness of our method by
real image examples.

1. Introduction

Establishing point correspondences over multiple
images is the first step of many computer vision ap-
plications. Two approaches exist for this purpose:
tracking correspondences over successive frames, and
direct matching between separate frames. This paper
focuses on the latter.

The basic principle is local correlation measure-
ment by template matching. Detecting feature points
in the first and second images separately using a fea-
ture detector [3, 15], we measure the correlation be-
tween the neighborhoods of the two points for each
candidate pair and match those that have a high cor-
relation. This works very well if one image is a trans-
lated copy of the other. However, if the two images
are taken from different positions in the scene, the
corresponding parts in the images appear differently
with local deformations that depend on the 3-D shape
of that part of the scene and its orientation relative to
the two camera positions. The template correlation
is very much affected by such local deformations. In
particular, the correlation significantly diminishes if
the camera is rotated or zooming takes place during
the image capturing process.

It follows that local correlations alone are not suffi-
cient for establishing correspondences. If the scene is
a planar surface or in the distance, the two images are
related by an image transformation called homogra-
phy [4]. This strong constraint can be combined with

∗E-mail kanatani@suri.it.okayama-u.ac.jp

voting techniques such as LMedS [14] and RANSAC
[2] to match the images robustly. Analyzing the tem-
plate residual [7], the authors have proposed a hier-
archical voting scheme called stratified matching for
robustly matching two images even in the presence of
a large image deformations [10].

For a general scene, however, the only available
constraint is what is known as the epipolar equation
[4], and various voting schemes using it have been pro-
posed [1, 4, 19]. This gives a strong constraint if the
fundamental matrix is known (e.g., when a calibrated
stereo rig is used). For an unknown fundamental ma-
trix, however, it is a very weak constraint, and a lot
of wrong matches, which humans could easily detect,
satisfy this equation. As a result, the combination of
local image correlations and the epipolar constraint
works only when the disparity is relatively small with
small camera rotations and small zooming changes.

To improve the matching performance, many tech-
niques based on combinatorial optimization have
been proposed: we assign various attributes to each
feature point, define a similarity measure between
them, and search for an optimal match that maxi-
mizes the total similarity. The difficulty of this ap-
proach is that the optimization needs to be done with
respect to a permutation matrix with integer elements
that define one-to-one correspondence with some un-
matched points admitted. Various efforts have been
made to relax the integer matrix to real variables
[12, 18]. Beside the attribute similarities, local spa-
tial proximity is also incorporated in the form of con-
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straint relaxation [19], tensor voting [11] and mul-
tiresolution search coupled with the distance trans-
form [13]. However, it is difficult to impose non-local
constraints among mutually far apart multiple pairs.

In this paper, we present a robust matching algo-
rithm that does not involve any combinatorial search:
the computation is a cascade of evaluating the con-
fidence values and sorting according to them. We
also impose non-local constraints such that correct
matches be fairly smooth and consistent, assuming
that the scene does not have an extraordinary 3-D
shape. However, they should not be imposed defini-
tively, since seemingly inconsistent matches can be
correct. Let us say such violable constraints are soft
while inviolable constraints such as the epipolar equa-
tion are hard .

In order to impose soft constraints, we introduce
confidence measures to all potential matches in such
a way that those that satisfy the constraints well have
high confidence, yet none of them is definitively re-
jected. To describe non-local constraints, we intro-
duce mean-field approximations similar to what sta-
tistical physicists do to deal with many body prob-
lems. On the other hand, the hard epipolar constraint
is strictly imposed by RANSAC. In other words, we
favor, among those matches that strictly satisfy the
epipolar equation, those that have high confidence of
the soft constraints.

We first introduce the soft constraints that we re-
quire and define their confidence measures via mean-
field approximations. Then, we describe the voting
procedure that combines the soft constraints and the
hard epipolar equation. We also describe a model se-
lection procedure to test if the image mapping can
be regarded as a homography. Finally, we show real
image examples to demonstrate that our method is
very effective even when conventional methods fail.

2. Template Matching

We measure the local correlations between the
neighborhoods of point p in the first image and point
q in the second by the residual (sum of squares)

J(p, q) =
∑

(i,j)∈N
|Tp(i, j)− Tq(i, j)|2, (1)

where Tp(i, j) and Tq(i, j) are the intensity values of
the templates defined by cutting out an w × w pixel
region N centered on p and q, respectively1.

The basic procedure for point matching is as fol-
lows. We extract N points p1, ..., pN in the first image
and M points q1, ..., qM in the second, using a feature
detector [3, 15]. Computing the residuals {J(pα, qβ)},
α = 1, ..., N , β = 1, ..., M , for all NM combinations
of the extracted points, we search the N × M ta-
ble of {J(pα, qβ)} for the minimum value J(pα∗ , qβ∗)

1We let w = 9 in our experiments.

and establish the match between points pα∗ and qβ∗ .
Then, we remove from the table the column and row
that contain the value J(pα∗ , qβ∗) and do the same
procedure to the resulting (N−1)×(N−1) table. Re-
peating this, we end up with L = min(N, M) matches.
The computation can be done efficiently if the resid-
uals {J(pα, qβ)} are sorted in ascending order in the
beginning. We call this procedure uniqueness enforce-
ment with respect to the residual J .

However, this procedure cannot be done directly,
since the selected pairs may not be all correct while
some of the discarded pairs may be correct. In order
to take all potential matches into consideration, we
introduce a confidence measure to all possible pairs.

3. Confidence of Local Correlations

We define the confidence of local correlations for
the pair (p, q) via the Gibbs distribution in the form

P = e−sJ(p,q), (2)

so that high confidence is assigned to small residuals
J(p, q). Physicists put s = 1/kT and call T tempera-
ture, where k is the Boltzmann constant. If s = 0 (or
T = ∞), we uniformly have P = 1 irrespective of the
residual J(p, q). As s increases (or T decreases), the
confidence of those with large residuals quickly de-
creases, and ultimately the confidence concentrates
only on the smallest residual (condensation).

Here, we determine the value of s as follows.
Among all the NM pairs {(pα, qβ)}, at most L (=
min(N, M)) of them can be correct. We require that
the average of the L smallest residuals equal the over-
all weighted average with respect to the confidence
(2). If the NM potential matches (pα, qβ) are sorted
according to their residuals J(pα, qβ) in ascending or-
der and the λth residual is abbreviated as Jλ, this
condition is written in the form

1
Z

NM∑

λ=1

Jλe−sJλ = J̄ , (3)

where

Z =
NM∑

λ=1

e−sJλ , J̄ =
1
L

L∑

λ=1

Jλ. (4)

The solution of eq. (3) is easily computed by Newton
iterations to search for the zero of Φ(s) = 0, starting
from s = 0, where we define

Φ(s) =
NM∑

λ=1

(Jλ − J̄)e−sJλ . (5)

Let P
(0)
λ be the thus defined confidence of local cor-

relations for the λth pair.
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4. Confidence of Spatial Consistency

Next, we introduce the confidence of spatial con-
sistency, assuming that the scene does not have an
extraordinary 3-D shape so that correct matches are
fairly consistent.

For this, we choose tentative candidates for correct
matches by enforcing uniqueness with respect to P

(0)
λ

to those pairs that satisfy2

P
(0)
λ > e−k2/2. (6)

We enumerate the resulting matches by the index µ
= 1, ..., n0 in an arbitrary order. Let ~rµ be the 2-
dimensional vector that connects the two points of the
µth match, starting from the one in the first image
and ending at the other in the second. Let us call it
the “flow vector” of the µth match.

Our strategy is to view those matches which are
consistent with the resulting “optical flow” {~rµ} as
more likely to be correct. Specifically, we compute
the confidence weighted mean ~rm and the confidence
weighted covariance matrix V of the optical flow by

~rm =
1
Z

n0∑
µ=1

P (0)
µ ~rµ, Z =

n0∑
µ=1

P (0)
µ ,

V =
1
Z

n0∑

λ=1

P (0)
µ (~rµ − ~rm)(~rµ − ~rm)>. (7)

Now, we go back to the original NM potential
matches. We define their confidence of spatial con-
sistency via the Gaussian distribution in the form

P
(1)
λ = e−(~rλ−~rm,V −1(~rλ−~rm)), (8)

where (~a,~b) designates the inner product of vectors ~a

and ~b.
Unlike P

(0)
λ , this is a non-local measure: a flow vec-

tor ~rλ has low confidence if it largely deviates from
the average of high-confidence optical flow {~rµ}. This
mean-field approximation is in the same spirit of what
statistical physicists do to deal with many body prob-
lems.

5. Confidence of Global Smoothness

We then introduce the confidence of global smooth-
ness, assuming that the scene is more or less planar
or in the distance so that the image transformation
can be roughly approximated by a homography.

As in the case of spatial consistency, we first choose
tentative candidates for correct matches. This time,
we enforce uniqueness with respect to P

(0)
λ P

(1)
λ to

those pairs that satisfy

P
(0)
λ P

(1)
λ > e−2k2/2. (9)

2we let k = 3 in our experiment.

We enumerate the resulting matches by the index µ
= 1, ..., n1 in an arbitrary order.

Let (xµ, yµ) and (x′µ, y′µ) be the two points of the
µth pair. We represent these two points by 3-D vec-
tors

xµ =




xµ/f0

yµ/f0

1


 , x′µ =




x′µ/f0

y′µ/f0

1


 , (10)

where f0 is an appropriate scale factor, e.g., the image
size. In this vector representation, a homography is
written as an image mapping in the form

x′ = Z[Hx], (11)

where Z[ · ] means normalization to make the third
component 1.

We optimally fit a homography to the n1 candi-
date matches. Let the true values (in the absence
of noise) of {xµ} and {x′µ} be, respectively, {x̄µ}
and {x̄′µ} (their third components are identically 1).
Taking account of their confidence, we compute the
homography matrix H by minimizing

J =
n1∑

µ=1

P (0)
µ P (1)

µ (‖xµ − x̄µ‖2 + ‖x′µ − x̄′µ‖2), (12)

subject to the constraint x̄′µ = Z[Hx̄µ], µ = 1, ...,
n1, with respect to {x̄µ}, {x̄′µ}, and H. The solu-
tion is easily obtained by modifying the optimization
technique called renormalization3 [8]

Now, we go back to the original NM potential
matches. The discrepancy of each potential match
from the estimated homography is measured by

DH
λ = ‖x′λ − Z[Hxλ]‖2, (13)

where xλ and x′λ represent the two points of the
λth pair, λ = 1, ..., NM . We define the confidence
of global smoothness via the Gibbs distribution in
the same way as the confidence of local correlations.
Namely, we let

P
(2)
λ = e−tDH

λ . (14)

The constant t is determined by solving

1
Z

NM∑

λ=1

DH
λ e−tDH

λ = D̄H , (15)

where

Z =
NM∑

λ=1

e−tDH
λ , D̄H =

1
L

L∑

λ=1

DH
λ . (16)

The solution is easily obtained by doing Newton iter-
ations to eq. (5) after Jλ is replaced by DH

λ .
Again, the confidence P

(2)
λ is a non-local mea-

sure: a pair has high confidence if it conforms to
the homography that approximates high-confidence
matches. This is also a mean-field approximation.

3The C++ program is publicly available at
http://www.suri.it.okayama-u.ac.jp/
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 1: (a), (b) Input images and detected feature points. (c) 3-D reconstruction computed from the final matches
(top view). (d) Initial matches based on local correlations. (e) Matches with spatial consistency incorporated. (f)
Matches with global smoothness added. (g) Final matches with the epipolar constraint imposed. (h) Matches obtained
from (d) by direct RANSAC.

6. Voting the Epipolar Constraint

Finally, we strictly enforce the epipolar constraint .
In vector representation, we have for a matching pair
{x, x′} the following epipolar equation [4]:

(x, Fx′) = 0. (17)

Here, F is a singular matrix with rank 2, called the
fundamental matrix [4]. It is defined only up to an
arbitrary scale factor.

First, we choose tentative candidates for correct
matches by enforcing uniqueness with respect to
P

(0)
λ P

(1)
λ P

(2)
λ to those pairs that satisfy

P
(0)
λ P

(1)
λ P

(2)
λ > e−3k2/2. (18)

We enumerate the resulting matches by the index µ =
1, ..., n2 in an arbitrary order. From these candidate
matches, we robustly fit the epipolar equation (17)
using RANSAC [2, 4]. Letting Sm = 0 and F m = O
as initial values, we do the following computation:

1. Randomly choose eight among the n2 pairs.

2. From them, compute the fundamental matrix F .
Since the scale of F is indeterminate, the nine
elements of F are easily obtained from the eight
pairs by solving linear equations.

3. For each of the n2 pairs, compute

DF
µ =

(xµ, Fx′µ)2

‖P kF>xµ‖2 + ‖P kFx′µ‖2
, (19)

where P k = diag(1, 1, 0) (the diagonal matrix
with diagonal elements 1, 1, and 0 in that order).
It can be shown that f2

0 DF
µ equals the sum of

square distances of the points xµ and x′µ to their
epipolar lines defined by F if higher order terms
are ignored [4, 5].

4. Let S the sum of the confidence P
(0)
µ P

(1)
µ P

(2)
µ of

those pairs that satisfy

DF
µ ≤ 2d2

f2
0

, (20)

where d (pixel) is a user definable threshold4.

5. If S > Sm, update Sm ← S and F m ← F .

We repeat this computation a sufficient number of
times to find the matrix F m that gives the largest
total confidence Sm.

Now, we go back to the original NM potential
matches. The degree of fit to the epipolar equation
is measured by DF

λ in eq. (19) if xµ and x′µ are re-
placed, respectively, by xλ and x′λ that represent the
λth pair, λ = 1, ..., NM . We choose from among the
NM pairs those that satisfy eq. (20). The resulting
pairs are thresholded by the criterion (18). Finally,
we enforce uniqueness with respect to P

(0)
λ P

(1)
λ P

(2)
λ

to obtain the final matches.

7. Model Selection

If the scene is a planar surface or in the distance,
the image mapping between the two images is a ho-
mography, which allows us to determine the image
mapping pixelwise. This information can be used to
generate a panoramic image [10], whereas we cannot
reconstruct the 3-D structure of the scene without
additional information. So, it is crucial to see if the
image mapping is a homography.

A naive idea is to fit the homography relation and
the epipolar constraint to the obtained matches and
decide that the mapping is a homography if the resid-
ual for the homography is smaller than for the epipo-
lar constraint. This does not work, however, because

4We let d = 3 in our experiment.
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 2: (a), (b) Input images and detected feature points. (c) Panoramic image generated from the final matches. (d)
Initial matches based on local correlations. (e) Matches with spatial consistency incorporated. (f) Matches with global
smoothness added. (g) Final matches with the epipolar constraint imposed. (h) Matches obtained from (d) by direct
RANSAC.

the homography is a stronger constraint than the
epipolar equation, which is always satisfied. As a re-
sult, the residual for the homography is never smaller
than for the epipolar constraint.

Thus, we need to balance the strength of the con-
straint with the increase in the residual. This can be
done by model selection using, among other measures,
the geometric AIC [6] (see [16, 17] for other criteria).
Let n be the number of the finally obtained matches.
We fit the homography relation and the epipolar con-
straint to the n matches in an optimal manner and
compute their respective residuals JH and JF (see [5]
for the details of the computation). Their geometric
AICs are respectively given by

G-AICH = JH + 2(2n + 8)ε2,
G-AICF = JF + 2(3n + 7)ε2, (21)

where ε is a constant that specifies the degree of image
noise. It is estimated from the residual of the general
epipolar constraint as follows [5]:

ε̂2 =
JF

n− 7
. (22)

The image relationship is regarded as a homography
if G-AICH < G-AICF .

8. Real Image Examples

Figs. 1(a) and (b) show two images of an outdoor
scene. We detected 300 feature points from each im-
age using the Harris operator [3], as marked there.
Fig. 1(d) shows the “optical flow” of the initial can-
didate matches based on local correlations. As we
can see, this scene has many periodic patterns, so the
template matching based only on local correlations
produce many mismatches.

Fig. 1(e) is the matches after spatial consistency is
imposed, and Fig. 1(f) is the matchers after global
smoothness is added. We see that the accuracy
increases as we impose more constraints. Doing
RANSAC to the matches in Fig. 1(f), we obtained
the final matches in Fig. 1(g).

For comparison, the optical flow obtained by di-
rectly doing RANSAC to the initial matches in
Fig. 1(d) is shown in Fig. 1(h). As we can see, many
wrong matches are included.

Thus, our procedure is very effective in narrowing
down the correct matches by gradually incorporat-
ing various soft constraints through their confidence
measures. As a result, we can obtain correct matches
accurately and robustly even when the initial matches
contain a large number of mismatches.

Comparing the geometric AICs computed from the
final matches, we can conclude that in this case the
image mapping cannot be regarded as a homography.
Fig. 1(c) shows the 3-D shape reconstructed from the
computed fundamental matrix F (top view). We used
the method described in [9].

Fig. 2 shows another example similarly arranged.
There is a slight camera rotation between Figs. 2(a)
and (b), and the scene has many similar textures,
so a lot of mismatches occurred by template match-
ing based on local correlations alone. However, our
method successfully generated many correct matches
as compared with direct RANSAC. This time, the
image transformation can be regarded as a homogra-
phy. Fig. 2(c) shows the panoramic image generated
by the computed homography.

We also examined the effects of camera rotations
and zooming changes using the images in Figs. 3 and
4. These images consist in large part of almost iden-
tical periodic patterns with very similar textures, so
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3: Effects of image rotations: (a) Left image. (b) Right image. (c) Rotation of (b) by 5◦. (d) Rotation of (b) by
10◦. The results from the pair (a) and (b) (top row), the pair (a) and (c) (middle row), and the pair (a) and (d) (bottom
row): (e) Initial matches based on local correlations. (f) Matches with spatial consistency incorporated. (g) Matches
with global smoothness added. (h) Final matches with the epipolar constraint imposed. (i) Matches obtained from (e)
by direct RANSAC.

matching by local correlation alone is extremely dif-
ficult. Yet, our method successfully generated suffi-
ciently many correct matches.

Figs. 3(a) and (b) are the original image pair, and
Figs. 3(c) and (d) are obtained by rotating the image
in Figs. 3(b) by 5 and 10 degrees, respectively. The
matches in the top row are obtained from the pair (a)
and (b); the matches in the middle row are obtained
from the pair (a) and (c); the matches in the bottom
row are obtained from the pair (a) and (d). In each
row, (e)∼(i) are the result corresponding to (d)∼(h)
in Figs. 1 and 2.

Figs. 4(a) and (b) are another image pair, and
Figs. 4(c) and (d) are obtained by zooming out the
image in Figs. 4(b) by 80% and 65%, respectively.
The rest is arranged in the same way as in Figs. 3.

From these, we can see that our method is robust
to image rotations and zooming changes. For the
above examples, the total computation time of our
method (including loading image files, feature point
extraction, and outputting debug information) was
23 sec on average, while direct RANSAC took 14 sec
on average. We used Pentium III 700MHz for the

CPU with 768MB main memory and Linux for the
OS. Thus, we can gain accuracy and robustness at a
relatively small computational cost.

9. Summary of the Procedure

The basic strategy of our method is that we as-
sign the confidence value to all pairs but observe
only those matches obtained by enforcing unique-
ness to high-confidence pairs. In other words, all the
pairs are divided into visible matches and suppressed
matches. The confidence values of all the pairs are
updated using the visible matches, but the order of
confidence changes as a result. So, some of the vis-
ible matches are denied and some of the suppressed
matches emerge as visible matches in the next stage.
That is why we can obtain correct matches in the end
even if the initial visible matches are almost entirely
wrong, as we have seen in our experiments.

Some of the constraints are non-local and defined
via mean-field approximations. They are treated as
soft constraints through their confidence values. The
necessary computation is a cascade of evaluating the
confidence values and sorting according to them with-
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4: Effects of zooming changes: (a) Left image. (b) Right image. (c) Zooming out of (b) by 80%. (d) Zooming out
of (b) by 65%. The results from the pair (a) and (b) (top row), the pair (a) and (c) (middle row), and the pair (a) and
(d) (bottom row): (e) Initial matches based on local correlations. (f) Matches with spatial consistency incorporated. (g)
Matches with global smoothness added. (h) Final matches with the epipolar constraint imposed. (i) Matches obtained
from (e) by direct RANSAC.

out involving any combinatorial search.
In order for this strategy to work, different confi-

dence values should be defined in a compatible way.
We have carefully defined them so that the distribu-
tion of the confidence values over all the pairs have
the variance of a comparative order of magnitude via
the Gaussian distribution and the Gibbs distribution
with a consistently defined “temperature”. As a re-
sult, multiple confidence values can be multiplied to
give the total confidence. In the definition of our con-
fidence measures, we used L = min(N, M) as a refer-
ence value for the number of matching. It has been
pointed out that without such a reference we might
accept all the pairs or deny them altogether [7, 12].

We do not assert that the final matches obtained
by our procedure are all correct. Rather, we assert
that they have high total confidence with each match
given its confidence value, allowing further refinement
or selection, depending on applications.

10. Conclusions

We have presented a robust method for detect-
ing point matches between two images without using

any combinatorial search. Our strategy is to impose
various local and non-local constraints as “soft” con-
straints by introducing “confidence” measures. The
computation is a cascade of evaluating the confidence
values and sorting according to them. In the end, we
impose the “hard” epipolar constraint by RANSAC.
We have also introduced a model selection procedure
to test if the image mapping can be regarded as a ho-
mography. We have demonstrated the effectiveness
of our method by real image examples.
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