
Memoirs of the Faculty of Engineering, Okayama University, Vol. 44, pp. 13–23, January 2010

Unified Computation of Strict Maximum Likelihood

for Geometric Fitting

Kenichi KANATANI∗ Yasuyuki SUGAYA
Department of Computer Science Department of Information and Computer Sciences

Okayama University Toyohashi University of Technology
Okayama 700-8530 Japan Toyohashi, Aichi 441-8580 Japan

(Received December 14, 2009)

A new numerical scheme is presented for computing strict maximum likelihood (ML) of geometric
fitting problems having an implicit constraint. Our approach is orthogonal projection of observations
onto a parameterized surface defined by the constraint. Assuming a linearly separable nonlinear
constraint, we show that a theoretically global solution can be obtained by iterative Sampson error
minimization. Our approach is illustrated by ellipse fitting and fundamental matrix computation.
Our method also encompasses optimal correction, computing, e.g., perpendiculars to an ellipse and
triangulating stereo images. A detailed discussion is given to technical and practical issues about
our approach.

1. INTRODUCTION

This paper presents a unified numerical scheme
for computing strict maximum likelihood (ML) for a
problem called geometric fitting [15] having an im-
plicit constraint. This type of problem very fre-
quently appears in computer vision applications. By
“strict”, we mean Gaussian noise is assumed in the
original data space, while many existing methods im-
plicitly assume it in a transformed data space, mini-
mizing what is known as the Sampson error . By “uni-
fied”, we mean we need not derive a problem-specific
cost function for particular applications. Assuming a
linearly separable constraint, which is very common
in computer vision, we show that a globally optimal
solution can be obtained by iterative Sampson error
minimization in a problem-independent manner.

———————
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Our approach is orthogonal projection of observa-
tions onto a parameterized surface defined by the con-
straint. The principle itself is well known, but we
present a new scheme by exploiting the linear separa-
bility of the constraint. We illustrated our procedure
by applying it to ellipse fitting and fundamental ma-
trix computation. Our method also encompasses op-
timal correction [15], which, too, plays an important
role in computer vision applications. We illustrate
our approach by computing perpendiculars to an el-
lipse and triangulating stereo images.

∗E-mail kanatani@suri.cs.okayama-u.ac.jp

We first state the problem and give mathemati-
cal fundamentals in Sect. 2 and 3. In Sect. 4 and 5,
we contrast two types of ML. In Sect. 6, we review
existing approaches and sketch our strategy. The
computational details are described in Sect. 7 and
8. In Sect. 9, we apply our approach to ellipse fitting
and fundamental matrix computation. In Sect. 10,
we reduce our method to optimal correction schemes,
showing how to compute perpendiculars to an ellipse
and triangulate stereo images. We summarize tech-
nical and practical issues of our approach in Sec. 11
and conclude in Sect. 12.

2. GEOMETRIC FITTING

We consider the problem of fitting to noisy vector
data xα, α = 1, ..., N , an implicit equation in the
form

F (x; θ) = 0, (1)

parameterized by θ. To be specific, we want to esti-
mate the parameter θ in such a way that F (xα; θ) ≈ 0
for all α. Many computer vision problems are formu-
lated in this way [14, 15]; one can infer the shapes and
the positions of objects seen in images from the thus
computed θ. In the statistics literature, this problem
is sometimes called the Gauss-Helmert model , while
it is called the Gauss-Markoff model if (1) can be ex-
plicitly solved for x in terms of θ [9, 27].

The function F (x;θ) in (1) is generally nonlinear
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(x   , y   )α α

Figure 1: Fitting an ellipse to a point sequence.

in the data vector x. In a wide range of computer
vision problems, however, F (x;θ) is frequently linear
in the parameter θ or can be made linear by an ap-
propriate reparameterization. In such a case, (1) can
be rewritten as

(ξ(x), θ) = 0, (2)

where and throughout this paper we denote by (a, b)
the inner product of vectors a and b. The ith com-
ponent ξi(x) of the vector ξ(x) consists of (generally
nonlinear) terms in x that are multiplied by θi. If
terms that do not involve θ are added, they are re-
garded as multiplied by an unknown, which we iden-
tify with the final component θn of θ. Then, we
should obtain a solution such that θn = 1, but be-
cause (2) is homogeneous in θ, we can determine θ
only up to scale. It follows that an arbitrary normal-
ization can be imposed on θ, such as ‖θ‖ = 1.

Example 1 (Ellipse fitting) We want to fit to a
point sequence (xα, yα), α = 1, ..., N , an ellipse in
the form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0, (3)

(Fig. 1). If we define ξ(x, y) and θ by

ξ(x, y)(x2 2xy y2 2x 2y 1)>,
θ = (A B C D E F )>, (4)

(3) has the form of (2) [21].

Example 2 (Fundamental matrix computation)
Consider two images of the same scene viewed from
different positions. If point (x, y) in the first image
corresponds to (x′, y′) in the second, the following
epipolar equation is satisfied [14] (Fig. 2):

(

 x
y
1

 , F

x′

y′

1

) = 0. (5)

Here, F is a matrix of rank 2, called the fundamental
matrix , which does not depend on the scene we are
looking at; it depends only on the relative positions
of the two cameras and their intrinsic parameters.
By computing the fundamental matrix F from point
correspondences, we can reconstruct the 3-D shape of
the scene and the camera positions [18]. If we define

ξ(x, y, x′, y′) = (xx′ xy′ x yx′ yy′ y x′ y′ 1)>,
θ = (F11 F12 F13 F21 F22 F23 F31 F32 F33)>, (6)

(x   , y   )α α

(x  ’, y  ’)α α

Figure 2: Computing the fundamental matrix from cor-
responding points between two images.

(5) has the form of (2) [19].

3. GAUSSIAN NOISE IN THE ξ-SPACE

For statistical inference from noisy data, we need
to state:

• Noise model: What kind of property do we as-
sume noise to have?

• Criterion of optimality: What kind of solution
do we regard as optimal?

The standard noise model is independent Gaussian
noise of mean 0; each observation may have a different
(non-isotropic) covariance matrix. For this, however,
we have two alternatives: Gaussian noise in the orig-
inal data xα and Gaussian noise in the transformed
data ξα = ξ(xα). The covariance matrix V [xα] of xα

and the covariance matrix V [ξα] of ξα are related by

V [ξα] =
( ∂ξ

∂x

)
α
V [xα]

( ∂ξ

∂x

)>
α
, (7)

up to high (fourth1 in Examples 1 and 2) order terms
in the noise magnitude, where (∂ξ/∂x)α denotes the
Jacobian matrix of the mapping ξ(x) evaluated at x
= xα.

Example 3 (Ellipse fitting) If each point (xα, yα)
has independent noise of mean 0 and standard de-
viation σ in its x and y coordinates, the covariance
matrix V [ξα] is written as follows [21]:

V [ξα] = 4σ2


x2

α xαyα 0 xα 0 0
xαyα x2

α + y2
α xαyα yα xα 0

0 xαyα y2
α 0 yα 0

xα yα 0 1 0 0
0 xα yα 0 1 0
0 0 0 0 0 0

. (8)

Example 4 (Fundamental matrix computation)
If each correspondence pair (xα, yα) and (x′

α, y′
α) has

independent noise of mean 0 and standard deviation
σ in its x and y coordinates, the covariance matrix
V [ξα] is written as follows [19]:

V [ξα]
1Covariance matrices are expectation of second order statis-

tics in noise. For symmetrically distributing noise of mean 0,
expectation of third order terms in noise vanishes.
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= σ2



x2
α+x′2

α x′
αy′

α x′
α xαyα 0 0 xα 0 0

x′
αy′

α x2
α+y′2

α y′
α 0 xαyα 0 0 xα0

x′
α y′

α 1 0 0 0 0 0 0
xαyα 0 0 y2

α+x′2
α x′

αy′
α x′

αyα 0 0
0 xαyα 0 x′

αy′
α y2

α+y′2
α y′

α 0 yα0
0 0 0 x′

α y′
α 1 0 0 0

xα 0 0 yα 0 0 1 0 0
0 xα 0 0 yα 0 0 1 0
0 0 0 0 0 0 0 0 0


.

(9)

4. ML IN THE ξ-SPACE

The standard criterion for optimality is maximum
likelihood (ML): the likelihood function obtained by
substituting observed data into the probability den-
sity of the noise model is maximized, or equivalently
its negative logarithm is minimized. It is known that
the resulting solution achieves the theoretical accu-
racy bound called the KCR lower bound [6, 15, 16]
up to higher order noise terms.

If Gaussian noise is assumed in the ξ-space, ML
reduces to minimization of the Mahalanobis distance

J =
N∑

α=1

(ξα − ξ̄α, V [ξα]−1(ξα − ξ̄α)), (10)

between observed values {ξα} and their true values
{ξ̄α} subject to

(ξ̄α, θ) = 0, α = 1, ..., N, (11)

with respect to ξ̄α and θ. Since the constraint is
linear in ξ̄α, it can be eliminated by introducing La-
grange multipliers, reducing (10) to2 [17].

J =
N∑

α=1

(ξα,θ)2

(θ, V [ξα]θ)
, (12)

which is called the Sampson error, originating from
ellipse fitting by Sampson [28].

Various numerical schemes are available for min-
imizing (12) [17], including the FNS (Fundamental
Numerical Scheme) of Chojnacki et al. [7], the HEIV
(Heteroscedastic Errors In Variables) of Leedan and
Meer [25], and the projective Gauss-Newton iterations
of Kanatani and Sugaya [19, 21]. These apply when
no special constraint (scale normalization aside) is im-
posed on θ. For computing the fundamental matrix,
however, it has an additional constraint that it has
rank 2. The FNS of Chojnacki et al. [7] can be ex-
tended to incorporate such constraints in the form of

2If ξα has constant components as in (4) and (6), the co-
variance matrix V [ξα] becomes singular as seen in (8) and (9).
In such a case, we replace V [ξα]−1 in (10) by the pseudoin-
verse, which means we focus only on those components of ξα
that can vary. Still, (12) holds [15].

the CFNS3 (Constrained FNS ) of Chojnacki et al. [8]
and the EFNS (Extended FNS ) of Kanatani and Sug-
aya [20].

In the past, minimizing the Sampson error (12)
has been regarded by many as an approximation to
ML; some called Sampson error minimization “ap-
proximate ML”. We point out that Sampson error
minimization is “exact ML” for Gaussian noise in
the ξ-space: No approximation is introduced to go
from (10) and (11) to (12). We will show that this
observation plays a crucial role in computing ML in
the x-space.

5. ML IN THE x-SPACE

The preceding formulation suits numerical com-
putation and accuracy analysis [17]. For ellipse fit-
ting, however, it is natural to assume that each point
(xα, yα) has independent Gaussian noise in its x and
y coordinates. Then, the noise in ξα after the nonlin-
ear transformation (4) is, strictly, no longer Gaussian.
For fundamental matrix computation, too, it is nat-
ural to assume that each corresponding pair (xα, yα)
and (x′

α, y′
α) has independent Gaussian noise in its x

and y coordinates, but the noise in ξα after the non-
linear transformation (6) is, strictly, no longer Gaus-
sian. Whether we assume Gaussian noise in the ξ-
space or in the x-space may not make much differ-
ence as long as the noise is small, but some difference
may arise when the noise is large. Studying this is
the main motivation of this paper.

If Gaussian noise is assumed in the x-space, ML re-
duces to minimization of the Mahalanobis distances4

E =
N∑

α=1

(xα − x̄α, V [xα]−1(xα − x̄α)), (13)

between observations {xα} and their true values {x̄α}
subject to the nonlinear constraint

(ξ(x̄α), θ) = 0, α = 1, ..., N, (14)

with respect to x̄α and θ. In the following, we call the
Mahalanobis distance (13) in the x-space the repro-
jection error as opposed to the Sampson error (12),
which equals the Mahalanobis distance (10) in the
ξ-space. Traditionally, the term “reprojection error”
has been used in the context of 3-D reconstruction
from images: an assumed 3-D shape is “reprojected”
onto the image plane and compared with the actually
observed image, and the 3-D shape with the smallest
discrepancy is sought. Here, we slightly abuse this
term to mean the discrepancy of actual observations
and their guesses measured in the Mahalanobis dis-
tance in the original x-space.

3It was pointed out that CFNS does not necessarily compute
a correct solution [20].

4The following argument holds if V [xα] is singular. All we
need is to replace V [xα]−1 by its pseudoinverse and appropri-
ately use projection operations [15].
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S

xα

xα-
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-1

Figure 3: Orthogonal projection of xα with respect to
V [xα].

6. EXISTING ML APPROACHES

In the past, many researchers have studied mini-
mization of the reprojection error (13) subject to a
general constraint (1) instead of (14). Popular ap-
proaches can be roughly classified into orthogonal pro-
jection and bundle adjustment .

Orthogonal projection. The constraint F (x; θ) =
0 defines a hypersurface S in the x-space, and
the problem of finding x̄α that minimizes (13)
can be interpreted as finding a point x̄α ∈ S
closest to xα measured in (13). Hence, the so-
lution is obtained by “orthogonally” projecting
the observations xα onto S, where orthogonal-
ity is defined with respect to V [xα]: a and b
are orthogonal if (a, V [xα]−1b) = 0 (Fig. 3). An
initial guess {x(0)

α , θ(0)} (x(0)
α are the observa-

tions xα themselves) is assumed, and a sequence
{x(0)

α , θ(0)}, {x(1)
α , θ(1)}, {x(2)

α , θ(2)}, ... is gen-
erated by computing {x(k)

α , θ(k)} from {x(k−1)
α ,

θ(k−1)} by various means [1, 2, 9, 27]. The result-
ing sequence is expected to converge to a locally
optimal solution.

Bundle adjustment. Introducing auxiliary vari-
ables, we solve the constraint F (x̄α; θ) = 0 for
each x̄α in terms of θ and the auxiliary vari-
ables. The resulting expressions are substituted
into (13), resulting an explicit function E of θ
and the auxiliary variables. Then, it is mini-
mized by a standard tool such as the Levenberg-
Marquardt method. Usually, a local minimum of
E is obtained, but methods that can find a global
minimum also exist, e.g., branch and bound [12].
Here, we are slightly abusing the term “bundle
adjustment”. It has traditionally been used in
the context of 3-D reconstruction from images;
we adjust the bundle of “rays” starting from
camera projection center and passing through
the reconstructed 3-D points in such a way that
all rays pierce the image plane as closely to their
observed positions as possible [30].

The purpose of this paper is to show that if the
constraint has the special form of (14) we can exploit
the close relationship between the ML in the ξ-space
((10), (11), and (12)) and the ML in the x-space ((13)

and (14)), which seems to have been overlooked in the
past.

Of course, we could adopt the traditional approach
even for the constraint (14). Indeed, bundle adjust-
ment has been very popular. For ellipse fitting, for
example, auxiliary variables such as the center, the
radii and the orientations of the major and minor
axes, and the angles of individual points seen from
the center are introduced, and the resulting high di-
mensional parameter space is searched by various nu-
merical schemes [4, 10, 11, 29]. For fundamental ma-
trix computation, auxiliary variables are introduced
by tentatively reconstructing the 3-D positions of the
observed points from an assumed fundamental ma-
trix, which is a function of the camera parameters
(the relative positions of the cameras and its intrinsic
parameters). The resulting high dimensional space of
these auxiliary variables is searched so that the image
positions obtained by reprojecting the reconstructed
3-D points are as close to the observed points as pos-
sible [3].

However, the way we obtain an explicit form of
E is problem-dependent, since the choice of auxil-
iary variables depends on particular properties of the
problem we are considering. Also, the search space of
θ and the auxiliary variables is usually very high di-
mensional, and the efficiency of computation depends
largely on how we implement the search; the speed
can be greatly accelerated by a clever preprocessing
of sparse Hessians by considering the particularities
of the problem.

In the following, we adopt the orthogonal pro-
jection approach to the constraint (14) and show
that the optimization is formulated in a problem-
independent way without using any particular prop-
erties of the problem. We show that the computation
reduces to repeated minimization of the Sampson er-
ror (12). The resulting solution is a global optimum
if the Sampson error can be globally minimized. Our
approach appears to be the same in spirit as the ex-
tended HEIV of Matei and Meer [26], but we explic-
itly take advantage of the correspondence between
ML in the x-space and ML in the ξ-space.

Note that minimization of (10) is not affected by
multiplication of V [ξα] by any positive constant. Sim-
ilarly, V [xα] in (13) can be multiplied by any positive
constant. Hence, the scales of V [ξα] and V [xα] are
not important. However, they must be related by (7),
which plays a key role in our subsequent analysis. In
other words, we need to know V [ξα] and V [xα] up to
a common scale.

7. ORTHOGONAL PROJECTION

As opposed to the traditional orthogonal projec-
tion approach, we regard θ throughout as a free vari-
able whose value is yet to be specified, and minimize
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(13) subject to (14). We identify the hypersurface S
defined by (14) in the x-space with a “level set” of
(ξ(x), θ) = c for c = 0 and view the x-space as filled
with continuously varying level sets with varying c
(foliation in mathematical terms). The observation
xα is on the surface (or leaf ) Sα: (ξ(x), θ) = cα,
where cα = (ξα,θ). We first project xα onto S in
the direction orthogonal to Sα at xα with respect to
V [xα]. For short, let us call that direction the V [xα]-
normal of Sα at xα. It has the following form (See
Appendix):

nα = V [xα]
( ∂ξ

∂x

)>
α
θ. (15)

We compute the projection x̂α = xα − λαnα by de-
termining the magnitude λα so as to satisfy

(ξ(xα − λαnα), θ) = 0. (16)

Recall that θ is a free variable. If it were a
fixed value, we could determine λα by numerical line
search. If each component of ξ(ξ) is a polynomial of
ξ, we might even be able to compute λα analytically.
However, what we need is to obtain λα as an explicit
function of the free variable θ to be optimized later.
So, assuming that λα is small and using the Taylor
expansion

ξ(xα − λαnα) = ξα − λα

( ∂ξ

∂x

)
α
nα + · · · , (17)

we express λα to a first approximation in the form

λα =
(ξα, θ)

((∂ξ/∂x)αnα, θ)

=
(ξα, θ)

((∂ξ/∂x)αV [xα](∂ξ/∂x)>α θ, θ)

=
(ξα, θ)

(θ, V [ξα]θ)
, (18)

where the identity (7) is used. The reprojection error
of the thus computed x̂α, α = 1, ..., N , is

E =
N∑

α=1

(xα − x̂α, V [xα]−1(xα − x̂α))

=
N∑

α=1

(λαnα, V [xα]−1λαnα)

=
N∑

α=1

λ2
α(V [xα]

( ∂ξ

∂x

)>
α
θ, V [xα]−1V [xα]

( ∂ξ

∂x

)>
α
θ)

=
N∑

α=1

λ2
α(θ,

( ∂ξ

∂x

)
α
V [xα]

( ∂ξ

∂x

)>
α

θ)

=
N∑

α=1

λ2
α(θ, V [ξα]θ) =

N∑
α=1

(ξα, θ)2

(θ, V [ξα]θ)
, (19)

which is nothing but the Sampson error (10). Now,
we choose the value of θ, which has so far been un-
specified, to be the value θ̂ that minimizes (19) over

S

Sα

Sα xα

xα

xα

nα

nα

nα

Figure 4: Successive projection along the V [xα]-normal
of the level set.

the entire domain of θ, using an existing Sampson
error minimization method such as FNS or HEIV.
Then, the orthogonal projection is given by

x̂α = xα − (ξα, θ̂)V [xα]

(θ̂, V [ξα]θ̂)

( ∂ξ

∂x

)>
α

θ̂. (20)

8. STRICT ORTHOGONAL PROJECTION

Now that we know the nature of the Sampson er-
ror, we modify it so that it coincides with the repro-
jection error. In the preceding computation, we pro-
jected xα along the V [xα]-normal of the “level set
Sα” at xα, while our goal is to project xα along the
V [xα]-normal of the “hypersurface S” itself at x̄α,
which is yet unknown. We now project xα along the
V [xα]-normal of the “level set Ŝα” at x̂α that we have
just computed (Fig. 4). To do this, we again view θ
as a free variable. Namely, once we have computed
x̂α by (20), we forget the value θ̂ and regard θ as
unspecified. The V [xα]-normal of Ŝα at x̂α is

n̂α = V [xα]
( ∂ξ̂

∂x

)>
α

θ, (21)

where (∂ξ̂/∂x)α is the Jacobian matrix (∂ξ/∂x) eval-
uated at x̂α. We project the original xα, not the
computed x̂α, onto S in the form ˆ̂xα = xα − λ̂αn̂α

(Fig. 4) and determine λ̂α so as to satisfy

(ξ(xα − λ̂αn̂α),θ) = 0. (22)

If x̂α is a good approximation to the true solution
x̄α as compared with the original data xα, we have
‖ ˆ̂xα − x̂α‖ ¿ ‖ ˆ̂xα −xα‖ (Fig. 4). Hence, if we write

ξ(xα − λ̂αn̂α) = ξ(x̂α + xα − x̂α − λ̂αn̂α)

= ξ(x̂α + x̃α − λ̂αn̂α), (23)

where we define

x̃α ≡ xα − x̂α, (24)

then x̃α − λ̂αn̂α is a small quantity of a higher order.
Using the Taylor expansion

ξ(xα− λ̂αn̂α) = ξ̂α +
( ∂ξ̂

∂x

)
α
(x̃α− λ̂αn̂α)+ · · · , (25)
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where ξ̂α ≡ ξ(x̂α), we obtain from (22) to a first
approximation the expression

λ̂α =
(ξ̂α, θ)+(θ, (∂ξ̂/∂x)αx̃α)

(θ, V [ξ̂α]θ)
=

(ξ̂
∗
α,θ)

(θ, V [ξ̂α]θ)
. (26)

Here, we define

ξ̂
∗
α≡ ξ̂α+

( ∂ξ̂

∂x

)
α
x̃α, V [ξ̂α]≡

( ∂ξ̂

∂x

)
α
V [xα]

( ∂ξ̂

∂x

)>
α
. (27)

The reprojection error of the thus computed ˆ̂xα, α =
1, ..., N , is

E =
N∑

α=1

(xα − ˆ̂xα, V [xα]−1(xα − ˆ̂xα))

=
N∑

α=1

(λ̂αn̂α, V [xα]−1λ̂αn̂α)

=
N∑

α=1

λ̂2
α(V [xα]

( ∂ξ̂

∂x

)>
α
θ, V [xα]−1V [xα]

( ∂̂ξ

∂x

)>
α
θ)

=
N∑

α=1

λ̂2
α(θ,

( ∂ξ̂

∂x

)
α
V [xα]

( ∂ξ̂

∂x

)>
α
θ)

=
N∑

α=1

λ̂2
α(θ, V [ξ̂α]θ) =

N∑
α=1

(ξ̂
∗
α, θ)2

(θ, V [ξ̂α]θ)
, (28)

Again, this has the same form as (12). So, we choose

the value of θ, so far unspecified, to the value ˆ̂
θ that

minimizes (28) over the entire domain of θ, using an
existing Sampson error minimization method such as
FNS or HEIV. The true value x̄ is estimated to be

ˆ̂xα = xα − (ξ̂
∗
α,

ˆ̂
θ)V [xα]

(ˆ̂θ, V [ξ̂α]ˆ̂θ)

( ∂ξ̂

∂x

)>
α

ˆ̂
θ. (29)

Then, we forget the value ˆ̂
θ, viewing θ as a free vari-

able again. Regarding ˆ̂xα as x̂α, we repeat the same
process until it converges. In the end, x̂α is on the
surface S: (ξ(x), θ) = 0 and is a projection of xα

along the V [xα]-normal of S itself at x̂α, i.e., the de-
sired exact orthogonal projection. From (28), we see
that strict ML in the x-space coincides with Sampson
error minimization in the modified ξ̂

∗
-space. As we

can see from (27), however, the mapping from x to ξ̂
∗

is defined only dynamically in the course of iterations.

9. EXAMPLE OF STRICT ML

We now apply the above procedure to typical ex-
amples, where we assume that the x and y coordi-
nates of each point have independent and identical
Gaussian noise of mean 0 and variance σ2. The noise
variance σ2 need not be known, since minimization
of (13) is not affected by multiplication of V [xα] by

any positive constant. So, we regard σ to be 1 in the
computation. Thus, the Mahalanobis distance (13)
in the x-space coincides with the Euclidean distance.

Example 5 (Ellipse fitting) The procedure for
fitting an ellipse to a point sequence (xα, yα), α =
1, ..., N , is obtained as follows5, where we remove
the scale indeterminacy of the ellipse parameter θ in
(4) by normalizing it to ‖θ‖ = 1:

1. Let E0 = ∞ (a sufficiently large number), x̂α =
xα, ŷα = yα, and x̃α = ỹα = 0, α = 1, ..., N .

2. Let V [ξ̂α] be the matrix obtained by substituting
x̂α and ŷα for xα and yα, respectively, in (8).

3. Compute the following ξ∗
α, α = 1, ..., N :

ξ∗
α =


x̂2

α + 2x̂αx̃α

2(x̂αŷα + ŷαx̃α + x̂αỹα)
ŷ2

α + 2ŷαỹα

2(x̂α + x̃α)
2(ŷα + ỹα)
1

 . (30)

4. Compute the 6-D unit vector θ = (θi) that min-
imizes the following function (e.g., by FNS or
HEIV):

E(θ) =
N∑

α=1

(θ, ξ∗
α)2

(θ, V [ξ̂α]θ)
. (31)

5. Update x̃α, ỹα, x̂α, and ŷα in the form(
x̃α

ỹα

)
← 2(θ, ξ∗

α)

(θ, V [ξ̂α]θ)

(
θ1 θ2 θ4

θ2 θ3 θ5

) x̂α

ŷα

1

, (32)

x̂α ← xα − x̃α, ŷα ← yα − ỹα. (33)

6. Compute the reprojection error

E =
N∑

α=1

(x̃2
α + ỹ2

α). (34)

7. If E ≈ E0, return θ and stop. Else, let E0 ← E
and go back to Step 2.

This scheme was obtained by Kanatani and Sugaya
[22] by using differentiation and Lagrange multipliers
based on a specific analysis for ellipse fitting. Here,
it is derived as a special case of our general theory.

As pointed out by Kanatani and Sugaya [22], how-
ever, the resulting accuracy is practically the same as
Sampson error minimization; the difference is only in
the last few significant digits. Figure 5(a) shows 10
points on an ellipse, and Fig. 5(b) shows the RMS

5The source code is available at:
http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html
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(a) (b)

Figure 5: (a) 10 points on an ellipse. (b) RMS error
of the fitted ellipse over 1000 trials vs. the noise level σ.
The plots of ML in the ξ-space and ML in the x-space
completely overlap (the solid line). The dotted line shows
the KCR lower bound.

error of the fitted ellipse over 1000 trials with inde-
pendent Gaussian noise of mean 0 and standard de-
viation σ (pixels) added to the x and y coordinates
of each point. The horizontal axis is extended to an
unrealistically large value of σ for the sake of compar-
ison. The plots of ML in the ξ-space and ML in the
x-space completely overlap (the solid line in the fig-
ure). The dotted line shows the theoretical accuracy
limit (KCR lower bound [6, 15, 16]).

Example 6 (Fundamental matrix computation)
The vector θ in (6) that encodes the fundamental
matrix F of rank 2 is computed from corresponding
points (xα, yα) and (x′

α, y′
α), α = 1, ..., N , as

follows5, where we remove the scale indeterminacy
of θ by normalizing it to ‖θ‖ = 1:

1. Let E0 = ∞ (a sufficiently large number), x̂α =
xα, ŷα = yα, x̂′

α = x′
α, ŷ′

α = y′
α, and x̃α = ỹα =

x̃′
α = ỹ′

α = 0, α = 1, ..., N .

2. Let V [ξ̂α] be the matrix obtained by substitut-
ing x̂α, ŷα, x̂′

α, and ŷ′
α for xα, yα, x′

α, and y′
α,

respectively, in (9).

3. Compute the following ξ∗
α, α = 1, ..., N :

ξ∗
α =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

x̂α + x̃α

ŷαx̂′
α + x̂′

αỹα + ŷαx̃′
α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

ŷα + ỹα

x̂′
α + x̃′

α

ŷ′
α + ỹ′

α

1


. (35)

4. Compute the 9-D unit vector θ = (θi) that min-
imizes the following function subject to the con-
straint that the resulting fundamental matrix F
has rank 2 (e.g., by EFNS [20]):

E(θ) =
N∑

α=1

(θ, ξ∗
α)2

(θ, V [ξ̂α]θ)
. (36)

 0
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Figure 6: (a) Planer grids viewed from two angles. (b)
RMS error of the fitted fundamental matrix over 1000
trials vs. the noise level σ. The plots of ML in the ξ-space
and ML in the x-space completely overlap (the solid line).
The dotted line shows the KCR lower bound.

5. Update x̃α, ỹα, x̃′
α, ỹ′

α, x̂α, ŷα, x̂′
α, and ŷ′

α in the
form(

x̃α

ỹα

)
← (θ, ξ∗

α)

(θ, V [ξ̂α]θ)

(
θ1 θ2 θ3

θ4 θ5 θ6

) x̂′
α

ŷ′
α

1

,

(
x̃′

α

ỹ′
α

)
← (θ, ξ∗

α)

(θ, V [ξ̂α]θ)

(
θ1 θ4 θ7

θ2 θ5 θ8

) x̂α

ŷα

1

, (37)

x̂α ← xα − x̃α, ŷα ← yα − ỹα,

x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α. (38)

6. Compute the reprojection error

E =
N∑

α=1

(x̃2
α + ỹ2

α + x̃′2
α + ỹ′2

α ). (39)

7. If E ≈ E0, return θ and stop. Else, let E0 ← E
and go back to Step 2.

This scheme was obtained by Kanatani and Sugaya
[23] by using differentiation and Lagrange multipliers
based on a specific analysis for fundamental matrix
computation. Here, it is derived as a special case of
our general theory.

As pointed out by Kanatani and Sugaya [23], how-
ever, the resulting accuracy is practically the same as
Sampson error minimization; the difference is only in
the last few significant digits. Figure 6(a) shows two
views of a planar grid viewed from two angles, and
Fig. 6(b) shows the RMS error of the computed fun-
damental matrix over 1000 trials with independent
Gaussian noise of mean 0 and standard deviation σ
(pixels) added to the x and y coordinates of each grid
point. The horizontal axis is extended to an unreal-
istically large value of σ for the sake of comparison.
Again, the plots of ML in the ξ-space and ML in the
x-space completely overlap (the solid line in the fig-
ure). The dotted line shows the KCR lower bound.

Here, we should note the following two issues in
actual computation.
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• In the iterations, the reprojection error E gen-
erally increases. By definition, E is the sum
of square Mahalanobis (Euclidean in the above
examples) distances between the observation xα

and our guess x̂α. We start by regarding xα as
our guess x̂α, so initially E is 0. Since the guess
does not satisfy the constraint, we modify x̂α so
as to satisfy it. Maximum likelihood means that
we do this by increasing E by a minimal amount .
Geometrically, this is equivalent to orthogonal
projection. In actual iterations, the increase of
E is not always monotonic; it may oscillate when
convergence is near. In each step of this process,
on the other hand, we minimize E with respect
to θ. In general, optimization with constraints
involve both minimization and maximization [5].

• In the Step 7 of ellipse fitting and fundamental
matrix computation, we stop the iteration when
E ≈ E0. We could stop when the current value
θcur of θ is close to the previous value θpre, but
then care must be taken. First, the Sampson
error E(θ) in the form of (31) and (36) do not
depend on the sign of θ, so it may happen that
θcur has an opposite direction to θpre. Hence,
we must align the orientations of θcur and θpre

before comparing them. However, a potentially
more serious problem exists: the interference of
the nested iteration loops. Minimizing (31) and
(36) usually involves iterations, so we must stop
if the update of θ is sufficiently small. If we
use the same threshold for θ to stop the inner
loop for minimizing E(θ) and the outer loop for
computing E, the inner loop may stop but the
outer loop may not, or vice versa. If we demand
higher accuracy of θ for the outer loop than can
be afforded by the internal Sampson error min-
imization, the iterations may continue forever.
No such interferences can occur if we stop the
inner loop by θ and the outer loop by E.

10. OPTIMAL CORRECTION

As a byproduct, our strict ML leads to a new nu-
merical scheme for optimal correction [15]: we opti-
mally correct a given x so as to satisfy the constraint
(ξ(x), θ) = 0, where the parameter θ is given and
fixed. The problem is stated as reprojection error
minimization: Minimize

E = (x − x̄, V [x]−1(x − x̄)), (40)

subject to
(ξ(x̄), θ) = 0, (41)

for a given θ. We only need to remove the computa-
tion of θ in the procedure described in Sect. 7.

Example 7 (Perpendicular to an ellipse)
Given a point (x, y) and an ellipse in the form

(x, y)

(x, y)

Figure 7: Drawing a perpendicular to an ellipse.

(x, y)

(x’, y’)
(x, y)

(x’, y’)

(a) (b)
Figure 8: Computing the 3-D position from noisy cor-
respondence pair. (a) Optimal triangulation. (b) The
mid-point method.

of (3), we want to compute the foot (x̂, ŷ) of the
perpendicular from (x, y) (Fig. 7). It is computed as
follows (θ is defined by (4)):

1. Let E0 = ∞ (a sufficiently large number), x̂ =
x, ŷ = y, and x̃ = ỹ = 0.

2. Let V [ξ̂] be the matrix obtained by substituting
x̂ and ŷ for xα and yα, respectively, in (8).

3. Compute the following ξ∗:

ξ∗ =


x̂2 + 2x̂x̃
2(x̂ŷ + ŷx̃ + x̂ỹ)
ŷ2 + 2ŷỹ
2(x̂ + x̃)
2(ŷ + ỹ)
1

 . (42)

4. Update x̃, ỹ, x̂, and ŷ in the form

(
x̃
ỹ

)
← 2(θ, ξ∗)

(θ, V [ξ̂]θ)

(
θ1 θ2 θ4

θ2 θ3 θ5

)  x̂
ŷ
1

 , (43)

x̂ ← x − x̃, ŷ ← y − ỹ. (44)

5. Compute the reprojection error

E = x̃2 + ỹ2. (45)

6. If E ≈ E0, return (x̂, ŷ) and stop. Else, let E0

← E and go back to Step 2.

The perpendicular to an ellipse can be obtained by
solving simultaneous algebraic equations. It seems,
however, the above simple procedure has not been
known. Usually, the computation converges after
three or four iterations, but even the first solution
has sufficient accuracy for practical use.
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Example 8 (Triangulation) When the fundamen-
tal matrix F is known and a noisy correspondence
pair (x, y) and (x′, y′) is given, we can optimally re-
construct its 3-D position by minimally correcting
(x, y) and (x′, y′) so as to satisfy the epipolar equa-
tion in (5) determined by F (Fig. 8(a)). This is be-
cause the lines of sight determined by points (x, y)
and (x′, y′) can intersect in the scene if and only if
the epipolar equation in (5) holds [14]. Today, there
are still many who use the non-optimal method of re-
garding the “midpoint” of the shortest line segment
connecting the two lines of sight as the intersection
(Fig. 8(b)).

The optimally corrected positions (x̂, ŷ) and
(x̂′, ŷ′) that minimize the sum of square distances
from (x, y) and (x′, y′) are computed as follows (θ
is defined by (6)):

1. Let E0 = ∞ (a sufficiently large number), x̂ =
x, ŷ = y, x̂′ = x′, and ŷ′ = y′, x̃ = ỹ = x̃′ = ỹ′

= 0.

2. Let V [ξ̂] be the matrix obtained by substituting
x̂, ŷ, x̂′, and ŷ′ for xα, yα, x′

α, and y′
α, respec-

tively, in (9).

3. Compute the following ξ∗:

ξ∗ =



x̂x̂′ + x̂′x̃ + x̂x̃′

x̂ŷ′ + ŷ′x̃ + x̂ỹ′

x̂ + x̃
ŷx̂′ + x̂′ỹ + ŷx̃′

ŷŷ′ + ŷ′ỹ + ŷỹ′

ŷ + ỹ
x̂′ + x̃′

ŷ′ + ỹ′

1


. (46)

4. Update x̃, ỹ, x̃′, ỹ′, x̂, ŷ, x̂′, and ŷ′ in the form

(
x̃
ỹ

)
← (θ, ξ∗)

(θ, V [ξ̂]θ)

(
θ1 θ2 θ3

θ4 θ5 θ6

) x̂′

ŷ′

1

,

(
x̃′

ỹ′

)
← (θ, ξ∗)

(θ, V [ξ̂]θ)

(
θ1 θ4 θ7

θ2 θ5 θ8

) x̂
ŷ
1

, (47)

x̂ ← x − x̃, ŷ ← y − ỹ,

x̂′ ← x′ − x̃′, ŷ′ ← y′ − ỹ′. (48)

5. Compute the reprojection error

E = x̃2 + ỹ2 + x̃′2 + ỹ′2. (49)

6. If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop.
Else, let E0 ← E and go back to Step 2.

(a) (b)

.01
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.04

 0  2  4  6  8  10

ms
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(c)

Figure 9: (a) Stereo images of a planar grid. Some of the
epipolar lines are drawn. (b) Top view of the camera con-
figuration. (c) Computation time (ms) for triangulation
per point (average over 1000 trials). The CPU is Intel
Core2Duo E6700 2.66GHz. The horizontal axis is for the
standard deviation σ of the added noise. Solid line: our
method. Dashed line: The Hartley-Sturm method. The
black dot is for the exceptional behavior for σ = 0.

This procedure is nothing but the optimal stereo tri-
angulation of Kanatani et al. [24], who derived this al-
gorithm by directly minimizing the reprojection error,
using differentiation and Lagrange multipliers. Here,
it is derived as a special case of our general theory.

A popular method for optimal triangulation is due
to Hartley and Sturm [13], who determined the epipo-
lar lines of the corresponding points by algebraically
solving a 6-degree polynomial. Kanatani et al. [24] ex-
perimentally confirmed that their solution is identical
to that of Hartley and Sturm [13] yet the computation
is significantly faster (Fig. 9).

11. OBSERVATIONS

We summarize the main characteristics of our ap-
proach:

• Accuracy: We compute the strict ML solution,
so the accuracy is the same as all existing ML-
based methods. Our approach can be regarded
as a special implementation of the “Gold Stan-
dard” of Hartley and Zisserman [14]. Indeed, we
have confirmed that our ellipse fitting solution is
identical to those by others such as Gander et
al. [10] and Sturm and Gargallo [29].

• Global optimality: Theoretically , our approach
can produces a globally optimal solution as op-
posed to traditional orthogonal projection ap-
proaches. By “theoretically”, we mean that this
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depends on the performance of the Sampson er-
ror minimizer we use. Our approach is to itera-
tively change the variables in the data space so
that the Sampson error coincides with the re-
projection error. Thus, the solution is globally
optimal if the Sampson error minimizer returns
a global minimum. However, popular tools such
as FNS and HEIV are not guaranteed to reach
a global minimum. Of course, we could globally
minimize the Sampson error in each iteration, us-
ing, say, branch and bound, but that would make
the process extremely inefficient.

• Efficiency: We cannot draw a universal conclu-
sion if our approach is more efficient than others,
because the efficiency heavily depends on partic-
ular applications and implementations. For ex-
ample, the efficiency of bundle adjustment can
be greatly improved by appropriate preprocess-
ing by considering the particularities of the prob-
lem. The efficiency of our approach, on the other
hand, critically depends on the efficiency of the
Sampson error minimizer we use.

• Convergence: It is difficult to give a mathemat-
ical proof of the convergence of our orthogonal
projection, because the convergence is a property
of the hypersurface S defined by the constraint,
rather than a property of the operation. The
hypersurface S may have singularities, e.g., for
the epipolar constraint, S is hyperbolic in 4-D
with singularities at the epipoles. The iterations
should converge if S is more or less flat and its
supporting function is nearly linear, or equiva-
lently, if the observations are sufficiently close to
S, i.e., if the noise is small. However, it is dif-
ficult to bound the noise level to insure conver-
gence in terms of the differential characteristics
of S such as the curvature. In our experience,
the orthogonal projection converges after at most
three to four iterations; we have never encoun-
tered nonconvergence. On the other hand, we
have frequently observed that the internal Samp-
son error minimization failed to converge in the
presence of large noise. Popular Sampson error
minimizers such as FNS and HEIV are not guar-
anteed to converge. Thus, the convergence of our
approach is practically dictated by the Sampson
error minimizer we use.

12. CONCLUSIONS

This paper has presented a new numerical scheme
for strict ML computation for geometric fitting prob-
lems. Our approach is orthogonal projection of ob-
servations xα onto a parameterized surface S defined
by the constraint in the x-space, where the orthog-
onality is defined with respect to the covariance ma-
trix V [xα] of xα. This approach has been adopted

by many researchers for a general constraint, but we
have shown that if the constraint is linearly separa-
ble, the optimization can be done by repeated Samp-
son error minimization in the dynamically defined ξ∗-
space. We illustrated our procedure by applying it to
ellipse fitting and fundamental matrix computation.
We have also shown that our theory encompasses op-
timal correction problems, demonstrating that com-
pact schemes are obtained for computing perpendic-
ulars to an ellipse and optimally triangulating stereo
images.

Our approach is problem-independent in the sense
that the computation is based solely only the linearly
separable constraint; apparently different problems,
such as ellipse fitting and fundamental matrix com-
putation, can be solved by the same procedure. This
contrasts to bundle adjustment, for which we need to
derive an explicit cost function from particularities of
the problem and a high-dimensional space needs to
be searched.

Since our approach is ML, the accuracy is the same
as all other ML-based method. It is difficult to ob-
tain a universal conclusion for efficiency, because it
depends on applications and implementation. The
efficiency and convergence are practically determined
by the performance of the Sampson error minimizer
we use.

In this paper, Sampson error minimization is
treated as a black box; we are not proposing any new
Sampson error minimizer. Our finding here directs us
to focus on improving Sampson error minimization.
Once a good Sampson error minimizer is discovered,
it is automatically upgraded to a good reprojection
error minimizer by our theory. To have established
this fact is the main contribution of this paper.
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Appendix. V [xα]-normal

Define the orthogonality of vectors a and b by
(a, Gb) = 0 for a positive definite symmetric matrix
G. The gradient of a surface S: F (x) = 0 is ∇xF ,
and (t,∇xF ) = 0 holds for any tangent vector to Sα

at x. If we let
n = G−1∇xF, (50)

we see that for any tangent vector t to S at x

(t, Gn) = (t, GG−1∇xF ) = (t,∇xF ) = 0. (51)

Thus, n is orthogonal to any tangent vector t to S at
x. In our problem, G = V [xα]−1 and F = (ξ(x), θ)−
cα, so the gradient is ∇xF (xα) = (∂ξ/∂x)>α θ at xα,
and the V [xα]-normal at xα is given by (15).
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