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We present a theoretically optimal linear algorithm for 3-D reconstruction from point corre-
spondences over two views. We also present a similarly constructed optimal linear algorithm
for 3-D reconstruction from optical flow. We then compare the performance of the two al-
gorithms by simulation and real-image experiments using the same data. This is the first
impartial comparison ever done in the sense that the two algorithms are both optimal, ex-
tracting the information contained in the data to a maximum possible degree. We observe
that the finite motion solution is always superior to the optical flow solution and conclude
that the finite motion algorithm should be used for 3-D reconstruction.

1. INTRODUCTION

Computing the 3-D structure and motion from an image sequence is one of the most important of computer vision

tasks and also one of the research areas that are making the rapidest progress today. Already, a vast literature

has appeared on this subject (see, e.g., [8, 13] for the latest developments). There have been two approaches to

this problem since 1970s when 3-D reconstruction from images began to attract interest: that based on point

correspondences over different views, which we call the finite motion approach; that based on instantaneous image

motion, which we call the optical flow approach. Early literature includes [21, 31, 32] for the former and [4, 9, 22]

for the latter. This division has lasted to date because of different mathematical and technical disciplines involved.

Mathematically, the finite motion approach is based on vector calculus of triangulation (or epipolar geometry);

the optical flow approach is based on differential calculus of the gray levels (or the gradient constraint). Technically,

the former uses template matching for feature correspondence detection; the latter uses filter operations with

smoothness constraints for optical flow detection. The latter has been closely associated with human perception

psychology (see [9, 22]).

This division, however, cannot not be crucial if we note that all the computation is based on images. Although

optical flow is mathematically modeled as a velocity field, all that can actually be computed is the displacements

over consecutive frames. It follows that once optical flow (= a set of point correspondences) is obtained, one could

run a finite motion algorithm for reconstructing the 3-D structure and motion. The finite motion approach can

apply to any motion, large or small, while the optical flow approach can apply only to a small motion. Then, what

is the benefit of the optical flow approach?

This question has not been fully answered yet, partly because researchers in the past favored one approach over

the other, demonstrating the merits of their own approaches, and partly because the techniques used were often

tuned to the image data used, making it difficult to compare the two approaches for the same data. But more
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fundamental is the difficulty of finding a common ground for fair comparison; either of the approaches works very

well if properly implemented, the performance depending largely on implementation.

The aim of this paper is to make a fair comparison of the two approaches from a theoretical standpoint .

Introducing a statistical model of uncertainty for feature locations, we present an optimal algorithm for both finite

motion and optical flow; by “optimal”, we mean that the accuracy already reaches a theoretical bound and hence

no other algorithms could possibly outperform it . The optimization techniques we use are already known but have

been published only in fragments [15, 16, 17], so we give a self-consistent description of our algorithm for finite

motion. For optical flow, the major part is described in our previous paper [19]. Here, we focus on only those parts

that are not given there.

We then compare the performance of the two algorithms by simulation and real-image experiments using the

same data. This is the first impartial comparison ever done in the sense that the two algorithms are both optimal,

extracting the information contained in the data to a maximum possible degree. Although finite motion analysis

can be extended to multiple images [8, 13], we concentrate on two-view analysis for the sake of comparison with

optical flow, which is defined over two images.

In Sec. 2, we introduce the fundamental matrices, which are the basis of 3-D reconstruction from images for both

finite motion and optical flow. In Sec. 3, we define a statistical model of feature uncertainty and give a theoretical

bound on the estimation accuracy. In Sec. 4, we present an optimal algorithm for computing the fundamental

matrix for finite motion. We also show simulation results that confirm that the solution indeed falls in the vicinity

of the bound. In Sec. 5, we describe the 3-D reconstruction procedure for both finite motion and optical flow.

In Sec. 6, we compare the results delivered by the finite motion and optical flow algorithms. Sec. 7 gives our

conclusions and discussions on the raison d’être of the optical flow approach.

2. FUNDAMENTAL MATRICES

2.1 Definition

Let {(xα, yα)} and {(x′α, y′α)}, α = 1, ..., N , be image coordinates of two sets of N points on two different images;

the image coordinate system is defined arbitrarily for each camera. Define vectors

xα =




xα/f0

yα/f0

1


 , x′α =




x′α/f0

y′α/f0

1


 , (1)

where f0 is an appropriate scale factor1 chosen so that xα/f0, yα/f0, x′α/f0, and y′α/f0 have an order 1. For brevity,

we call the point having coordinates (xα, yα) simply “point xα”.

If xα and x′α are images of the same point in the scene, they must satisfy the constraint

(xα, Fx′α) = 0, (2)

known as the epipolar equation [8, 13]. Here, F is a matrix of determinant 0, called the fundamental matrix [8, 13].

Throughout this paper, we denote by (a, b) the inner product of vectors a and b. Since the absolute scale of F is

unconstrained, we normalize it to ‖F ‖ = 1, where the norm of a matrix A = (Aij) is defined by ‖A‖ =
√∑3

i,j=1 A2
ij.

If the motion is small, we can write

x′α = xα + ẋα∆t, (3)

to a first approximation, where ∆t is the interframe time lapse2. The vectors {ẋα} describing the velocities on

the image plane are called the optical flow . Substituting eq. (3) into eq. (2) and taking a first approximation, we

obtain the following flow epipolar equation [3, 19, 33]:

(xα,Wẋα) + (xα, Cxα) = 0. (4)
1For example, we can take it to be the size of the image frame.
2In practice, the interframe laps is taken to be unit time for convenience.
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Here, W = (Wij) is an antisymmetric matrix, and C = (Cij) is a symmetric matrix. If we define

w =




W32

W13

W21


 , (5)

the following decomposability condition holds [3, 19, 33]:

(w,Cw) = 0. (6)

This constraint results from the rank constraint det F = 0 for finite motion. The matrices W and C are called

the flow fundamental matrices [19].

2.2 Computation

Computation of the fundamental matrix F has been studied by many researchers [1, 11, 12, 23, 24, 28, 29, 34, 35].

Common approaches are the bundle-adjustment and the linear algorithm.

The bundle-adjustment is known to be optimal under Gaussian noise, satisfying the Cramer-Rao lower bound

(CRLB). However, a parameter space in very high dimensions need to be searched, and a good initial guess is

required so that the search is not trapped into local minima [30].

The linear algorithm is based on the observation that the epipolar constraint (2) is linear in F . This allows

us to compute the solution by simply solving an eigenvalue problem, provided the rank constraint det F = 0 is

ignored [11, 21, 31]. However, this efficiency sacrifices the accuracy, causing a large statistical bias [16].

In this paper, we present a modification to the linear algorithm such that the resulting performance is comparable

to the bundle-adjustment: we first apply a technique called renormalization [16], which iteratively removes the

statistical bias inherent to the linear algorithm; we then impose the rank constraint in a statistically optimal

manner. We also give a (non-CRLB type) theoretical bound on the accuracy of F by generalizing the uncertainty

analysis of Csurka et al. [7]. We demonstrate that the resulting solution indeed falls in the vicinity of the accuracy

bound.

The same strategy has already been applied to the computation of the flow fundamental matrices W and C,

and an optimal algorithm that delivers results in the vicinity of the theoretical accuracy bound has been obtained

(see [19]).

3. UNCERTAINTY MODEL AND ACCURACY BOUND

3.1 Statistical Model of Uncertainty

We view {xα} and {x′α} as perturbed from their true locations {x̄α} and {x̄′α} that satisfy the epipolar constraint

(2) exactly. We write

xα = x̄α + ∆xα, x′α = x̄′α + ∆x′α, (7)

and regard ∆xα and ∆x′α as independent Gaussian random variables of mean 0 but not necessarily isotropic or

homogeneous. We call V [xα] = E[∆xα∆x>α ] and V [x′α] = E[∆x′α∆x′α
>] the covariance matrices of xα and x′α,

respectively, where E[ · ] denotes expectation. In practice, we need not know the absolute covariance values; it

suffices to know them up to scale. So, we write

V [xα] = ε2V0[xα], V [x′α] = ε2V0[x
′
α], (8)

and assume that V0[xα] and V0[x
′
α], which we call the normalized covariance matrices , are known but the constant

ε, which we call the noise level , is unknown. The normalized covariance matrices can be estimated from the Hessian

of the residual surface of template matching [20].
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Since the third components of xα and x′α are identically 1, the matrices V0[xα] and V0[x
′
α] are singular with

third columns and third rows filled with zeros. If the noise has the same isotropic distribution everywhere, we have

V0[xα] = V0[x
′
α] = diag(1, 1, 0), (9)

where diag(· · ·) denotes the diagonal matrix with diagonal elements · · ·. We use eq. (9) as the default value when

no information is available about the noise behavior.

If a corresponding pair of xα and x′α are identified with “optical flow” ẋα = x′α − xα at the “midpoint”

(xα + x′α)/2, the flow ẋα and the location xα are uncorrelated and have their normalized covariance matrices

V0[xα] + V0[x
′
α] and (V0[xα] + V0[x

′
α])/4, respectively. It follows that the corresponding default noise model for the

optical flow approach is given as follows [19]:

V0[ẋα] = 2diag(1, 1, 0), V0[xα] =
1

2
diag(1, 1, 0). (10)

3.2 Theoretical Accuracy Bound

Let F̂ be an estimate of the fundamental matrix, and F̄ its true value. The uncertainty of the estimate F̂ is

measured by its covariance tensor

V [F̂ ] = E[P
(
(F̂ − F̄ )⊗ (F̂ − F̄ )

)
P>], (11)

where the operator ⊗ denotes tensor product: for matrices A = (Aij) and B = (Bij), the (ijkl) element of their

tensor product is AijBkl. For tensors P = (Pijkl) and T = (Tijkl), the product PT P> is a tensor whose (ijkl)

element is
∑3

m,n,p,q=1 PijmnPklpqTmnpq. The (ijkl) element of the tensor P = (Pijkl) in eq. (11) is given by

Pijkl = δikδjl − F̄ijF̄kl, (12)

where δij is the Kronecker delta, taking 1 for i = j and 0 otherwise.

Invoking the general theory of statistical optimization [16], we can derive a (non-CRLB type) lower bound on

the covariance tensor V [F̂ ]: If we define the moment tensor M̄ = (M̄ijkl) by

M̄ =
1

N

N∑

α=1

W̄αx̄α ⊗ x̄′α ⊗ x̄α ⊗ x̄′α, (13)

W̄α =
1

(x̄′α, F̄
>
V0[xα]F̄ x̄′α) + (x̄α, F̄V0[x′α]F̄

>
x̄α)

, (14)

the accuracy bound is given in the form

V [F̂ ] Â ε2

N

(
P SM̄P S>)−

7
, (15)

where T Â S for tensors T and S means that T − S is a positive semi-definite tensor, and the operation ( · )−r
denotes the (Moore-Penrose) generalized inverse of rank r (discussed later). The (ijkl) element of the tensor P S

= (P S
ijkl) in eq. (15) is given by

P S
ijkl = δikδjl −

F̄ †
jiF̄

†
lk

‖F̄ †‖2
, (16)

where F̄
†

is the cofactor matrix of F̄ .

For a tensor T = (Tijkl), a matrix A = (Aij), and a scalar λ, we say that A is an eigenmatrix of T with eigenvalue

λ if TA = λA, where the product TA is a matrix whose (ij) element is
∑3

k,l=1 TijklAkl. The eigenmatrices and

eigenvalues of a tensor can be computed by identifying a tensor and a matrix with a 9×9 matrix and a 9-dimensional

vector [16].
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A tensor T = (Tijkl) is said to be symmetric if Tijkl = Tklij. A symmetric 3 × 3 × 3 × 3 tensor has nine real

eigenvalues {λi}. The corresponding eigenmatrices {U i} can be chosen to be an orthogonal system of matrices of

unit norm, where the inner product of matrices A = (Aij) and B = (Bij) is defined by (A; B) =
∑3

i,j=1 AijBij. A

symmetric tensor is positive semi-definite if its eigenvalues are all nonnegative.

Let λ1 ≥ · · · ≥ λ9 (≥ 0) be the eigenvalues of a positive semi-definite symmetric tensor T , and let {U 1, ..., U 9}
be the corresponding orthonormal set of eigenmatrices of unit norm. If λr > 0, the (Moore-Penrose) generalized

inverse of T of rank r is computed as follows:

T −
r =

r∑

i=1

U i ⊗U i

λi

. (17)

The root-mean-square error of an estimate F̂ is defined by

rms[F̂ ] =
√

E[‖P(F̂ − F̄ )‖2]. (18)

Since F̂ and F̄ are both normalized to unit norm, we have 0 ≤ rms[F̂ ] ≤ 1. From eq. (15), we have

rms[F̂ ] ≥ ε√
N

√
tr

(
P SM̄P S>

)−
7
, (19)

where the trace trT of a tensor T = (Tijkl) is defined by

trT =
3∑

k,l=1

Tklkl. (20)

A similar accuracy bound is obtained for the flow fundamental matrices W and C, too (see [19]).

4. OPTIMAL ALGORITHM FOR THE FUNDAMENTAL MATRIX

The algorithm we are presenting for computing the fundamental matrix F has the same mathematical structure

as that for computing the flow fundamental matrices W and C given in [19]. Namely, we optimally compute F

by a technique called renormalization [16] without considering the rank constraint det F = 0 and then impose the

rank constraint det F = 0 in a statistically optimal manner. We will show that accuracy is not lost by this type of

two-stage cascading.

4.1. Renormalization

The renormalization algorithm proceeds as follows:

1. Let c = 0, Wα = 1, α = 1, ..., N , and J = ∞.

# The symbol ∞ means a very large number, e.g., 1010.

2. Compute the tensors M = (Mijkl) and N = (Nijkl) as follows:

Mijkl =
1

N

N∑

α=1

Wαxα(i)x
′
α(j)xα(k)x

′
α(l), (21)

Nijkl =
1

N

N∑

α=1

Wα(V0[xα]ikx
′
α(j)x

′
α(l) + V0[x

′
α]jlxα(i)xα(k)). (22)

# xα(i) and x′α(i) are the ith components of xα and x′α, respectively, and V0[xα]ij and V0[x
′
α]ij are the (ij)

elements of V0[xα]ij and V0[x
′
α]ij, respectively.

3. Compute the nine eigenvalues λ1 ≥ · · · ≥ λ9 of the tensor M and the corresponding orthonormal set {F 1,

..., F 9} of eigenmatrices of unit norm.
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4. Do the following computation:

• Update c as follows:

c ← c +
λ9

(F 9;NF 9)
. (23)

• Compute Wα, α = 1, ..., N , as follows:

Wα =
1

(x′α,F>
9 V0[xα]F 9x′α) + (xα,F 9V0[x′α]F>

9 xα)
. (24)

• Compute the tensors M and N by eqs. (21) and (22).

• Let

J ′ ← J, J ← (F 9,MF 9). (25)

• If J ′ < J , let J ← J ′.

# The variable J stores the minimum residual.

• Else, compute the nine eigenvalues λ1 ≥ · · · ≥ λ9 of the tensor

M̂ = M− cN , (26)

and the corresponding orthonormal set {F 1, ..., F 9} of eigenmatrices of unit norm.

5. Repeat Step 4 until J ′ ≤ J or |λ9| ≈ 0.

# This guarantees the iterations to converge.

6. Let F take the value F 9, this being our estimate of the fundamental matrix.

The above procedure is based on the observation that, in the absence of noise, F̄ is the eigenmatrix of the

moment tensor M defined in eq. (21) with eigenvalue 0. It can be shown that, in the presence of noise, M is

statistically biased from its true value to a first approximation by a constant times the tensor N defined in eq. (22).

By eq. (26), we iteratively remove the bias in M in such a way that the smallest eigenvalue of M converges to

zero. The nature of this type of algorithm is rigorously analyzed by Chojnacki et al. [5, 6].

For the corresponding renormalization procedure for the flow fundamental matrices W and C, see [19].

4.2 Optimal Correction

We next apply a correction to F , shifting it iteratively to the nearest value that satisfies the rank constraint det F

= 0. Our procedure requires as inputs the eigenvalues and eigenmatrices emerging from the previous scheme. The

steps of the method are as follows:

• Compute the normalized covariance tensor of F as follows:

V0[F ] =
1

N

8∑

i=1

F i ⊗ F i

λi

. (27)

• Repeat the following computation until det F ≈ 0.

1. Update F as follows:

F ← N [F − (det F )V0[F ]F †>

(F †>;V0[F ]F †>)
]. (28)

# The operator N [ · ] denotes normalization of the norm to 1: N [F ] = F /‖F ‖.
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2. Compute the projection tensor P = (Pijkl) as follows:

Pijkl = δikδjl − FijFkl. (29)

3. Update the normalized covariance tensor V0[F ] as follows:

V0[F ]ijkl ←
3∑

m,n,p,q=1

PijmnPklpqV0[F ]mnpq. (30)

# This operation projects the error distribution onto the space orthogonal to F .

It can be shown [16] that the estimate F resulting from the renormalization procedure has the normalized

covariance tensor V0[F̂ ] given in eq. (27). The above procedure enforces the rank constraint det F = 0 on F

by iteratively updating F along the shortest path in the sense of the Mahalanobis distance associated with the

normalized covariance tensor V0[F̂ ]. It can be proved that renormalization coupled with this type of correction

produces a solution that attains the theoretical accuracy bound in the first order [16].

For the corresponding optimal correction procedure for the flow fundamental matrices W and C, see [19].

4.3. Program Package

The algorithm described above is implemented in C++ and placed in our Web page3. It outputs a solution F̂ along

with its standard deviation pair {F (+), F (−)}. These are the values in the parameter space that are separated

from F̂ by the standard deviation in the two directions along which errors implied by eq. (15) are the most likely

to occur.

We evaluate the right-hand side of eq. (15) by substituting the data and the estimate F̂ for their true values.

The square noise level ε2 in the expression can be estimated by

ε̂2 =
J

1− 8/N
, (31)

using the value J returned by the renormalization procedure of Sec. 4.1. This type of estimation is known to give

a good approximation to the true value [16].

Let λmax be the maximum eigenvalue of the thus evaluated tensor on the right-hand side of eq. (15), and let

Umax be the corresponding eigenmatrix of unit norm. The standard deviation pair is defined by

F (+) = N [F̂ +
√

λmaxUmax], F (−) = N [F̂ −
√

λmaxUmax]. (32)

If F (+) and F (−) coincide up to, say, three significant digits, the solution F̂ is likely to have accuracy up to

approximately three significant digits.

The fundamental matrix cannot be defined uniquely if the feature points are in a degenerate configuration.

This occurs, for example, when the camera translation is zero or all the feature points are on a special quadric

called a critical surface, a typical instance of which is a planar surface [15]. If λmax in eqs. (32) is predicted to

be approximately 1 in the course of computation, our program judges that degeneracy has occurred and stops the

computation after issuing a warning message.

The corresponding program package for computing the flow fundamental matrices W and C is also avaliable

from the same site.

4.4 Simulated Experiments

Fig. 1 shows simulated 512 × 512-pixel images of a 3-D grid environment. They are supposedly captured by a

moving camera with different focal lengths. Some of the epipolars (the images of the lines of sight starting from

3http://www.ail.cs.gunma-u.ac.jp/Labo/e-programs.html
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Figure 1: Simulated images of a 3-D scene and epipolars.
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Figure 2: Accuracy and efficiency of computation: our solutions (2), solutions without the optimal correction (•), and
least-squares solutions (¦). (a) Root-means-squares error. The dotted line indicates the theoretical lower bound. (b)
Average computation time (in seconds).

the projection center of the other camera) are superimposed. Random Gaussian noise of mean 0 and standard

deviation σ (pixels) was added to the x and y coordinates of each grid point independently, and the fundamental

matrix F was computed by using the default noise model of eq. (9). The renormalization converged after three or

four iterations.

Fig. 2(a) shows a plot of the root-mean-squares error
√∑100

a=1 ‖P(F̂ a − F̄ )‖2/100 over 100 trials for each σ using

different noise each time, where F̂ a is the ath estimate, F̄ is the true value, and P is the projection tensor defined

in eq. (12). The symbol 2 denotes solutions obtained via the method presented in this paper, and the dotted

line indicates the theoretical lower bound derived from eq. (15). The symbol • denotes renormalization solutions

without applying the optimal correction of Section 4.2. The symbol ¦ denotes solutions computed by the widely

used linear algorithm, often referred to as the least-squares method or the algebraic distance minimization [11, 12],

which directly minimizes the sum of the squares of the epipolar constraint (2) in the form

1

N

N∑

α=1

(xα,Fx′α)2 → min . (33)

As we can see from Fig. 2(a), the errors in our estimates practically fall on the theoretical lower bound, which

is known to be attained by the bundle adjustment. This confirms that our linear algorithm indeed achieves the

accuracy of the bundle adjustment. Fig. 2(b) shows the average computation time on a Sun Ultra-30 workstation

(SunOS 5.6). Naturally, the method takes more time than the naive least-squares method, but the theoretical

accuracy bound is attained only at this higher computational cost.

Similar experiments for comfirming the optimality of the flow fundamental matrices W and C are given in [19].

5. 3-D RECONSTRUCTION FROM TWO VIEWS

We now describe the 3-D reconstruction procedure for both finite motion and optical flow.
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5.1 Finite Motion Approach

After the fundamental matrix F is computed by the procedure described in the preceding section, the image

locations xα and x′α of each feature point are corrected so as to satisfy the epipolar equation (2) exactly in a

statistically optimal way [16]:

x̂α = xα − E(xα,x′α)

V (xα,x′α)
V0[xα]Fx′α, x̂′α = x′α −

E(xα,x′α)

V (xα,x′α)
V0[x

′
α]F>xα. (34)

Here, we have defined

E(xα,x′α) = (xα,Fx′α), V (xα,x′α) = (x′α,F>V0[xα]Fx′α) + (xα, FV0[x
′
α]F>xα). (35)

Letting xα ← x̂α and x′α ← x̂′α, we repeat this procedure until the epopolar equation E(x̂α, x̂′α) = 0 is sufficiently

satisfied. The convergence has quadratic speed, so one iteration is almost sufficient. This procedure is equivalent

to the triangulation of Hartley and Sturm [11], which requires solving a sixth degree polynomial, but the above

form is far more efficient, as pointed out by Torr and Zisseramann [28].

In reconstructing the 3-D structure from point correspondences over two images taken by two uncalibrated

cameras, all information is encoded in the fundamental matrix F [8, 13]. Since F is defined up to scale and

constrained to be det F = 0, it has seven degrees of freedom. The relative motion of the two cameras is specified

by a translation vector t and a rotation matrix R, but the absolute scale of the translation is indeterminate and

a 3-D rotation has three degrees of freedom. So, the motion parameters {t, R} have five degrees of freedom. It

follows that only two camera parameters can be recovered.

A practical choice for them is the focal lengths f and f ′ of the two cameras, since other parameters can be

pre-calibrated and fixed while zooming usually changes freely as the camera moves4. Hartley [10] presented an

analytic procedure for computing the focal lengths f and f ′ from the fundamental matrix F . The solution is

obtained by applying the singular value decomposition (SVD) and solving linear equations in four unknowns. Pan

et al. [26, 27] reduced this problem to solving cubic equations. Newsam et al. [25] refined these algorithms into a

combination of SVD and linear equations in three unknowns. Kanatani and Matsunaga [17] reduced the problem

to solving a quadratic equation in one variable. Bougnoux [2] presented an explicit formula for f in F . The

degeneracy condition for the solution to be indeterminate has also been analyzed [17, 25].

Among many mathematically equivalent alternatives, the most convenient may be the following modification

of the Bougnoux formula [2] given by Kanatani and Matsunaga [17]:

f = f0

/√√√√1 +
‖Fk‖2 − (k,FF>Fk)‖e′ × k‖2/(k,Fk)

‖e′ × k‖2‖F>k‖2 − (k, Fk)2
,

f ′ = f0

/√√√√1 +
‖F>k‖2 − (k, FF>Fk)‖e× k‖2/(k,Fk)

‖e× k‖2‖Fk‖2 − (k,Fk)2
. (36)

Here, we put k = (0, 0, 1)>. The symbols e and e′ denote the unit eigenvectors of F> and F , respectively, for

eigenvalue 0; they represent the epipoles—the image of the projection center of the second camera in the first image

and the image of that of the first camera in the second image, respectively [8, 13].

After the focal lengths f and f ′ have been obtained, we recompute {x̂α} and {x̂′α} by replacing f0 in the vector

representation of eqs. (1) by the corresponding values f and f ′ we have just computed. This can be done as follows:

x̂α ← diag
(f0

f
,
f0

f
, 1

)
x̂α, x̂′α ← diag

(f0

f ′
,
f0

f ′
, 1

)
x̂′α. (37)

The motion parameters {t, R} are analytically computed as follows (the indeterminate scale of the translation

t is normalized to unit length: ‖t‖ = 1) [15]:
4Strictly speaking, the principal point (the intersection of the optical axis with the image plane) may slightly move as zooming

changes, but regarding it as a fixed point is known to be a good approximation.
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1. Compute the following essential matrix :

E = diag(1, 1,
f0

f
)Fdiag(1, 1,

f0

f ′
). (38)

# This removes the dependence of the fundamental matrix on the focal lengths [17].

2. Compute the unit eigenvector t of EE> for the smallest eigenvalue. The sign of t is chosen in such a way

that
N∑

α=1

|t, x̂α, Ex̂′α| > 0. (39)

# This is the constraint that the depths of the feature points have the same sign before and after the

camera motion [15].

3. Apply SVD to −t×E as follows.

−t×E = V ΛU>. (40)

# For a vector a and a matrix A, we define a ×A to be the matrix consisting of columns that are the

vector products of a and the individual columns of A.

# Λ is a diagonal matrix with diagonal elements (singular values) in non-increasing order; V and U are

orthogonal matrices.

4. Compute the rotation R as follows:

R = V diag(1, 1, det V U>)U>. (41)

This procedure produces a least-squares solution for {t, R} even if the rank constraint det F = 0 is not strictly

satisfied [15].

The 3-D position of the αth point is given by

r̂α = Ẑαx̂α, r̂′α = Ẑ ′
αx̂′α, (42)

with respect to the first and the second camera coordinate systems, respectively, where the depths Ẑα and Ẑ ′
α are

given as follows [15]:

Ẑα = (t×Rx̂′α,nα), Ẑ ′
α = (t× x̂α, nα). (43)

Here, we have defined

nα =
x̂α ×Rx̂′α
‖x̂α ×Rx̂′α‖2

. (44)

Finally, we need to adjust the sings of the depths because the sign of the fundamental matrix F is indeterminate.

The signs of {Ẑα } and {Ẑ ′
α} are inverted, if necessary, so that

N∑

α=1

(sgn[Ẑα] + sgn[Ẑα]) > 0, (45)

where sgn[ · ] is the signature function that takes 1, 0, and −1 for x > 0, x = 0, and x < 0, respectively. This

operation is necessary because we may not select the correct solution if we simply compute
∑N

α=1(Ẑα + Ẑ ′
α); a very

large positive depth may turn out to be close to −∞ due to noise.
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5.2 Optical Flow Approach

The 3-D reconstruction from optical flow goes similarly. After optimally computing the flow fundamental matrix

W and C using the previously reported method [19], the flow ẋα and image location xα of each feature point are

corrected so as to satisfy the flow epipolar equation (4) exactly in a statistically optimal way [16]:

ˆ̇xα = ẋα +
E(ẋα, xα)

V (ẋα, xα)
V0[ẋα]Wxα, x̂α = xα − E(ẋα, xα)

V (ẋα, xα)
V0[xα](Wẋα + 2Cxα). (46)

Here, we have defined

E(ẋα,xα) = (xα, Wẋα) + (xα,Cxα),

V (ẋα,xα) = (Wxα, V0[ẋα]Wxα) + (Wẋα + 2Cxα, V0[xα](Wẋα + 2Cxα)). (47)

Letting ẋα ← ˆ̇xα and xα ← x̂α, we repeat this procedure until the flow epipolar equation E(ˆ̇xα, x̂α) = 0 is

sufficiently satisfied. As in the finite motion approach, the convergence has quadratic speed, so one iteration is

almost sufficient.

In reconstructing the 3-D structure from optical flow taken by an uncalibrated camera, all information is encoded

in the flow fundamental matrices W and C [3, 19, 33]. They are determined up to scale and constrained by the

decomposability condition (6). Since W and C are antisymmetric and symmetric matrices, respectively, they have

seven degrees of freedom in total. The instantaneous motion of the camera is specified by the translation velocity

v and the rotation velocity ω, but the absolute scale of the translational motion is indeterminate. So, the motion

parameters {v, ω} have five degrees of freedom. It follows that, as in the case of finite motion, only two camera

parameters can be recovered.

A practical choice for them is, again as in the case of finite motion, the focal length f and its change rate

ḟ , since other parameters can be pre-calibrated and fixed while zooming usually changes freely as the camera

moves. Brooks et al. [3] presented a complicated procedure for computing f , ḟ , v and ω from the flow fundamental

matrices W = (Wij) and C = (Cij). Here, we present an elegant group-theoretical procedure using irreducible

representations of the group of 2-D rotations SO(2) [14]. The indeterminate scale of the translation velocity v is

normalized to unit length: ‖v‖ = 1.

Let wi be the ith component of the vector w defined in eq. (5), and do the following computation:

A = C11 + C22, B̃ = (C11 − C22) + 2iC12, C̃ = 2(C13 + iC23), D = C33, (48)

w̃ = w1 + iw2, ω̃′ =
B̃

w̃
, ω′1 = <[ω̃′], ω′2 = =[ω̃′], ω3 = −A + (w̃, ω̃′)

2w3

, (49)

f ′ =

√
− D

(w̃, ω̃′)
, φ̃ =

C̃ − f ′2w3ω̃
′

w̃
, ω3 = <[φ̃], ḟ ′ = −f ′=[φ̃], (50)

ω1 = f ′ω′1, ω2 = f ′ω′2, f = f ′f0, ḟ = ḟ ′f0, v = N [




w1

w2

(f/f0)w3


]. (51)

Here, i is the imaginary unit. The quantities with tildes are complex numbers: <[ · ] and =[ · ] denote the real and

imaginary parts, respectively. We define the “inner product” of complex numbers z = x + iy and z′ = x′ + iy′ by

(z, z′) = xx′ + yy′. The operation N [ · ] designates normalization into a unit vector: N [a] = a/‖a‖. Note that ω3

is computed in two ways by the fifth of eqs. (49) and the third of eqs. (50). The decomposability condition (6)

requires that the two values coincide.

The 3-D positions of the feature points are reconstructed as follows. First, we recompute { ˆ̇xα} and {x̂α} by

replacing f0 by its true value f and incorporating its change rate ḟ . This is done as follows:

ˆ̇xα ← f0

f

(
ˆ̇xα − ḟ

f
diag(1, 1, 0)x̂α

)
, x̂α ← diag

(f0

f
,
f0

f
, 1

)
x̂α. (52)
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Figure 3: Simulated images of a 3-D scene.

The 3-D position of the αth point is given by

r̂α = Ẑαx̂α, (53)

where the depth Ẑα is given as follows [15]:

Ẑα = − (v,Sαv)

(v,Sα(ẋα + ω × xα))
. (54)

Here, we have defined

Sα = (I − xαk>)>(I − xαk>), (55)

where k = (0, 0, 1)>. In view of the sign indeterminacy of the flow fundamental matrices W and C, the signs

of {Ẑα} are inverted, if necessary, so that the following condition is satisfied for the same reason as in the finite

motion approach:
N∑

α=1

sgn[Ẑα] > 0. (56)

6. Performance Comparison

We now compare the performance of the finite motion algorithm and the optical flow algorithm by simulation and

real-image experiments using the same data.

6.1 Simulation Experiments

Fig. 3 shows simulated 512 × 512-pixel images of a 3-D scene. We added independent random Gaussian noise of

mean 0 and standard deviation 3 (pixels) to each of the x and y coordinates of the grid points and reconstructed

the 3-D shape using the default noise model of eq. (9).

Fig. 4(a) shows the 3-D shape (solid lines) reconstructed by the finite motion algorithm superimposed on the

true shape (dotted lines) rescaled to ‖t‖ = 1. Fig. 4(b) shows uncertainty ellipsoids centered on the reconstructed

vertices. We can evaluate the uncertainty of the computed fundamental matrix F in the form of the covariance

tensor, so we can propagate it to compute the uncertainty of the 3-D reconstruction (we omit the details). The

ellipsoids in Fig. 4(b) indicate three times the standard deviation in each orientation. As we can observe, they are

very thin having their major axes approximately in the depth orientation. They are larger for points further away

from the cameras5.

Fig. 5 shows the corresponding 3-D shape reconstructed by the optical flow algorithm using the default noise

model of eq. (10). Here, the random Gaussian noise is reduced to standard deviation 0.5 (pixel), because adding

more noise would deteriorate the results intolerably. From this, we can observe the poor performance of the optical

flow approach even in this low noise level although the computation is optimal.

5The uncertainty shown here is relative to the first camera coordinate system with the camera translation normalized to unit length,
so it does not have an absolute meaning since the first camera coordinate system and the camera translation also have their uncertainty.
To extract an absolute meaning, we need the gauge theory of uncertainty description [18].
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(a) (b)

Figure 4: The finite motion approach. (a) Reconstructed shape (solid lines) and the true shape (dotted lines). (b) The
uncertainty ellipsoids of the grid points.

(a) (b)

Figure 5: The optical flow approach. (a) Reconstructed shape (solid lines) and the true shape (dotted lines). (b) The
uncertainty ellipsoids of the grid points.

6.2 Real Image Experiments

Fig. 6 shows a pair of real images (512 × 768 pixels) of an indoor scene. We manually selected feature points as

marked in the images and reconstructed the 3-D shape. Fig. 7 shows the 3-D shape computed in two ways: (a)

the finite motion approach with the noise model (9); (b) the optical flow approach with the noise model (10).

Wireframes consisting of some of the reconstructed points are shown for visual aide.

On each reconstructed point is centered the uncertainty ellipsoid that indicates the standard deviation in each

orientation (this time not magnified by three times). They are like thin needles, showing that the uncertainty is

very large along the depth orientation. Although the reconstructed shape itself looks natural for both (a) and (b),

we can clearly see that the optical flow solution has far larger uncertainty than the finite motion solution.

Fig. 8 shows real images (512×768 pixels) of a car. We manually selected feature points as marked in the images

and reconstructed the 3-D shape. Fig. 9 shows some new views generated by creating a wireframe model from the

reconstructed points and mapping the texture to it: the upper row is obtained by the finite motion approach with

the noise model (9); the lower row is obtained by the optical flow approach with the noise model (10).

Although it is difficult to grasp the exact 3-D shape from static views, we are given a fairly realistic impression

of the 3-D shape by continuously changing the viewpoint. After careful observations, however, we find that the

3-D shape is unnaturally deformed in the part far away from the viewer as compared with the front part, which

is fairy accurate. We also find that the deformation is larger for the optical flow solution than the finite motion

solution.

7. CONCLUDING REMARKS

We have presented two linear algorithms for 3-D reconstruction from point correspondences over two views: one is

for finite motion; the other is for optical flow. Both are optimal in the sense that no other algorithms could possibly

outperform it. They first compute the fundamental matrix and the flow fundamental matrices by renormalization
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Figure 6: Real images of an indoor scene.

(a) (b)

Figure 7: Reconstructed points and their uncertainty ellipsoids: (a) the finite motion approach; (b) the optical flow
approach.

followed by optimal correction. For each approach, we have derived a theoretical accuracy bound based on a static

uncertainty model of feature locations and confirmed by experiments that the solution indeed falls in the vicinity

of the accuracy bound. Since the major part of the optical flow algorithm is described in our previously presented

paper [19], we have mainly focused on the finite motion algorithm.

Next, we presented for each approach a procedure for reconstructing individual 3-D positions in a statistically

optimal way. For optical flow, in particular, we introduced elegant formulae based on the group representation

theory [14]. We then compared the performance of the two algorithms by simulation and real-image experiments

using the same data. This is the first impartial comparison ever done in the sense that the two algorithms are both

optimal, extracting the information contained in the data to a maximum possible degree.

Our experiments have shown that the finite motion solution is always superior to the optical flow solution.

Since optical flow is a first order approximation of finite motion, the computation could be stabler for optical flow

when the disparity is very small. We tested this by simulation. Evidently, the 3-D information cannot be obtained

if the disparity between the two images is too small whatever method we use. Gradually reducing the disparity, we

ran the two algorithms for the same data and found that the optical flow algorithm always collapsed first. In all

the experiments we did, we were unable to find any advantage of the optical flow algorithm in accuracy, efficiency,

or stability.

The reason why so many studies of 3-D reconstruction from optical flow have been done in the past lies perhaps

in the usefulness of optical flow and the ease of its detection. Optical flow has sufficient 3-D information. Indeed,

humans can easily perceive the 3-D structure of the scene by simply looking at it. So, it is natural that people

have sought algorithms for 3-D reconstruction from optical flow6. Our investigation has revealed, however, that

optical flow should be regarded as an auxiliary tool for correspondence detection. It may be useful in many image

processing applications including motion segmentation, but when it comes to 3-D reconstruction, one should use

the finite motion algorithm as we did here; nothing is gained by using first order approximations.

6Some acknowledged that the purpose of studying 3-D reconstruction algorithms from optical flow was to understand the workings
of the human brain [22, 32].
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Figure 8: Real images of a car.

Figure 9: The reconstructed and texture-mapped 3-D shape: the finite motion approach (above); the optical flow approach
(below).
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