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Overview of 3-D Reconstruction from Images
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This article summarizes recent advancements of the theories and techniques for 3-D reconstruc-
tion from multiple images. We start with the description of the camera imaging geometry as
perspective projection in terms of homogeneous coordinates and the definition of the intrinsic
and extrinsic parameters of the camera. Next, we described the epipolar geometry for two, three,
and four cameras, introducing such concepts as the fundamental matrix, epipolars, epipoles, the
trifocal tensor, and the quadrifocal tensor. Then, we present the self-calibration technique based
on the stratified reconstruction approach, using the absolute dual quadric constraint. Finally,
we give the definition of the affine camera model and a procedure for 3-D reconstruction based
on it.

1. Introduction

Analyzing camera or video images for understand-
ing the 3-D meaning of the captured scene is generally
known as computer vision (also machine vision, robot
vision, or image understanding , depending on the em-
phasis of the researchers), which basically consists of
the following three stages:

• Image processing for detecting, extracting, and
matching features, which can be points, lines, re-
gions, or anything that is characteristics to that
scene.

• Acquiring metric information such as locations,
orientations, distances, sizes, and motions of the
objects in the scene.

• Obtaining semantic information such as classi-
fication, recognition, labeling, indexing, and re-
trieval of specific objects in the scene.

These three stages roughly correspond to what has
been historically known as early (or low-level) vi-
sion, intermediate-level vision, and high-level vision,
respectively [21]. However, they are not necessarily
treated separately; they are closely and interactively
combined in most real computer vision systems.
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The second stage, today called 3-D reconstruction
or structure from motion (SFM ), critically depends
on the camera imaging geometry , i.e., the geometric
relationship between a 3-D scene and its projection
onto a 2-D image, while the third stage crucially relies
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on the domain knowledge specific to individual appli-
cations such as faces, gestures, gaits, traffic, aerial
photographs, and medical images.

Although the third stage is the ultimate goal of
computer vision, it is still a very challenging task, and
no universally satisfactory technologies have yet been
established. Currently, a lot of research is going on for
it, mostly based on a trial-and-error basis combined
with various heuristics.

In contrast, the 3-D reconstruction stage has ex-
tensively studied in the last few decades to arrive at
almost definitive conclusions. The aim of this article
is to present an overview of thus established latest
technologies of 3-D reconstruction from multiple im-
ages. Standard textbooks on this subjects are, for
example, [4, 5, 6, 7, 12, 13, 14, 22, 43].

2. Camera Imaging Geometry

2.1 Perspective Projection

We identify an image, or a photograph, with a
mapping from a 3-D scene onto a 2-D plane and call
this mapping the camera model . The standard model
is perspective projection (Fig. 1): we imagine a point
Oc, called the viewpoint , and a plane Πc, called the
image plane or retina, in the scene and assume that
a point P in the scene is mapped to the intersection
p of the image plane Πc with the line OcP , called the
line of sight . This models an ideal pin-hole camera
and is known to describe real cameras with sufficient
accuracy.

We call the line starting from the viewpoint Oc

and perpendicularly passing through the image plane
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Figure 1: Perspective projection.

Πc the optical axis. We define an XcYcZc coordinate
system with the origin at the viewpoint Oc and the
Zc-axis along the optical axis. The intersection o of
the optical axis with the image plane Πc is called the
principal point . We define an xy coordinate system
with the origin at the principal point o and the x-
and the y-axes parallel to the Xc- and the Yc-axes,
respectively (Fig. 1). Then, a point (Xc, Yc, Zc) in
the scene is projected onto a point (x, y) in the image
plane given by

x = fc
Xc

Zc
, y = fc

Yc

Zc
, (1)

where fc, called the focal length, is the distance from
the viewpoint Oc to the image plane Πc.

2.2 Pixel Coordinates

In real cameras, the image plane corresponds to
the array of photo-cells, or pixels. They are placed in
parallel rows at equal intervals in horizontal and verti-
cal directions. However, the vertical columns of pixels
are not necessarily orthogonal to the horizontal rows,
and the inter-pixel distance may not be the same in
the horizontal and vertical directions. Labeling the
upper-left pixel (u, v) = (0, 0), we count the pixels u
= 1, 2, ... rightward and v = 1, 2, ... downward.
We identify the integer pair (u, v) with the position
at the center of that pixel and specify inter-pixel, or
subpixel , positions with real number pairs (u, v) by
linear interpolation. This defines a continuous pixel
coordinate system of the image plane (Fig. 2).

If the xy coordinate system is oriented so that the
x-axis is directed rightward in parallel to the hori-
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Figure 2: Pixels and the image coordinate system.

zontal pixel rows and the y-axis downward, the pixel
coordinates (u, v) and the image coordinates (x, y)
are related by

u =
x

α
+

y

α
tan θ + u0,

v =
y

β
+ v0, (2)

where (u0, v0) are the pixel coordinates of the princi-
pal point o, and α and β are, respectively, the distance
between consecutive pixels in the horizontal direction
and the distance between consecutive rows in the ver-
tical direction. We define the angle between the hor-
izontal and vertical pixel directions to be π/2+θ and
call θ the skew angle.

Remark 1.Note that the xy coordinate system as de-
fined above is “reversed” as compared with the usual
sense. This convention originates from the human
intuition that a hypothetical z-axis extends “away”
from the viewer toward the scene, making the x-, y-
and z-axes a right-handed system.

Remark 2.In most textbooks, the angle between the
horizontal and vertical pixel directions is defined to
be θ. Then, the first of eqs. (2) becomes u = x/α +
(y/β) cot θ + u0. We prefer our convention, because
the skewless camera corresponds to θ = 0 rather than
θ = π/2.

2.3 Intrinsic Parameters

Combining eqs. (1) and (2), we have



u
v
1


 ' K




Xc

Yc

Zc


 , (3)

where throughout this article the symbol ' means
that one side is a multiple of the other by a nonzero
constant. The matrix K is defined by

K =




fγ fγ tan θ u0

f v0

1


 , (4)

where we put f = fc/β, which is also called the fo-
cal length but strictly the focal length measured in
the unit defined so that the vertical distance between
pixel rows is 1. We define γ = β/α, which we call the
aspect ratio. The constants f , γ, θ, u0, and v0 are
called the intrinsic parameters of the camera, and
the matrix K the intrinsic parameter matrix .

Remark 3.For digital cameras today, we can expect
γ ≈ 1 and θ ≈ 0 with high precision and the principal
point (u0, v0) is nearly at the center of the photo-cell
array.
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Remark 4.In some textbooks, the vertical interval β
is defined not as the distance between consecutive
“rows” but as the distance between consecutive “pix-
els” in the vertical direction. Then, the second of
eqs. (2) becomes v = y/β cos θ + v0, so the (22) ele-
ment of the matrix K in eq. (4) is f/ cos θ. If we use
the skew angle convention mentioned in Remark 2,
cos θ is replaced by sin θ. However, precise interpre-
tation of the matrix K is not essential. Many recent
textbooks simply write, e.g.,

K =




f1 s u0

f2 v0

1


 , (5)

emphasizing the fact that it is an upper triangular
matrix with 1 in the (33) element .

2.4 Motion Parameters

Since the XcYcZc coordinate system is defined with
respect to the camera (i.e., the viewpoint Oc and the
optical axis), it is called the camera coordinate sys-
tem. We also define an XY Z coordinate system fixed
to the scene and call it the world coordinate system.
Let t be its origin described with respect to the cam-
era coordinate system. If the world coordinate sys-
tem is rotated by R relative to the camera coordi-
nate system, a point in the scene with world coordi-
nates (X, Y, Z) has the following camera coordinates
(Xc, Yc, Zc) (Fig. 3):




Xc

Yc

Zc


 = R




X
Y
Z


 + t. (6)

We call {R, t} the motion parameters or the extrinsic
parameters of the camera.

Remark 5.Note that the motion parameters {R, t}
are description with respect to the camera coordinate
system. We can also describe this with respect to the
world coordinate system. Let tc be the origin of the
camera coordinate system described with respect to
the world coordinate system. If the camera coordi-
nate system is rotated by Rc relative to the world
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Figure 3: The camera coordinate system and the world
coordinate system.

coordinate system, we obtain instead of eq. (6)



X
Y
Z


 = Rc




Xc

Yc

Zc


 + tc, (7)

and the two descriptions {R, t} and {Rc, tc} are
related by

R = R>
c , t = −R>

c tc. (8)

2.5 Projection Matrix

From eqs. (3) and (6), we can see that the pixel
coordinates (u, v) are related to the world coordinates
(X,Y, Z) in the form

u ' PX, (9)

where we put

u =




u,
v
1


 , X =




X
Y
Z
1


 , (10)

and
P = K

(
R t

)
. (11)

This 3×4 matrix P is called the projection matrix or
the camera matrix .

The vectors in eqs. (10) represent the homogeneous
coordinates of the point (u, v) in the image and the
point (X, Y, Z) in the scene, respectively. Hereafter,
we refer to points represented by vectors u and X
simply as “point u” and “point X”, respectively.

Remark 6.Homogeneous coordinates are used not
only for points in 2-D and 3-D but also for lines in
2-D and planes in 3-D, as we will see later. They
are the description of points, lines, and planes with
a set of real numbers, not all zero, defined up to a
nonzero constant. For example, triples x1 : x2 : x3

and cx1 : cx2 : cx3 for an arbitrary c 6= 0 describe
the same point in 2-D (the superscripts are indices,
not powers). If x3 6= 0, the usual coordinates, or the
inhomogeneous coordinates, are

x =
x1

x3
, y =

x2

x3
. (12)

If x3 = 0, the point is interpreted to be at infin-
ity; such a point is called an ideal point . Similarly,
quadruples X1 :X2 :X3 :X4 and cX1 :cX2 :cX3 :cX4

for an arbitrary c 6= 0 describe the same point in 3-D.
If X4 6= 0, its inhomogeneous coordinates are

X =
X1

X4
, Y =

X2

X4
, Z =

X3

X4
. (13)

If X4 = 0, the point is an ideal point at infinity.
The symbol ' in eqs. (3) and (9) reflects the inde-
terminacy of the absolute scale of homogeneous coor-
dinates.
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Remark 7.If we use the motion parameters {Rc, tc}
described with respect to the world coordinate sys-
tem, eq. (11) becomes

P = K
(
R>

c −R>
c t

)
= KR>

c

(
I −t

)
. (14)

(I denotes the unit matrix.) In this article, we adopt
the description with respect to the camera coordinate
system. Generally, the expressions become simpler if
described with respect to the camera coordinate sys-
tem, because the camera imaging geometry is defined
with respect to the camera.

2.6 Absolute Conic

Since eq. (9) is a relationship between homoge-
neous coordinates, it also holds for ideal points. In
other words, eq. (9) defines a mapping from the 3-D
projective space P3 obtained by adding all ideal points
in 3-D to R3 onto the 2-D projective space P2 ob-
tained by adding all ideal points in 2-D to R2.

The set Π∞ of points X1 : X2 : X3 : X4 in P3

with X4 = 0 is called the ideal plane. The set Ω∞ of
(imaginary) points in Π∞ that satisfy

(X1)2 + (X2)2 + (X3)2 = 0 (15)

is called the absolute conic. Eq. (9) implies that any
projection u of a point of Ω∞ satisfies, irrespective of
the motion parameters {R, t},

u>ωu = 0, ω ≡ (K−1)>K−1. (16)

The set of (imaginary) points u that satisfy this equa-
tion is interpreted to be the camera projection of the
absolute conic Ω∞ (Fig. 4).

Remark 8.If we are given camera images of objects in
the scene with known 3-D information, we can deter-
mine the intrinsic parameters and the motion param-
eters of the camera in many different ways, depending
on the type of the available 3-D information about the
scene. Such a procedure is called camera calibration,
and most known calibration procedures can be given
projective geometric interpretations in terms of the
absolute conic [44].
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Figure 4: The absolute conic and its projection.

3. Epipolar Geometry

3.1 Multilinear Constraints

When geometric primitives such as points, lines,
and planes in the scene are viewed by multiple cam-
eras located in different positions, description of the
relationships among their projection images is called
epipolar geometry (typically for two cameras) or mul-
tilinear geometry (typically for more than two cam-
eras).

Suppose we observe a point X in the scene by M
cameras, and let uκ be its projection in the κth im-
age, κ = 1, ..., M . Let P κ be the projection matrix
of the κth camera. For each camera, we have the
relationship of eq. (9). If we use an indeterminate
nonzero constant λκ instead of the relation symbol
', we have

λκuκ = P κX. (17)

The constant λκ is called the projective depth. Rear-
ranging all the equations of this form for κ = 1, ...,
M in a matrix form, we obtain




P 1 u1 0 · · · 0
P 2 0 u2 · · · 0
... 0 0

. . .
...

P M 0 0 · · · uM







X
−λ1

...
−λM


=




0
0
...
0


 .

(18)
Since some X (6= 0) and λκ, κ = 1, ..., M , that satisfy
this equation should exist, the 3M × (M + 4) matrix
on the left-hand side has at most rank M +3. Hence,
all (M + 4) × (M + 4) minors should vanish. This
leads to constraints on projection images in M (= 2,
3, 4) images [11].

Remark 9.It is easy to see that unless the chosen
(M+4)×(M+4) minor contains two or more columns
of P κ, we cannot obtain a meaningful constraint on
the projection in the κth image. In fact, if only one
column of P κ is included, it simply multiplies the
minor by a constant, so its vanishing does not give
any information about P κ. Hence, if M projection
matrices are to be constrained by the vanishing of a
(M + 4)× (M + 4) minor, we need 2M ≤ M + 4, or
M ≤ 4. Thus, we can obtain constraints on only two,
three, and four images.

3.2 Fundamental Matrix

For M = 2 (two images), the matrix on the left-
hand side of eq. (18) is 6 × 6, so we obtain only one
constraint: the matrix has determinant 0.. This is
rewritten as

u>1 Fu2 = 0, (19)

where F is a 3× 3 matrix whose (ij) element is

Fij =
3∑

k,l,m,n=1

εiklεjmn det P klmn
1122 . (20)
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Figure 5: Epipolars and epipoles.

Here, P klmn
1122 denotes the 4×4 matrix consisting of the

kth row of P 1, the lth row of P 1, the mth row of P 2,
and the nth row of P 2. The matrix F is called the
fundamental matrix . From eq. (20), it can be shown
that the fundamental matrix F has rank 2.

Remark 10.The symbol εijk denotes the signature of
the permutation (ijk). Namely, it takes on 1 if (ijk)
is an even permutation of (123), −1 if it is an odd
permutation, and 0 otherwise. This symbol is called
the Levi-Civita (or Eddington) epsilon.

3.3 Epipolar Constraint

The line starting from the viewpoint O1 of the first
camera and passing through the point u1 in the image
plane of the first camera is called the line of sight
of u1. The line of sight of u2 is defined similarly.
Geometrically, eq. (19) describes the requirement that
the line of sight of u1 and the line of sight of u2 should
intersect at a point (it may be at infinity) in the scene.
(Fig. 5).

The set of points u that satisfy l>u = 0 for some
l defines a line in the image. The vector l labels this
line up to a nonzero multiplier (i.e., l and cl defines
the same line for an arbitrary c 6= 0). The three com-
ponents of l define the homogeneous coordinates of
this line. Henceforth, we abbreviate the line repre-
sented by vector l simply as “line l”.

Eq. (19) implies that the point u1 is on the line l1

= Fu2. This line is called the epipolar line or simply
the epipolar of point u2. Eq. (19) also implies that
the point u2 is on the line l2 = F>u1, called the
epipolar (line) of point u1.

Thus, eq. (19) states that a point in one image
should be on the epipolar of the corresponding point
in the other image. This requirement is called the
epipolar constraint . If follows that if the fundamental
matrix F is known, one can find point correspondence
easily: given a point u in one image, one only needs
to search the other image along the epipolar of u
(Fig. 5).

3.4 Epipoles

Since the fundamental matrix F has rank 2, it has
a null vector. So does F>, too. Hence, there exist a

vector e1 such that F>e1 = 0 and a vector e2 such
that Fe2 = 0. Identifying e1 and e2 with homo-
geneous coordinates of points in the image, we call
these points the epipoles. Geometrically, the epipole
e1 is the projection of the viewpoint O2 of the second
camera onto the first image, and the epipole e2 is the
projection of the viewpoint O1 of the first camera onto
the second image (Fig. 5).

From eq. (19), we can see that in the first image
the epipolar Fu2 of any point u2 in the second im-
age passes through the epipole e1. Similarly, in the
second image, the epipolar F>u1 of any point u1 in
the first image passes through the epipole e2.

It follows that epipolars of all points in the other
image pass through the epipole, defining a pencil of
lines (Fig. 5). This is easily understood if we note
that the epipolar of a point u2 of the second image is
nothing but the intersection of the first image plane
with the plane passing through u and the viewpoints
O1 and O2 of the two cameras. This plane is called the
epipolar plane of u2 (and hence of the corresponding
point u1).

The line connecting the two viewpoints O1 and O2

is called the baseline. All epipolar planes contain the
baseline, defining a pencil of planes (Fig. 5).

3.5 Three-View Geometry

For M = 3 (three images), we obtain from eq. (18)
the following trilinear constraint :

3∑

i,j,k,l,m=1

εjlpεkmqT
jk
i ui

1u
l
2u

m
3 = 0. (21)

Here, ui
κ denotes the ith component of uκ, and T jk

i

is defined by

T jk
i =

3∑

l,m=1

εilm detP lmjk
1123 , (22)

and called the trifocal tensor .
Given a line l in the image plane, the plane Πl

defined by the viewpoint Oc and the line l is called
the back projection of the line l. Let Πl2 be the back
projection of an arbitrary line l2 passing through u2

in the second image, and Πl3 the back projection of
an arbitrary line l3 passing through u3 in the third
image. Geometrically, eq. (21) describes the require-
ment that the line of sight of u1 in the first image
should meet the intersection of the two planes Πl2 and
Πl3 at a single point (it may be at infinity) (Fig. 6).

Remark 11.Take an arbitrary point v2 ( 6= u2) in the
second image and an arbitrary point v3 (6= u3) in
the third image. Multiplying eq. (21) by vp

2vq
3 and
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Figure 6: Trifocal constraint.

summing it over p and q, we obtain

3∑

i,j,k=1

T jk
i ui

1

( 3∑

l,p=1

εjlpu
l
2v

p
2

)( 3∑
m,q=1

εkmqu
m
3 vq

3

)
= 0.

(23)
If we define lines

l2 = u2 × v2, l3 = u3 × v3, (24)

eq. (23) is rewritten as

3∑

i,j,k=1

T jk
i ui

1l
2
j l

3
k = 0, (25)

which describe the geometric relationship mentioned
earlier.

3.6 Four-View Geometry

For M = 4 (four images), we obtain from eq. (18)
the following quadrilinear constraint :

3∑

i,j,k,l,m,n,p,q=1

εimaεjnbεkpcεlqdQ
ijklum

1 un
2up

3u
q
4 = 0. (26)

Here, Qijkl is a tensor defined by

Qijkl = det P ijkl
1234, (27)

called the quadrifocal tensor .
Geometrically. eq. (26) describes the requirement

that the back projections Πl1 ∼ Πl4 of arbitrary lines
l1 ∼ l4 in each image passing through points u1 ∼ u4,
respectively, should meet at a single point (Fig. 7).

Remark 12.Take an arbitrary point vκ (6= uκ) in the
κth image, κ = 1, 2, 3, 4. Multiplying eq. (26) with
va
1vb

2v
c
3v

d
4 and summing it over a, b, c, and d, we obtain

3∑

i,j,k,l=1

Qijkl
( 3∑

m,a=1

εimaum
1 va

1

)( 3∑

n,b=1

εjnbu
n
2 vb

2

)

( 3∑
p,c=1

εkpcu
p
3v

c
3

)( 3∑

q,d=1

εlqdu
q
4v

d
4

)
= 0. (28)

u1

u2

P

O1

O2
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l 4

u3 u4
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l 1

l 3

O3

Figure 7: Quadrifocal constraint.

If we define lines

l1 = u1 × v1, l2 = u2 × v2,

l3 = u3 × v3, l4 = u4 × v4, (29)

eq. (28) is rewritten as

3∑

i,j,k,l=1

Qijkll1i l
2
j l

3
kl4m = 0, (30)

which describe the geometric relationship mentioned
earlier.

4. 3-D Reconstruction from Images

4.1 Classification of the Problem

Suppose we observe N points Xα, α = 1, ..., N , in
the scene by M cameras having projection matrices
P κ, κ = 1, ..., M . Let uκα the projection of point Xα

in the κth image. For each point and each camera, we
have the relationship described in the form of eq. (9):

uκα ' P κXα. (31)

Given projection images uκα, κ = 1, ..., M , α =
1, ..., N , the task of computing Xα, α = 1, ..., N ,
from them is called 3-D reconstruction or structure
from motion. The problem can be classified into the
following three cases:

(i) The projection matrix P of each camera is
known.

(ii) The intrinsic parameter matrix K of each cam-
era is known (but the motion parameters {R, t}
are not).

(iii) The projection matrix P of each camera is un-
known.

In Case (i), the 3-D coordinates (Xα, Yα, Zα) of
point Xα can be determined from eq. (31) except for
one degree of freedom, which corresponds to the depth
of the point Xα along the line of sight. Hence, if we
have two or more images, we can uniquely determine
the depths of all points. Computing the depths of
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points in the scene in this way is called (multi-camera)
stereo vision.

In Case (ii), the cameras are said to be calibrated .
In this case, we first compute the fundamental ma-
trix F from point correspondences between two im-
ages (the trifocal tensor T jk

i from point correspon-
dences over three images, or the quadrifocal tensor
Qijkl from point correspondences over four images).
Then, we can compute the motion parameters {R, t}
by solving eq. (20) (eq. (22), or eq. (27)). Hence, the
problem reduces to stereo vision of Case (ii).

In Case (iii), the cameras are said to be uncali-
brated . 3-D reconstruction in this case is called self-
calibration or autocalibration.

Remark 13.In Cases (ii) and (iii), the positions of the
points in the scene and the camera motion parameters
are determined only up to an unknown scale factor.
This is because small camera motions relative to a
small object located nearby cannot be distinguished
from large camera motions relative to a large object
located far away, as long as projection images are the
only available information.

Remark 14.For calibrated cameras (Case (ii)), one
can compute the motion parameters from the trifocal
tensor T jk

i over three images or the quadrifocal ten-
sor Qijkl over four images in principle, but in practice
the use of the fundamental matrix F over two images
is sufficient. The solution is obtained up to sign and
mirror image reflection. However, we can select a
unique solution if we impose the constraint that ob-
served points are in front of all the cameras with a
positive depth from each camera [13, 14].

4.2 Self-calibration

In Case (iii) (self-calibration), the camera matrices
{P κ} and the 3-D points {Xα} in eq. (31) are both
unknowns. It is immediately seen from eq. (31) that
the solution is indeterminate if there is no constraint
on the cameras or the 3-D points. In fact, if {Xα}
and {P κ} are a solution, we have another solution

X̃α ' HXα, P̃ κ ' P κH−1 (32)

for an arbitrary nonsingular 4× 4 matrix H.
The first of eqs. (32) can be regarded as applying

a projective transformation (or a homography) H to
the 3-D projective space P3 (Fig. 8). Accordingly,
the points {Xα} and {X̃α} have the same projective
structure. For example, collinear points are mapped
to collinear points, coplanar points are mapped to
coplanar points, and their incidence relationships,
such as “on ...”, “passing through ...” and “meet-
ing at ...”, are preserved. However, metric properties
such as lengths and angles are not preserved. 3-D re-
construction determined up to an arbitrary projective
transformation is called projective reconstruction.

H

X
∼

α

Xα

Figure 8: Projective transformation.

In order to select a correct solution, one needs some
constraint on either the cameras or the points. Se-
lecting a unique solution by imposing such constraint
is termed upgrading of projective reconstruction into
Euclidean (or metric) reconstruction.

Note that eqs. (32) are rewritten as

Xα ' H−1X̃α, P κ ' P̃ κH. (33)

If, for example, we know the true 3-D positions Xα

of five (or more) points in general position among
X̃α, we can uniquely determine the projective trans-
formation H that maps the five points X̃α to their
true positions Xα. Then, we can obtain by the first
of eqs. (33) the Euclidean reconstruction {Xα} from
an arbitrary projective reconstruction {X̃α}.

If no such five points are known, we need to as-
sume some constrains on cameras and find an ap-
propriate projective transformation H such that the
projectively reconstructed camera matrices {P̃ κ} are
mapped by the second of eqs. (33) to camera matrices
{P κ} that satisfy the assumed constraints. Such an
approach is called the stratified reconstruction.

Remark 15.Points in 3-D are said to be in general po-
sition if no three of them are coplanar. If we are given
five (or more) points in general position for which we
only know their relative configuration up to a scale
factor, we can reconstruct the 3-D shape up to posi-
tion, orientation, and scale by arbitrarily normalizing
the position, the orientation, and the scale.

Remark 16.If no 3-D information is given about the
scene, we cannot recover the absolute scale from im-
ages, as pointed out in Remark 13. Hence, all we can
obtain is, strictly speaking, “similarity” reconstruc-
tion rather than “Euclidean” or “metric” reconstruc-
tion. However, the terms “Euclidean” and “metric”
are commonly used to mean “up to similarity”.

4.3 Stratified Reconstruction

Eliminating the rotation R from eq. (11) by using
the identity RR> = I, we obtain for each image

P κdiag(1, 1, 1, 0)P>
κ = ω∗κ, (34)

where diag(a, b, c, ...) denotes the diagonal matrix
with diagonal elements a, b, c, ... in that order, and
we define the 3× 3 matrices ω∗κ by

ω∗κ ≡ KκK>
κ . (35)
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Substituting P κ in the second of eqs. (33) into
eq. (34), we obtain

P̃ κΩ∗
∞P̃

>
κ ' ω∗κ, (36)

where we define the 4× 4 matrix Ω∗
∞ by

Ω∗
∞ ≡ Hdiag(1, 1, 1, 0)H>. (37)

If the intrinsic parameter matrix Kκ is known (i.e.,
the camera is calibrated), we can determine ω∗κ from
eq. (35). Even if ω∗κ is not completely known, we
can obtain constraints on the elements of Ω∗

∞ from
eq. (36) if we have some knowledge about ω∗κ, such
as a particular element being 0 or particular two el-
ements being equal (we are assuming that P̃ κ are
given). If the number M of images is sufficiently large
to give sufficiently many such constraints on Ω∗

∞, we
can solve them for Ω∗

∞.
Frequently used assumptions about the camera

are:

• All the cameras have the same intrinsic parame-
ters.

• The principal point is at known for all the cam-
eras.

• The skew angle θ is 0 for all the cameras.

• The aspect ratio γ is 1 for all the cameras.

For example, if all the cameras have the same in-
trinsic parameters (i.e., one camera is moved to take
multiple pictures), there is only one intrinsic param-
eter matrix K for which ω∗1 = ... = ω∗M = ω∗ (≡
KK>). Hence, eq. (36) gives 5(M − 1) equations of
Ω∗
∞.
If the principal point is known, we can translate

the coordinate system so that u0 = v0 = 0. Then,
the (13) and (23) elements of K in eq. (4) are 0, and
hence the (13) and (23) elements of all ω∗κ = KκK>

κ

are also 0. In this case, eq. (36) gives 2M equations
of Ω∗

∞. If the skew angle is zero in addition, the (12)
element of ω∗κ is also zero, so we obtain 3M equations
of Ω∗

∞. If furthermore the aspect ratio γ is 1, the
(11) element and the (22) element are equal, giving
M additional equations.

If we obtain nine or more such equations, we can
solve them for Ω∗

∞ up to a scale factor. If Ω∗
∞ is

determined, ω∗κ is determined from eq. (36). Then,
the projective transformation H is determined from
eq. (37). The intrinsic parameter matrix Kκ is ob-
tained by solving eq. (35).

Remark 17.From eq. (4), the matrix ω∗κ in eq. (35)
has the form

ω∗κ =




f2
κγ2

κ + s2
κ + u2

0κ fκs2
κ + u0κv0κ u0κ

fκs2
κ + u0κv0κ f2

κ + v2
0κ v0κ

u0κ v0κ 1


 ,

(38)

where we put sκ = fκγκ tan θ. Since this is a 3 × 3
symmetric matrix with six different elements, eq. (36)
gives five constraints for each κ (one degree of free-
dom is lost for the indeterminate scale factor). The
unknown is the 4× 4 symmetric matrix Ω∗

∞ with ten
independent elements, but it has scale indeterminacy.
So, if we move one camera, we need to have 5(M −1)
≥ 9, or M ≥ 3. If the principal point (u0κ, u0κ) is
known but other parameters can vary from frame to
frame, we need to have 2M ≥ 9, or M ≥ 5. If the
skew sκ is 0 in addition, this is relaxed to 3M ≥ 9, or
M ≥ 3. If furthermore the aspect ratio γκ is 1, this
becomes 4M ≥ 9, so we still need M ≥ 3 images.

Remark 18.If we have more equations than the num-
ber of unknowns, inconsistencies arise among these
equations in the presence of noise in the data. Theo-
retically, we can determine the unknowns in a statis-
tically optimal ways [14], but this is too complicated
to carry out. So, a simple least-squares minimiza-
tion is conducted in practice. There is another prob-
lem about the intrinsic constraint on Ω∗

∞: it should
have rank 3 from the definition of eq. (37). If com-
puted by least squares, however, the resulting Ω∗

∞ is
generally rank 4. Since it is difficult to incorporate
the rank constraint in the least-squares computation,
an ad-hoc treatment, such as computing the singular
value decomposition (SVD) of the obtained Ω∗

∞ and
replacing the smallest singular value by 0, is widely
employed.

Remark 19.If Ω∗
∞ is obtained, the projective trans-

formation H is not completely determined by
eq. (37); the fourth column of H is arbitrary. How-
ever, it can be defined arbitrarily as long as the re-
sulting H is nonsingular. This indeterminacy corre-
sponds to the fact that the absolute orientation of the
world coordinate system is indeterminate (recall that
Rκ specifies the orientation of the world coordinate
system relative to the κth camera).

Remark 20.If Ω∗
∞ is obtained, we can determine ω∗κ

up to a scale factor by eq. (36). Then, we can
solve eq. (35) to obtain Kκ, which is an upper tri-
angular matrix. A standard procedure, called the
Cholesky factorization, is well known for decompos-
ing a given positive semi-definite symmetric matrix
into the product of an upper triangular matrix and
its transpose. The indeterminate scale of Kκ is de-
termined so that its (33) element is 1.

Remark 21.The stratified reconstruction approach
was proposed by Faugeras [4] and others. First, the
constant cameras constraint was used by many re-
searchers. Later, Heyden and Åström [8, 9] showed
that Euclidean reconstruction is possible using as few
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constraints as zero skew alone if a sufficient number
of images and point correspondences over them are
available. The dual absolute quadric constraint was
formulated by Triggs [41]. Pollefeys et al. [27] demon-
strated that exact and detailed reconstruction is in-
deed possible by this approach. Since then, various
modifications and simplifications have been devised
for imposing the dual absolute quadric constraint.
Many researchers used nonlinear optimization in one
form or another, but later formulations in terms of
linear computations have been found in many forms;
see [29, 30, 31].

4.4 Dual Absolute Quadric Constraint

Comparing the second of eqs. (16) and eq. (35),
we can see that the matrix ω∗κ is the inverse of ωκ,
which represents the projection, on the κth image,
of the absolute conic Ω∞. Hence, the set of lines l
that satisfy l>ω∗κl = 0 is the envelope of, or the set
of tangent lines to, the imaginary conic defined by
the first of eqs. (16). In projective geometry, this is
called the line pencil of second class dual to the conic
u>ωκu = 0.

Eq. (36) states that the line pencil of second class
represented by ω∗κ is the projection, on the κth im-
age, of the plane pencil of second class represented by
Ω∗
∞, i.e., the set of planes with homogeneous coordi-

nates π that satisfy π>Ω∗
∞π = 0. This is the enve-

lope of, or the set of tangent planes to, the absolute
conic Ω∞ regarded as a degenerate quadric surface
(a 2-D “disk”) (Fig. 9). This envelop is called the
dual absolute quadric. From this projective geomet-
ric interpretation, eq. (36) is called the dual absolute
quadric constraint .

Remark 22.The fact that the constraint for Eu-
clidean reconstruction can be given a projective ge-
ometric interpretation in terms of the dual absolute
quadric is one of the greatest theoretical advances of
3-D reconstruction from images. For this reason, al-
most all papers, articles and books on 3-D reconstruc-
tion now start with theorems of projective geometry
involving the absolute conic. At the cost of this el-
egance of explanation, however, this projective geo-

Π   : X   =0οο
4

O

l  ω   l = 0

⊥

∗

Figure 9: Dual absolute quadric constraint.

metric interpretation makes the reconstruction pro-
cedure incomprehensible to average computer vision
researchers, who tend to shy away from such mathe-
matical sophistication involving imaginary quantities.
In reality, the actual reconstruction procedure can be
described without any reference to projective geom-
etry, as we showed in Section 4.3. It is still being
debated among researchers whether the projective ge-
ometric interpretation helps or prevents people’s un-
derstanding of this method.

4.5 Projective Reconstruction

In order to start stratified reconstruction, we need
an initial projective reconstruction. The most fre-
quently used for it is a method called factorization. If
the projective depth λκα is introduced as in eq. (17),
eq. (31) is rewritten as the following equality:

λκαuκα = P κXα. (39)

Let ũα be the 3M -D vector obtained by vertically
stacking λ1αu1α, λ2αu2α, ..., λMαuMα, and p̃i the
3M -D vector obtained by vertically stacking the ith
columns of P 1, P 2, ..., P M . Then, eq. (39) is ex-
pressed in the form

ũα = X1
αp̃1 + X2

αp̃2 + X3
αp̃3 + X4

αp̃4, (40)

where Xi
α is the ith component of the vector Xα.

Eq. (40) states that the N vectors {ũα} are all con-
strained to be in the 4-D subspace L of R3M spanned
by {p̃1, p̃2, p̃3, p̃4}. This fact is called the subspace
constraint .

We can see that eq. (39) holds if we multiply both
the projective depth λκα and the homogeneous coor-
dinates Xα by a common nonzero constant cα. As a
result, the vector ũα is multiplied by cα. In order to
remove this indeterminacy, we normalize ũα to be a
unit vector: ‖ũα‖ = 1. Then, we obtain the following
iterative procedure:

1. Give initial values for the projective depths
{λκα}.

2. Compute the 3M -D vectors {ũα} and fit a
4-D subspace L to the resulting {ũα} by least
squares.

3. Adjust the projective depths {λκα} so that the
square distance Jα from each ũα to the fitted
subspace L is minimized.

4. Go back to Step 2, and repeat this until the com-
putation converges.

5. Letting an arbitrary orthonormal basis of the
converged subspace L be {p̃i}, determine Xα by
expanding ũα in the form of eq. (40) by least
squares.
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Remark 23.In Step 1, the initial values of the projec-
tive depths {λκα} can be set to 1. If all the cameras
are “affine cameras” as defined in the next section,
it can be shown that a solution such that λκα = 1
exists.

Remark 24.The least-squares solution in Step 2 can
be immediately obtained by solving an eigenvalue
problem. In fact, if we let

C =
N∑

α=1

ũαũ>α , (41)

the subspace L is spanned by the eigenvectors of C
for the largest four (positive) eigenvalues; the rest of
the eigenvalues should vanish if the solution is exact.
Alternatively, we may compute the singular value de-
composition (SVD) in the form

(
ũ1 · · · ũN

)
= UΛV >, (42)

where U is a 3M × 3M orthogonal matrix, V is a
N × N orthogonal matrix. The matrix Λ consists
of 0 elements except along the diagonal, where the
(positive) singular values appear in descending order:
only four are nonzero if the solution is exact. Then,
the basis of the L is simply the first four columns of
U .

Remark 25.Historically, this problem was first solved
by Sturm and Triggs [33] and Triggs [40], using SVD
in analogy with the factorization for affine reconstruc-
tion to be described in the next section, and hence
this method has been known as the method of fac-
torization. However, they did not employ the adjust-
ment procedure of Step 3. Rather, they updated the
initial guess by using the epipolar constraints on pair-
wise images, computing the fundamental matrices of
image pairs in advance. See Deguchi [2] for more de-
tails. The subspace constraint was implicitly used by
Ueshiba and Tomita [42], who updated the projective
depths by numerical search based on the perturba-
tion theorem of SVD. It was Heyden et al. [10] who
explicitly used the subspace constraint and reduced
the problem to eigenvalue problem solving. However,
they considered the space of the vectors constructed
from “all projected points in each image”, rather than
the vectors constructed from “each projected point
in all images”, as in the above formulation. In this
sense, their method is “dual” to our treatment, which
is based on Mahumud and Herbert [24]. Mahumud et
al. [25] also presented an alternative update strategy.

Remark 26.In Step 3, it is easy to see that the square
distance Jα is a quadratic form in {λκα} [24]. So,

the solution that minimizes this subject to the nor-
malization ‖ũα‖2 =

∑M
κ=1 ‖uκα‖2λ2

κα = 1 is directly
obtained by solving a generalized eigenvalue problem
[14].

Remark 27.Iterations of Steps 2–4 are guaranteed to
converge, because the sum of square distances of {ũα}
to the fitted subspace L monotonically decreases due
to the minimization in Step 3. This type of itera-
tions is a special variant of the EM algorithm [3], so
the convergence is, though guaranteed, very slow in
general.

5. 3-D Shape from Affine Cameras

5.1 Affine Cameras

In terms of homogeneous coordinates, perspective
projection can be written as a linear equation in the
form of eq. (9), but this is in appearance only; the
relationship is essentially nonlinear, as can be seen
from eq. (1), which makes the subsequent analysis
very difficult. The analysis is made much simpler if
this is approximated by a linear relationship in the
form (

u
v

)
= Π




Xc

Yc

Zc


 + π, (43)

where Π is a 2 × 3 matrix, π is a 2-D vector, and
(Xc, Yc, Zc) is a point in the scene described with re-
spect to the camera coordinate system. If

1. the object of our interest is localized around the
world coordinate origin t, and

2. the size of the object is small as compared with
‖t‖,

this approximation holds up to reasonable accuracy.
Such an approximate imaging geometry is called an
affine camera.

The elements of the matrix Π and the vector π in
eq. (43) are some functions of the motion parameters
{R, t}. In order that eq. (43) well mimic the perspec-
tive projection of eq. (1), we require the following:

(i) The frontal parallel plane passing through the
world coordinate origin is projected as if by per-
spective projection.

(ii) The camera imaging is symmetric around the Z-
axis.

(iii) The camera imaging does not depend on R.

Requirement (i) corresponds to the assumption
that the object of our interest is small and localized
around the world coordinate origin t. Requirement
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(ii) states that if the scene is rotated around the opti-
cal axis by an angle θ, the resulting image should also
rotate around the image origin by the same angle θ,
a very natural requirement. Requirement (iii) is also
natural, since the orientation of the world coordinate
system can be defined arbitrarily, and such indeter-
minate parameterization should not affect the actual
observation.

It can be shown that in order that Requirements
(i)∼(iii) be satisfied, eq. (43) must have the following
form [19]:

(
u
v

)
=

1
ζ

((
Xc

Yc

)
+ β(tz − Zc)

(
tx
ty

))
. (44)

Here, tx, ty, and tz are the three components of t,

and {ζ, β} are arbitrary functions of
√

t2x + t2y and
tz; function ζ determines the size of the projected
image, while function β describes the deformation of
the projection image as the point moves away from
the plane Zc = tz. Typical examples are the following
three (Fig. 10):

Orthographic projection

ζ = 1, β = 0 (45)

Weak perspective (or scaled orthographic)
projection [39, 26]

ζ =
tz
fc

, β = 0 (46)

Paraperspective projection [26]

ζ =
tz
fc

, β =
1
tz

(47)

Remark 28.The concept of affine camera and its
epipolar geometry were presented by Shapiro et
al. [32]. It was then shown that any affine camera can
be interpreted to be paraperspective projection by ap-
propriately adjusting the scale, the position, and the
orientation of the world coordinate system [1]. This
fact was exploited for object recognition from a single
image [38].

5.2 Affine Space Constraint

If we represent a point in the scene by the vector
Xα of homogeneous coordinates with the fourth com-
ponent 1, eqs. (6) and (43) imply that its projection
onto the κth image is represented by vector uκα with
the third component 1 in the following form:

uκα =
(

ΠκRκ Πκtκ+πκ

0 0 0 1

)
Xα. (48)

Z

(X   , Y   , Z   )
(x, y)

c

c c c

Oc fc

Orthographic projection.

Z

(x, y)

O t zfc c

c

(X   , Y   , Z   )c c c

Weak perspective projection.

Z

(x, y)

O

t

fc c
c

(X   , Y   , Z   )c c c

Paraperspective projection.

Figure 10: Affine camera models.

Here, Πκ and πκ are, respectively, the values of the
matrix Π and the vector π in eq. (43) for the κth
image, while {Rκ, tκ} are the motion parameters of
the κth camera.

Eq. (48) shows that an affine camera is a special
case of the general projection in the form of eq. (39)
with the conditions:

• the third row of the projection matrix P κ is
(0 0 0 1),

• the projective depths λκα are all 1.

It follows that we have the following relationship cor-
responding to eq. (40):

ũα = Xαp̃1 + Yαp̃2 + Zαp̃3 + p̃4. (49)

As in Section 4.5, ũα is a vector, which we simply call
the trajectory , obtained by vertically stacking u1α,
u2α, ..., uMα, while p̃i is a vector, which we call the
motion vectors, obtained by vertically stacking the
ith columns of the matrix on the right-hand side of
eq. (48) for κ = 1, ..., M . However, every third com-
ponent of the vector equation (49) means simply 1
= 1, so we can remove them. Then, all the trajecto-
ries {ũα} and the motion vectors {p̃i} become 2M -D
vectors.

Eq. (49) states that all the trajectories {ũα} are
constrained to be in the 3-D affine space A of R2M

passing through p̃4 and spanned by the motion vec-
tors {p̃1, p̃2, p̃3}. This fact is called the affine space
constraint .

Remark 29.The affine space constraint is not only
a basis for 3-D reconstruction from affine camera
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images but also the core principle of multibody mo-
tion segmentation from images. This is because if
we observe multiple objects that are moving inde-
pendently in the scene, the affine space constraint
should hold for each rigid motion. Hence, if we
track feature points that belong to multiple objects,
classifying them into different motions is equivalent
to classifying their trajectories, regarded as 2M -D
vectors, into different affine spaces in R2M . See
[15, 16, 17, 34, 35, 36, 37] for actual applications.

5.3 Metric Constraint

3-D reconstruction based on the affine space con-
straint is called the factorization method . Let p̃4

be the centroid of the trajectories {ũα}, and fit to
them by least squares a 3-D affine space A that
passes through p̃4. If we let {q1, q2, q3} an arbi-
trary orthonormal basis that span A, we can compute
(Xα, Yα, Zα) by identifying {q1, q2, q3} with {p̃1, p̃2,
p̃3} and expanding each ũα in the form of eq. (49) by
least squares, just as we did in Section 4.5.

However, we can choose as {p̃1, p̃2, p̃3} any other
(not necessarily orthonormal) basis of the fitted space
A. This means that the reconstructed shape is related
to the true shape by an affine transformation. Such
a reconstruction is called affine reconstruction.

In order to upgrade the solution to Euclidean, we
need to rectify the basis correctly in the form

p̃i =
3∑

j=1

Ajiqj . (50)

The rectifying transformation matrix A = (Aij) is
determined by the condition that each p̃i consists of
coordinates of points in the scene viewed by an affine
camera in the form of eq. (48). This condition, called
the metric constraint , is obtained, as in the case of
the dual absolute quadric constraint, by eliminating
Rκ from the projection relation of eq. (48) by using
the identity RκR>

κ = I. If we let

T = AA>, (51)

the metric constraint is written in the following form
[19]:

Q†>
κ TQ†

κ = ΠκΠ>
κ . (52)

Let Q be the 2M × 3 matrix with columns q1, q2,
and q3 in that order. The matrix Q†

κ in eq. (52) is a
3× 2 matrix given by

Q†
κ =

(
q†κ(1) q†κ(2)

)
, (53)

where q†κ(1) and q†κ(2) are the (2κ−1)th and the 2κth

columns of Q>, respectively.

As in the stratified reconstruction, we can obtain
from eq. (52) equations of T by using some knowl-
edge about the camera model, i.e., some relationships
among the elements of the matrix ΠκΠ>

κ on the right-
hand side. Then, we can obtain the rectifying matrix
A by decomposing the computed T in the form of
eq. (51).

See [18] for the computational details of 3-D re-
construction based on the typical camera models of
eqs. (45)∼(47). For the method directly using the
general form of eq. (44), see [19].

Remark 30.As in the stratified reconstruction, the
basis of the affine space A that optimally fits the tra-
jectories {ũα} and passes through their centroid p̃4

squares is given by the eigenvectors of the matrix

C =
N∑

α=1

(ũα − p̃4)(ũα − p̃4)
>, (54)

for the largest three (positive) eigenvalues; the rest of
the eigenvalues should vanish if the solution is exact.
Alternatively, we may compute the singular value de-
composition (SVD) in the form

(
ũ1 − p̃4 · · · ũN − p̃4

)
= UΛV >, (55)

where U is a 2M × 2M orthogonal matrix, V is a
N × N orthogonal matrix. The matrix Λ consists
of 0 elements except along the diagonal, where the
(positive) singular values appear in descending order:
only four are nonzero if the solution is exact. Then,
the basis of the A is given by the first three columns
U .

Remark 31.If we let ũ′α = ũ′α − p̃4, eq. (49) for α =
1, ..., N can be rearranged in the following form:

(
ũ′1 · · · ũ′N

)
=

(
p̃1 p̃2 p̃3

)



X1 Y1 Z1

...
...

...
XN YN ZN


 .

(56)
Hence, computing the solution {Xα, Yα, Zα} can be
viewed as factorizing the measurement (or observa-
tion) matrix W =

(
ũ′1 · · · ũ′N

)
into the product

of two matrices: the first describes the motion; the
second the shape. This is the origin of the term fac-
torization, named by Tomasi and Kanade [39], and
almost all subsequent papers [23, 26] on this method
adopt the above matrix factorization formulation: the
basis vectors {qi} are computed as the first three
columns of the matrix U obtained by the SVD in
the form of eq. (55), and the rectifying matrix A =
(Aij) in eq. (50) is determined from the metric con-
straint of eq. (52). This convention has spread the
misconception that the factorization method is the
method of “matrix factorization by SVD”. Because
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of this misconception, the projective reconstruction
procedure described in Section 4.5 is also called the
“factorization method”.

Remark 32.Since the factorization method gives the
solution by linear computation alone without any it-
erative search, it is widely used for many applications,
such as object recognition and classification, which
do not require very high accuracy of the 3-D shape.
Also, this method can be used to obtain a good initial
guess of projective reconstruction for the stratified re-
construction.

Remark 33.When we say that we obtain affine recon-
struction if the metric constraint is not imposed, we
are assuming that the input images are taken by affine
cameras. However, an affine camera is a hypothetical
concept; it only approximates existing cameras, which
are modeled as perspective projection. Hence, if we
use perspectively projected images as input, the re-
sulting shape is not exactly affine reconstruction and
is not exactly Euclidean even if the metric constraint
is imposed.

Remark 34.The 3-D shape reconstructed by the fac-
torization method is not unique. First, the absolute
scale is indeterminate, which is unavoidable for any
methods based on images alone (see Remark 13). The
orientation of the world coordinate system is inde-
terminate, too, because it can be arbitrarily defined
in the scene. In addition, mirror image ambiguity
remains. The scale indeterminacy is evident from
eq. (49): multiplying {p̃1, p̃2, p̃3} by a nonzero con-
stant c gives rise to the same effect as dividing {Xα,
Yα, Zα} by c. The orientation and mirror image am-
biguity arises from the fact that the rectifying matrix
A is determined by eq. (51), which can be rewrit-
ten as T = (±AR)(±AR)> for an arbitrary rotation
matrix R. The indeterminacy of the rotation R cor-
responds to the orientation ambiguity; the indeter-
minacy of the sign corresponds to the mirror image
ambiguity.

6. Concluding Remarks

This article has summarized recent advancements
of the theories and techniques for 3-D reconstruction
from multiple images. We started with the descrip-
tion of the camera imaging geometry as perspective
projection in terms of homogeneous coordinates. We
defined the intrinsic and extrinsic (motion) parame-
ters of the camera by introducing the camera coordi-
nate system and the world coordinate system.

It was shown that the camera imaging is regarded
as a mapping from the 3-D projective space P3 onto
the 2-D projective space P2 and that the absolute

conic is invariant to camera motions, providing pro-
jective geometric interpretations to camera calibra-
tion procedures.

Next, we described the epipolar geometry for two,
three, and four cameras, introducing such concepts
as the fundamental matrix, epipolars, epipoles, the
trifocal tensor, and the quadrifocal tensor.

Then, we described the self-calibration technique
based on the stratified reconstruction approach, using
the absolute dual quadric constraint. We showed that
an elegant projective geometric interpretation can be
given but that it is not essential or even necessary for
actually doing 3-D reconstruction computations. We
also described the procedure for computing a projec-
tive reconstruction, which is necessary as an initial
value for the stratified approach, by the factorization
method based on the subspace constraint.

Finally, we gave the definition of the affine camera
model and a procedure for 3-D reconstruction based
on it. We discussed possible forms of the affine cam-
era, described the affine space constraint, and intro-
duced the metric constraint that is necessary for Eu-
clidean reconstruction.

In this article, we have described various types of
3-D reconstruction techniques, separately treated in
the past, in a single framework, using unified disci-
plines and notations.
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