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We present an alternative approach to what we call the “standard optimization”, which minimizes
a cost function by searching a parameter space. Instead, the input is “orthogonally projected” in
the joint input space onto the manifold defined by the “consistency constraint”, which demands
that any minimal subset of observations produce the same result. This approach avoids many
difficulties encountered in the standard optimization. As typical examples, we apply it to line
fitting and multiview triangulation. The latter produces a new algorithm far more efficient than
existing methods. We also discuss optimality of our approach.

1. INTRODUCTION

For extracting a geometric structure from noisy
images, numerical optimization is vital. A widely ac-
cepted approach is the standard optimization, min-
imizing a cost function by searching a parameter
space. In this paper, we present an alternative ap-
proach of orthogonally projecting the input onto the
manifold in the joint input space defined by the con-
sistency constraint , which demands that any minimal
subset of observations produce the same result. We
show how this approach avoids many difficulties en-
countered in the standard optimization.

We first describe the standard optimization in
Sec. 2 and summarize existing global optimization
techniques in Sec. 3. We describe our orthogonal pro-
jection approach in Sec. 4 and apply it to line fitting
in Sec. 5. Then, we apply our approach to multiview
triangulation in Sec. 6 and demonstrate by experi-
ments in Sec. 7 that the resulting algorithm is far
more efficient than existing methods. In Sec. 8, we
conclude and discuss optimality of our approach.

———————
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2. STANDARD OPTIMIZATION

Given M observations xκ, κ = 0, ..., M − 1, we
want to estimate a parameter θ that specifies the
structure that should exist in the input images. The

∗E-mail kanatani@suri.cs.okayama-u.ac.jp

estimation is based on the knowledge that the data
xκ should ideally satisfy some constraint parameter-
ized by θ. However, it is violated in the presence of
noise. Let E(θ;x0, ...,xM−1) measure the cost (also
called “energy”) of this violation. We compute the
value of θ that minimizes E. A widely adopted cost
is defined by expressing the ideal value of xκ, given
θ, in the form x̄κ(θ) and minimizing

E =
M−1∑
κ=0

‖x̄κ(θ) − xκ‖2. (1)

This includes what is known as bundle adjustment ,
where Eq. (1) is called the reprojection error.

3. GLOBAL OPTIMIZATION

The major problem of the standard optimization
as defined above is the difficulty of finding an absolute
minimum of the cost E. The parameter space of θ
is usually infinitely large and high-dimensional. Well
known search techniques include Newton iterations
and conjugate gradient search. For bundle adjust-
ment, the Leverberg-Marquardt method is the stan-
dard tool. However, such gradient-based search may
fall into local minima. In recent years, intensive ef-
forts have been made to minimize E globally [1].

Algebraic methods. We let the derivatives of E
with respect to the parameters be zero, compute
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all solutions exhaustively, and choose the one for
which E is the smallest. In many vision appli-
cations, we obtain a set of algebraic equations,
which reduces, via the Gröbner basis, to a single
polynomial. However, its degree is usually very
high, and numerical evaluation is unstable and
inefficient.

Branch and bound. Introducing a function that
gives a lower bound of E locally, we partition
the parameter space into small cells, evaluating
a representative value and a lower bound in each
cell. Those cells for which the lower bound is
larger than the values already evaluated in other
cells are discarded; the remaining cells are recur-
sively subdivided. However, the lower bounding
process is often complicated, requiring a large
amount of computation.

Matrix inequality optimization. Changing vari-
ables, we reduce the problem to polynomial min-
imization subject to matrix inequalities [7]. This
has the form of SDP (semidefinite program),
which can be solved by a Matlab tool called
GloptiPoly. The resulting solution is approxi-
mate, but it is theoretically proved to approach
the true solution as the number of variables
and the size of the accompanying matrices are
increased. A complicate analysis and a large
amount of computation are necessary if we want
to reach a high accuracy.

L∞ optimization. Minimizing Eq. (1) is regarded
as maximum likelihood (ML) if the noise is in-
dependent and identical Gaussian, which is ap-
propriate in many applications. However, this
makes global optimization difficult, so we replace
the L2 norm in Eq. (1) by L∞ [2, 5, 9]. Then,
the cost E usually becomes quasi-convex. We
gradually increase the threshold from 0 (or using
binary search) and check if there exists a value of
E above the threshold. This problem usually has
the form of SOCP (second-order cone program),
which can be solved by a Matlab tool called Se-
DuMi.

All these approaches need a complicated analysis
and a large amount of computation, requiring various
optimization tools, whose performance is not always
guaranteed.

4. ORTHOGONAL PROJECTION

We now present a complementary approach: we do
not search the parameter space; we do not minimize
any function. We directly reach an optimal solution
by imposing constraints on the data. Our approach
is motivated by the following observations:

1. If there were no noise, the parameter θ could im-
mediately be computed. In fact, algebraic proce-
dures have been intensively studied for comput-
ing geometric properties from exact image data
[4].

2. There exists a minimum number of (nondegener-
ate) observations (call it a minimal set) that can
uniquely determine the value of θ. For example,
a line is uniquely determined by two points, an
ellipse by four points, and a fundamental matrix
by seven pairs of corresponding points.

3. Given redundant observations, we can choose
from among them any minimal set for determin-
ing θ. In the presence of noise, however, the so-
lution depends on which minimal set is chosen.

The standard optimization overcomes this depen-
dence on the choice of the minimal set by minimizing
a cost E over the parameter space of θ. Our alterna-
tive does not introduce any cost but minimally cor-
rects the observations x0, ..., xM−1 into x̂0, ..., x̂M−1

to enforce the condition, which we call the consistency
constraint , that any choice of the minimal set result
in the same solution. Once this constraint is satis-
fied, we can choose any minimal set to determine θ.
By minimally , we mean that the correction is done
in such a way that

E =
M−1∑
κ=0

‖x̂κ − xκ‖2, (2)

which we call the reprojection error , is the smallest.
Evidently, the solution is the same as the standard
optimization using the cost of Eq. (1).

Our approach can be geometrically interpreted as
follows. Let

F (x0, ...,xM−1) = 0, (3)

be the consistency constraint, which may be a set
of equations. This defines a manifold S in the joint
space of x0, ..., xM−1. Our goal is to find a point p̂
= x̂0 ⊕ · · · ⊕ x̂M−1 ∈ S closest to the observation p
= x0 ⊕ · · · ⊕ xM−1; the square distance |pp̂|2 is the
reprojection error in Eq. (2). Thus, the solution is
obtained by orthogonally projecting p onto S (Fig. 1).

The standard optimization using Eq. (1) can be
interpreted as follows. Introducing the parameter θ
is equivalent to parameterizing S. We search the in-
side of S to find a location (i.e., its “coordinates” θ)
closest to p. Gradient-based search may fall into local
minima, but finding a global minimum is difficult, as
described earlier.

5. LINE FITTING

We now apply our approach to a simplest exam-
ple: fitting a line to points. Although this does not
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Figure 1: Orthogonal projection of p = x0 ⊕ · · · ⊕ xM−1

onto the manifold S gives the minimum reprojection er-
ror Emin. The standard optimization starts from some
point in S and searches the “inside” of S, where the con-
sistency constraint is always satisfied, but may stop at a
local minimum Elocal min.

produce practical benefits, since the problem is im-
mediately solved by the standard optimization, this
will illustrate how our approach works. Given M
points (x0, y0), ..., (xM−1, yM−1), the standard op-
timization goes like this. We first parameterize the
line, say Ax + By + C = 0, the parameter being θ
= (A, B,C)>. The distance dκ of point (xκ, yκ) from
this line is

dκ =
|Axκ + Byκ + C|√

A2 + B2
. (4)

We minimize the sum of square distances:

E(A,B,C) =
M−1∑
κ=0

(Axκ + Byκ + C)2

A2 + B2
. (5)

The solution is analytically obtained by solving a 2×2
eigenvalue problem. Our approach is different. We
represent the point (xκ, yκ) by the 3-D vector

xκ =

 xκ/f0

yκ/f0

1

 , (6)

where f0 is a scale normalization constant of approx-
imately the image size1. Three points xκ, xλ, and
xµ are collinear if and only if their scalar triple prod-
uct |xκ,xλ, xµ| is zero. Hence, the consistency (or
collinearity in this case) constraint is

|xκ, xκ+1,xκ+2| = 0, (7)

for κ = 0, ..., M − 3. These M − 2 equations define
an (M + 2)-D manifold S in the 2M -D joint space
of (x0, y0, ... xM−1, yM−1). The dimension of S
corresponds to the two degrees of freedom of the line
to be fitted and the positions of the M points on
it. We now orthogonally project the observation p =
x0 ⊕ · · · ⊕ xM−1, which does not necessarily satisfy

1This is merely for making the three components to have the
same order of magnitude for numerical stability. Theoretically,
it can be set to any value, e.g., 1.

Eq. (7), onto S. Note that we neither introduce any
parameterization to the line to be fitted nor define
any cost function to minimize.

Let p̂ = x̂0⊕· · ·⊕ x̂M−1 be the desired projection,
and let x̂κ = xκ −∆xκ. Substituting x̂κ into Eq. (7)
and expanding it to a first order in ∆xκ, we obtain

(∆xκ, xκ+1 × xκ+2) + (∆xκ+1, xκ+2 × xκ)
+(∆xκ+2, xκ × xκ+1) = |xκ, xκ+1,xκ+2|, (8)

where and throughout this paper we denote by (a, b)
the inner product of a and b. Since Eq. (8) is linear in
∆xκ, the M − 2 equations in this form, when viewed
as equations of free variables x̂κ through ∆xκ = xκ−
x̂κ, define a plane2 Π that approximates the manifold
S. We now compute a projection direction ∆x0⊕· · ·⊕
∆xM−1 orthogonal to Π. This is obtained in the form

∆xκ = λκP k(xκ+1×xκ+2)+λκ−1P k(xκ+1×xκ−1)
+λκ−2P k(xκ−2 × xκ−1), (9)

where λκ are unknown parameters and P k ≡
diag(1, 1, 0) and (see Appendix A.1 for the deriva-
tion). We adjust the parameters λκ so that the pro-
jection reaches the plane Π. Substitution of Eq. (9)
into Eq. (8) results in simultaneous linear equations
in λκ in the form

Aκλκ−2+Bκλκ−1+Cκλκ+Dκλκ+1+Eκλκ+2 =Fκ, (10)

where

Aκ = (P k(xκ−2 × xκ−1), P k(xκ+1 × xκ+2)),
Bκ = (P k(xκ+1 × xκ−1), P k(xκ+1 × xκ+2))

+(P k(xκ−1 × xκ), P k(xκ+2 × xκ)),
Cκ = ‖P k(xκ+1 × xκ+2)‖2 + ‖P k(xκ+2 × xκ)‖2

+‖P k(xκ × xκ+1)‖2,

Dκ = (P k(xκ+2 × xκ+3), P k(xκ+2 × xκ))
+(P k(xκ+3 × xκ+1), P k(xκ × xκ+1)),

Eκ = (P k(xκ+3 × xκ+4), P k(xκ × xκ+1)),
Fκ = |xκ, xκ+1, xκ+2|. (11)

Solving Eq. (10) and substituting the resulting λκ

into Eq. (9), we can determine x̂κ = xκ −∆xκ. The
resulting projection p̂ = x̂0⊕· · ·⊕x̂M−1 is orthogonal
to the plane Π by construction but not necessarily to
S itself. So, we correct p̂ to ˆ̂p = ˆ̂x0 ⊕ · · · ⊕ ˆ̂xM−1 so
that ˆ̂p ∈ S. Letting ˆ̂xκ = x̂κ − ∆x̂κ, we substitute
ˆ̂xκ for xκ in Eq. (7). The first order expansion at x̂κ

in the higher order term ∆x̂κ is

(∆x̂κ, x̂κ+1 × x̂κ+2) + (∆x̂κ+1, x̂κ+2 × x̂κ)
+(∆x̂κ+2, x̂κ × x̂κ+1) = |x̂κ, x̂κ+1, x̂κ+2|. (12)

2Strictly speaking, this is an (M + 2)-D affine space, but
we call this a “plane” for short.

34



Kenichi KANATANI et al. MEM.FAC.ENG.OKA.UNI. Vol. 44

S

Π

Π

p

p

p

p∆

Figure 2: Successive orthogonal projection onto S. The
orthogonal projection from p to Π minimizes ‖p − p̂‖2,

while the orthogonal projection from p to Π̂ minimizes

‖p−ˆ̂p‖2 = ‖p−p̂+∆p̂‖2, where ∆p̂ = ∆x̂0⊕· · ·⊕∆x̂M−1.

The M−2 equations in this form define a plane Π̂ that
approximates S better than Π. We compute a new or-
thogonal projection to it. Note that the projection al-
ways starts from the observation p = x0⊕· · ·⊕xM−1,
not from p̂ (Fig. 2). The new projection direction is
given by

∆x̂κ = λκP k(x̂κ+1×x̂κ+2)+λκ−1P k(x̂κ+1×x̂κ−1)
+λκ−2P k(x̂κ−2 × x̂κ−1) − x̃κ, (13)

where we define

x̃κ = xκ − x̂κ. (14)

(See Appendix A.2 for the derivation.) The param-
eters λκ are determined so that that the projection
reaches the plane Π̂. Substitution of Eq. (13) into
Eq. (12) results in simultaneous linear equations in
λκ in the same form as Eq. (10) except that Aκ, ...,
Fκ are now replaced by

Aκ = (P k(x̂κ−2 × x̂κ−1), P k(x̂κ+1 × x̂κ+2)),
Bκ = (P k(x̂κ+1 × x̂κ−1),P k(x̂κ+1 × x̂κ+2))

+(P k(x̂κ−1 × x̂κ), P k(x̂κ+2 × x̂κ)),
Cκ = ‖P k(x̂κ+1 × x̂κ+2)‖2 + ‖P k(x̂κ+2 × x̂κ)‖2

+‖P k(x̂κ × x̂κ+1)‖2,

Dκ = (P k(x̂κ+2 × x̂κ+3),P k(x̂κ+2 × x̂κ))
+(P k(x̂κ+3 × x̂κ+1), P k(x̂κ × x̂κ+1)),

Eκ = (P k(x̂κ+3 × x̂κ+4),P k(x̂κ × x̂κ+1)),
Fκ = |x̂κ, x̂κ+1, x̂κ+2| + |x̃κ, x̂κ+1, x̂κ+2|

+|x̂κ, x̃κ+1, x̂κ+2| + |x̂κ, x̂κ+1, x̃κ+2|. (15)

Solving Eq. (10) and substituting the resulting λκ in
Eq. (13), we can determine ˆ̂xκ = xκ −∆x̂κ. The re-
sulting projection is orthogonal to Π̂ by construction
but still may not be orthogonal to S itself. So, we let
x̂κ ← ˆ̂xκ and repeat this correction. In the end, ∆x̂κ

= 0 and p̂ = ˆ̂p ∈ S. Because the plane Π̂ is a first
order expansion of S at p̂ ∈ S, it is tangent to S at
p̂. Since pp̂ is orthogonal to Π̂, it is orthogonal to S
itself. Our algorithm is summarized as follows:

Input: Data points xκ, κ = 0, ..., M − 1.

Output: Corrected positions x̂κ, κ = 0, ..., M − 1,
and the reprojection error E.

Procedure:

1. Let E0 = ∞, x̂κ = xκ, x̃κ = 0, κ = 0, ..., M −1,
where ∞ is a sufficiently large number.

2. Compute Aκ, ..., Fκ, κ = 0, ..., M − 3, by
Eqs. (14).

3. Solve the following set of linear equations in λκ,
κ = 0, ..., M − 3:

C0D0E0

B1C1D1E1

A2B2C2D2 E2

A3B3C3 D3 E3

. . . . . . . . . . . .

AM−3BM−3CM−3





λ0

λ1

λ2

λ3

...

λM−3



=



F0

F1

F2

F3

...

FM−3


. (16)

4. Update x̃κ and x̂κ, κ = 0, ..., M − 1, as follows:

x̃κ ←λκP k(x̂κ+1×x̂κ+2)+λκ−1P k(x̂κ+1×x̂κ−1)
+λκ−2P k(x̂κ−2×x̂κ−1),

x̂κ ←xκ − x̃κ. (17)

5. Compute the reprojection error E as follows:

E =
M−1∑
κ=0

‖x̃κ‖2. (18)

6. If |E − E0| ≈ 0, return E and x̂κ, κ = 0, ...,
M − 1, and stop. Else, let E0 ← E, and go back
to Step 2.

Once we have imposed the consistency constraint,
we can pick out any two (distinct) points and compute
the line connecting them.

6. TRIANGULATION FROM MULTIPLE
VIEWS

The above line fitting algorithm does not produce
practical benefits, but we can derive, using the same
principle, a new algorithm for triangulation from mul-
tiple views.
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6.1Problem

Suppose we have M cameras. We assume that
their intrinsic and extrinsic parameters are known.
Let (xκ, yκ) be the image of a 3-D point (X,Y, Z)
in the κth view. Our task is to compute (X,Y, Z)
from (xκ, yκ), κ = 0, ..., M − 1. If (xκ, yκ) are ex-
act, we can pick out any two (nondegenerate) views
and compute (X,Y, Z) by elementary triangulation.
If (xκ, yκ) are not exact, however, the rays, call them
the lines of sight , starting from the projection cen-
ters and passing through the points in the images, do
not meet at a single point in the scene. Traditionally,
this has been dealt with by the standard optimiza-
tion [1]: we search the 3-D space for θ = (X,Y, Z)>

that minimizes the reprojection error of Eq. (1). Our
approach is as follows. As line fitting, we represent
each point (xκ, yκ) by the 3-D vector in Eq. (6). The
consistency constraint we adopt is

εljpεmkqT
lm
(κ)ix

i
(κ)x

j
(κ+1)x

k
(κ+2) = 0, (19)

for κ = 0, ..., M −3, where T lm
(κ)i is the trifocal tensor

for the κth, the (κ + 1)st, and the (κ + 2)nd views;
εijk is the permutation symbol. We use Einstein’s
convention for omitting the summation symbol over
repeated upper and lower indices. Equation (19) is
known as the trilinear constraint , which provides a
necessary and sufficient condition that the lines of
sight from the three cameras meet at a single point
in the scene [4]. The M − 2 equations in Eq. (19)
guarantee that the M lines of sight have a common
intersection.

The M −2 equations in Eq. (19) define a manifold
S in the joint 2M -D space of (x0, y0, ..., xM−1, yM−1).
Our task is to orthogonally project the observation p
= x0 ⊕ · · · ⊕xM−1 onto S. Let p̂ = x̂0 ⊕ · · · ⊕ x̂M−1

be the desired projection, and let x̂κ = xκ − ∆xκ.
Replacing xκ in Eq. (19) by x̂κ and expanding it to a
first order in ∆xκ, we obtain (the summation symbol
is omitted by Einstein’s convention)

εljpεmkqT
lm
(κ)i

(
∆xi

κxj
κ+1x

k
κ+2 + xi

κ∆xj
κ+1x

k
κ+2

)
+xi

κxj
κ+1∆xk

κ+2 = εljpεmkqT
lm
(κ)ix

i
κxj

κ+1x
k
κ+2. (20)

The resulting 9(M − 2) equations for p, q = 1, 2, 3
and κ = 0, ..., M−3, when viewed as equations of free
variables x̂κ through ∆xκ = xκ − x̂κ, define a set Π
of 9(M − 2) hyperplanes in 2M -D that approximate
S. They would intersect at a 3-D affine space if p =
x0 ⊕ · · · ⊕ xM−1 ∈ S. Otherwise, they may not have
a common intersection.

We now determine a projection direction ∆x0 ⊕
· · · ⊕∆xM−1 orthogonal to all the hyperplanes in Π.
Such a direction may not exist, but we proceed as if
there is; the nonexistence condition emerges later. If
there are such ∆xκ, they should have form

∆xs
κ =P i

(κ)pqλ
pq
(κ)+Qi

(κ)pqλ
pq
(κ−1)+Ri

(κ)pqλ
pq
(κ−2), (21)

where λpq
(κ) are unknown parameters (Appendix A.3

for the derivation). Here, we define

P s
(κ)pq = εljpεmkqT

lm
(κ)iP

si
k xj

κ+1x
k
κ+2,

Qs
(κ)pq = εljpεmkqT

lm
(κ−1)ix

i
κ−1P

sj
k xk

κ+1,

Rs
(κ)pq = εljpεmkqT

lm
(κ−2)ix

i
κ−2x

j
κ−1P

sk
k . (22)

The symbol P ij
k denotes the (ij) element of the matrix

P k (= diag(1, 1, 0)). We adjust the parameters λpq
(κ)

so that the projection p̂ = x̂0 ⊕ · · · ⊕ x̂M−1 be on all
the hyperplanes in Π. Such a solution may not exist,
but we proceed as if there is. Substituting Eq. (21)
into Eq. (20), we obtain

A(κ)pqrsλ
rs
(κ−2) + B(κ)pqrsλ

rs
(κ−1) + C(κ)pqrsλ

rs
(κ)

+D(κ)pqrsλ
rs
(κ+1) + E(κ)pqrsλ

rs
(κ+2) = F(κ)pq, (23)

where we define

A(κ)pqrs = εljpεmkqT
lm
(κ)iR

i
(κ)rsx

j
κ+1x

k
κ+2,

B(κ)pqrs = εljpεmkqT
lm
(κ)i

(
Qi

(κ)rsx
j
κ+1x

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2

)
,

C(κ)pqrs = εljpεmkqT
lm
(κ)i

(
P i

(κ)rsx
j
κ+1x

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2 + xi

κQj
(κ+1)rsx

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2 + xi

κxj
κ+1R

k
(κ+2)rs

)
,

D(κ)pqrs = εljpεmkqT
lm
(κ)i

(
xi

κP j
(κ+1)rsx

k
κ+2

+ xi
κRj

(κ+1)rsx
k
κ+2 + xi

κxj
κ+1Q

k
(κ+2)rs

)
,

E(κ)pqrs = εljpεmkqT
lm
(κ)ix

i
κxj

κ+1P
k
(κ+2)rs,

F(κ)pq = εljpεmkqT
lm
(κ)ix

i
κxj

κ+1x
k
κ+2. (24)

Equation (23) provides 9(M−2) linear equations (r, s
= 1, 2, 3, κ = 0, ..., M −3) in the 9(M −2) unknowns
λpq

(κ) (p, q = 1, 2, 3, κ = 0, ..., M − 3). However,
Eq. (23) is derived on the assumption that there is
a solution, but it has a unique solution only when p
= x0 ⊕ · · · ⊕ xM−1 ∈ S; the solvability condition is
gradually violated as p departs from S. We discuss
how to cope with this shortly. Once λpq

(κ) is obtained,
we can determine ∆xκ by Eq. (21) and compute x̂κ

= xκ − ∆xκ.
Now, we go the second round. Replacing xκ in

Eq. (19) by ˆ̂xκ = x̂κ − ∆x̂κ and expanding it to a
first order in ∆x̂κ, we obtain

εljpεmkqT
lm
(κ)i

(
∆x̂i

κx̂j
κ+1x̂

k
κ+2 + x̂i

κ∆x̂j
κ+1x̂

k
κ+2

+x̂i
κx̂j

κ+1∆x̂k
κ+2

)
=εljpεmkqT

lm
(κ)ix̂

i
κx̂j

κ+1x̂
k
κ+2, (25)

which defines a set Π̂ of hyperplanes that should
approximate S better than those in Π, since p̂ =
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x̂0 ⊕ · · · ⊕ x̂M−1 is expected to be closer to S than
p = x0 ⊕ · · · ⊕ xM−1. The hyperplanes in Π̂ would
intersect at a 3-D affine space if p̂ ∈ S. We determine
a new projection direction ∆x̂0 ⊕ · · · ⊕ ∆x̂M−1 or-
thogonal to all the hyperplanes in Π̂, although such a
direction may not exist. If there are such ∆xκ, they
should have the form

∆x̂s
κ =

3∑
p,q=1

P̂ s
(κ)pqλ

pq
(κ) +

3∑
p,q=1

Q̂s
(κ)pqλ

pq
(κ−1)

+
3∑

p,q=1

R̂s
(κ)pqλ

pq
(κ−2) − x̃i

κ, (26)

where we define

x̃κ = xκ − x̂κ, (27)

and

P̂ s
(κ)pq = εljpεmkqT

lm
(κ)iP

si
k x̂j

κ+1x̂
k
κ+2,

Q̂s
(κ)pq = εljpεmkqT

lm
(κ−1)ix̂

i
κ−1P

sj
k x̂k

κ+1,

R̂s
(κ)pq = εljpεmkqT

lm
(κ−2)ix̂

i
κ−2x̂

j
κ−1P

sk
k . (28)

(See Appendix A.4 for the derivation.) We adjust the
parameters λpq

(κ) so that the resulting projection be

on all the hyperplanes in Π̂, although such a solution
may not exist. Substituting Eq. (26) into Eq. (25),
we obtain simultaneous linear equations in λpq

(κ) in the
same form as Eq. (23) except that A(κ)pqrs, ..., F(κ)pq

are now replaced by

A(κ)pqrs = εljpεmkqT
lm
(κ)iR̂

i
(κ)rsx̂

j
κ+1x̂

k
κ+2,

B(κ)pqrs = εljpεmkqT
lm
(κ)i

(
Q̂i

(κ)rsx̂
j
κ+1x̂

k
κ+2

+ x̂i
κR̂j

(κ+1)rsx̂
k
κ+2

)
,

C(κ)pqrs = εljpεmkqT
lm
(κ)i

(
P̂ i

(κ)rsx̂
j
κ+1x̂

k
κ+2

+ x̂i
κQ̂j

(κ+1)rsx̂
k
κ+2

+x̂i
κx̂j

κ+1R̂
k
(κ+2)rs

)
,

D(κ)pqrs = εljpεmkqT
lm
(κ)i

(
x̂i

κP̂ j
(κ+1)rsx̂

k
κ+2

+ x̂i
κx̂j

κ+1Q̂
k
(κ+2)rs

)
,

E(κ)pqrs = εljpεmkqT
lm
(κ)ix̂

i
κx̂j

κ+1P̂
k
(κ+2)rs,

F(κ)pq = εljpεmkqT
lm
(κ)i

(
x̂i

κx̂j
κ+1x̂

k
κ+2

+x̃i
κx̂j

κ+1x̂
k
κ+2+x̂i

κx̃j
κ+1x̂

k
κ+2+x̂i

κx̂j
κ+1x̃

k
κ+2

)
. (29)

Solving Eqs. (23) and substituting the resulting λpq
(κ)

in Eq. (26), we can determine ∆x̂κ and compute ˆ̂xκ

= x̂κ−∆x̂κ. Letting x̂κ ← ˆ̂xκ, we repeat this proce-
dure. In the end, ∆x̂κ = 0 and p̂ = ˆ̂p ∈ S. Because
the hyperplanes in Π̂ are first order expansions of S

at p̂ ∈ S, they are tangent to S at p̂, defining the
tangent space Tp̂(S) at p̂ as their intersection. Since
pp̂ is now orthogonal to all the hyperplanes in Π̂, it
is orthogonal to S itself.

6.2Rank deficiency

There is one added complexity due to the fact that
Eq. (19) has redundancies: each trilinear constraint
consists of nine equalities for p, q = 1, 2, 3, and only
four are linearly independent due to the skew prop-
erties of εijk. Hence, Eq. (19) consists of 9(M − 2)
equalities, 4(M−2) of which are linearly independent.
Among them, however, only 2M − 3 are algebraically
independent. This is because the manifold S should
be homeomorphic to R3, since a point in S is in one-
to-one correspondence to a point to be reconstructed
in R3 as the unique intersection of the lines of sight.
Thus, S is 3-D and can be defined as an intersection
of 2M −3 hypersurfaces; the remaining hypersurfaces
automatically pass through it .

We enumerate the index pairs (p, q) = (1,1), (1,2),
..., (3,3) with a serial number α = 1, ..., 9 and (r, s)
= (1,1), (1,2), ..., (3,3) with β = 1, ..., 9, and identify
Â(κ)pqrs, B̂(κ)pqrs, etc. with 9×9 matrices. Likewise,
F̂(κ)pq and λpq

(κ) are identified with 9-D vectors f̂ (κ)

and λ(κ), respectively. Then, Eq. (23) now takes the
form

C0 D0 E0

B1 C1 D1 E1

A2 B2 C2 D2 E2

. . . . . . . . .
AM−3 BM−3 CM−3




λ0

λ1

λ2

...
λM−3



=


f0

f1

f2
...

fM−3

 , (30)

where Aκ, ..., Eκ are 9× 9 matrices, and λκ and fκ

are 9-D vectors. The coefficient matrix has a band
of width 45. Eq. (30) may not necessarily have a
unique solution unless p̂ = x̂0⊕· · ·⊕ x̂M−1 ∈ S. The
9(M − 2)× 9(M − 2) coefficient matrix generally has
rank 2M , because the underlying unknowns are 2M
variables ∆x0, ∆y0, ..., ∆xM−1, ∆yM−1. However,
the rank drops to 2M−3 at the moment the projection
p̂ = x̂0 ⊕ · · · ⊕ x̂M−1 reaches S, which is our goal.
Hence, we select appropriate 2M − 3 equations from
among the 9(M − 2) equations in Eq. (30), which is
mathematically equivalent to using the pseudoinverse
of rank 2M − 3. Our algorithm is summarized as
follows:

Input: Data points xκ, κ = 0, ..., M − 1, and the
trifocal tensors T jk

(κ)i, κ = 0, ..., M − 2.
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Output: Corrected positions x̂κ, κ = 0, ..., M − 1,
and the reprojection error E.

Procedure:

1. Let E0 = ∞, x̂κ = xκ, x̃κ = 0, κ = 0, ..., M −1,
where ∞ is a sufficiently large number.

2. Compute P̂ s
pq, Q̂s

pq, and R̂s
pq in Eqs. (28).

3. Compute Apqrs, ..., Fpq in Eqs. (29).

4. Solve Eq. (30) for λpq
(κ), using pseudoinverse of

rank 2M − 3.

5. Update x̃κ and x̂κ, κ = 0, ..., M − 1, as follows:

x̃i
κ ←

3∑
p,q=1

P i
(κ)pqλ

pq
(κ) +

3∑
p,q=1

Qi
(κ)pqλ

pq
(κ−1)

+
3∑

p,q=1

Ri
(κ)pqλ

pq
(κ−2o),

x̂κ ← xκ − x̃κ. (31)

6. Compute the reprojection error E as follows:

E =
M−1∑
κ=0

‖x̃κ‖2. (32)

7. If |E − E0| ≈ 0, return E and x̂κ, κ = 0, ...,
M − 1, and stop. Else, let E0 ← E, and go back
to Step 2.

6.3Efficient computation

We frequently encounter expressions in the form

Tpq = εljpεmkqT
lm
i xiyjzk, (33)

where T lm
i takes T lm

i(κ), and xi, yj , and zk take, respec-
tively, the i, j, k components of xκ, x̂κ, or x̃κ. The
right-hand side of Eq. (33) is a sum over i, j, k, l,m =
1, 2, 3 (the summation symbol omitted), so we need to
add 35 = 243 terms. These summations cost a con-
siderable computation time. It can be significantly
reduced if we note that Eq. (33) can be equivalently
rewritten as

Tpq = xi
(
T p⊕1,q⊕1

i yp⊕2zq⊕2−T p⊕2,q⊕1
i yp⊕1zq⊕2

− T p⊕1,q⊕2
i yp⊕2zq⊕1+T p⊕2,q⊕2

i yp⊕1zq⊕1
)
, (34)

where ⊕ denotes addition modulo 3. The right-hand
side is a sum over i = 1, 2, 3, so we need to add only
3×4 = 12 terms. This makes the computation about
243/12 (≈ 20) times more efficient.

· · · · · ·

Figure 3: Simulated images of a cylindrical grid surface.
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Figure 4: (a) Average reprojection error. (b) RMS error
of 3-D. Solid lines: our method. Dashed lines: least
squares. Dotted lines: theoretical expectation (2M −
3)(σ/f0)

2.

7. EXPERIMENTS

7.1Accuracy

We created synthetic images of a cylindrical grid
surface viewed by cameras surrounding it. Fig. 3
shows some of them. The image size is 1000 × 1000
pixels, and the focal length is f = 600 pixels. Inde-
pendent Gaussian noise of mean 0 and standard devi-
ation σ pixels is added to the x and the y coordinates
of each grid point, and our algorithm3 is applied. We
stopped when the update of the reprojection error E
is less than 10−6.

The solid line in Fig. 4(a) shows the average repro-
jection error per point over 1000 trials for each σ. The
dashed line is the corresponding result of least squares
(the linear method). The dotted line shows the first
order theoretical expectation (2M − 3)(σ/f0)2 for
maximum likelihood (ML); we can see that the ML
solution is indeed computed by our method. The solid
line in Fig. 4(b) shows the average RMS error per
point of the reconstructed 3-D position. We see that
although the reprojection error is not much different
between least squares and our method, the 3-D re-
construction accuracy is markedly distinct between
them.

7.2Computation time

Fig. 5 shows the average computation time per
point (average over 10 trials) for M = 3, 4, ..., 31
views with noise of σ = 5 pixels. We used C++ with

3http://www.iim.ics.tut.ac.jp/~sugaya/public.php
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Figure 5: Computation time (sec) vs. the number M of
views. The dotted line aMe is fitted with a = 4.17×10−6

and e = 3.22.
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Figure 6: (a) Feature point tracking. (b) Resulting 3-D
reconstruction.

Intel Core2Duo E6850, 3.0GHz, using the efficient ex-
pression of Eq. (34). Most of the execution time is
spent on the pseudoinverse computation4 for solving
Eq. (30). The dotted line is the curve aMe fitted to
the result; we found that the complexity is O(M3.22).
This should not be a problem for most applications,
since usually feature points can be tracked only over
a relatively small number of views.

We also used the tracking data provided by Ox-
ford University5 with 36 views (Fig. 6(a)), where 4983
points are tracked over 2 to 21 views6. One view
of the 3-D reconstruction is shown in Fig. 6(b). As
a comparison, we tested the algorithm7 of Kahl et
al. [6], and found that our reprojection error is smaller
than theirs for all points. We surmise that this has
something to do with the iteration stopping criteria
of the SeDuMi tool they used.

The total computation time of our method, includ-
ing the preprocessing of the trifocal tensor computa-
tion and the post processing of 3-D reconstruction, is
2.22 sec, i.e., 0.000446 sec per point. The algorithm

4We did not take the band structure into consideration; for
a large M , further speedup will be possible by exploiting the
sparseness.

5http://www.robots.ox.ac.uk/~vgg/data.html
6For 2 view correspondences, we used the method described

in [8].
7http://www.cs.washington.edu/homes/sagarwal/code.html

of Kahl et al. [6] took 5030 sec, i.e., 1.01 sec per point.
Lu and Hartley [10] reported that their C++ program
of branch and bound applied for a different data set
took 0.02 sec per point. Fair and definitive compari-
son is difficult; existing methods all use complicated
algorithms involving black box software tools and are
difficult to implement from scratch. Also, the codes
offered by the authors are written in different envi-
ronments. Still, the above observations suggest that
our algorithm is far faster than all existing standard
optimization methods.

8. CONCLUSIONS

We presented an alternative approach to the stan-
dard optimization, which minimizes a cost function
by searching a parameter space. We showed that our
approach can lead to a new algorithm of multiview
triangulation. While the standard optimization is
generic in nature, applicable to any problem for which
the cost function can be defined, our approach is lim-
ited only to those problems for which the consistency
constraint can be defined in a tractable form. For
such problems, however, our approach avoids many
difficulties encountered in the standard optimization.

• The standard optimization requires clever pa-
rameterization of the problem. Poor parame-
terization results in an intractable cost function
which is hard to minimize by whatever methods.
In contrast, our approach does not require any
parameterization.

• The standard optimization requires a good ini-
tial value to start the search, which is often hard
to guess. Global optimization can reach a solu-
tion independent of initial guesses but requires
complicated analysis and a large amount of com-
putation, often relying on various software tools.
Our approach does no need any initial guess.

In theory, there can be pathological cases where
our approach does not produce an exactly global op-
timum: if the joint input p is far apart from the
consistency manifold S, two points p̂, p̂′ ∈ S may
exist such that pp̂ and pp̂′ are both orthogonal to
S and |pp̂| ≈ |pp̂′|. Then, our projection may fall
into either of them. This can arise when the data
take an extraordinary configuration due to extremely
large noise. Consider line fitting, for example. Sup-
pose the input points are so disturbed by noise that
they spread almost uniformly in a circular region.
Then, two or more lines can fit almost equally well
(or equally poorly, to be precise).

In an extremely noisy situation, however, the dis-
tinction between exactly optimal (in the sense of ML)
and nearly optimal solutions does not make much
sense; both are reasonable estimates in view of such
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noise, and accepting the solution produced by our ap-
proach seems a sensible choice. In the standard op-
timization, on the other hand, a local minimum can
arise even in the absence of noise if the initial guess
is bad. The cost E at a local minimum can be very
high. In contrast, a non-optimal solution of our ap-
proach could result only from large noise (the input
p being far apart from the consistency manifold S),
and its reprojection error would be nearly the same
as the optimal one.

From a theoretical viewpoint, however, it is desir-
able to obtain a criterion by analyzing the “shape”
of S to give a “noise threshold” for guaranteeing ex-
act optimality of orthogonal projection, in the same
spirit as Hartley and Seo [3]. This remains as a future
task.
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APPENDIX

A. Derivation of Eq. (9)

The projection direction ∆x0 ⊕ · · · ⊕ ∆xM−1 or-
thogonal to the (M + 2)-D plane Π in 2M-D defined
by Eq. (8) is computed by minimizing

E =
M−1∑
κ=0

‖∆xκ‖2, (35)

subject to Eq. (8). The third component of xκ is
identically 1, so the third component of ∆xκ is also
identically 0. This constraint is written as

(k,∆xκ) = 0, (36)

where we define k ≡ (0, 0, 1)>. Introducing the La-
grange multiplies to Eqs. (8) and (36), we let

1
2

M−1∑
κ=0

‖∆xκ‖2 −
M−1∑
κ=0

λκ

(
(∆xκ,xκ+1 × xκ+2)

+(∆xκ+1, xκ+2 × xκ) + (∆xκ+2, xκ × xκ+1)
)

−
M−1∑
κ=0

µκ(k, ∆xκ). (37)

This can be rewritten as

1
2

M−1∑
κ=0

‖∆xκ‖2 −
M−1∑
κ=0

λκ(∆xκ, xκ+1×xκ+2)

−
M−1∑
κ=0

λκ−1(∆xκ, xκ+1×xκ−1)

−
M−1∑
κ=0

λκ−2(∆xκ, xκ−2×xκ−1)−
M−1∑
κ=0

µκ(k, ∆xκ), (38)

where terms with subscript k outside the range of 0,
..., M − 1 are regarded as 0. Differentiating Eq. (38)
with respect to ∆xκ and setting the result to 0, we
obtain

∆xκ = λκxκ+1×xκ+2+λκ−1xκ+1×xκ−1

+λκ−2xκ−2×xκ−1+µκk. (39)

Multiplying on both sides P k = diag(1, 1, 0), which
makes the third component 0, and noting that
P k∆xκ = ∆xκ and P kk = 0, we obtain Eq. (9).

B. Derivation of Eq. (13)

The projection direction ∆x̂0 ⊕ · · · ⊕ ∆x̂M−1 or-
thogonal to the (M + 2)-D plane Π in 2M-D defined
by Eq. (12) is computed by minimizing

E =
M−1∑
κ=0

‖xκ−x̂κ+∆x̂κ‖2 =
M−1∑
κ=0

‖x̃κ+∆x̂κ‖2. (40)
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The third component of ∆x̂κ should be 0, so we have
the constraint

(k, ∆x̂κ) = 0. (41)

Introducing the Lagrange multiplies to Eqs. (12) and
(41), we let

1
2

M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2−
M−1∑
κ=0

λκ

(
(∆x̂κ, x̂κ+1×x̂κ+2)

+(∆x̂κ+1, x̂κ+2 × x̂κ) + (∆x̂κ+2, x̂κ × x̂κ+1)
)

−
M−1∑
κ=0

µκ(k, ∆x̂κ), (42)

which can be rewritten as

1
2

M−1∑
κ=0

‖x̃κ+∆x̂κ‖2−
M−1∑
κ=0

λκ(∆x̂κ, x̂κ+1×x̂κ+2)

−
M−1∑
κ=0

λκ(∆x̂κ+1, x̂κ+2×x̂κ)

−
M−1∑
κ=0

λκ(∆x̂κ+2, x̂κ × x̂κ+1) −
M−1∑
κ=0

µκ(k, ∆x̂κ)

=
1
2

M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2−
M−1∑
κ=0

λκ(∆x̂κ, x̂κ+1×x̂κ+2)

−
M−1∑
κ=0

λκ−1(∆x̂κ, x̂κ+1×x̂κ−1)

−
M−1∑
κ=0

λκ−2(∆x̂κ, x̂κ−2×x̂κ−1)−
M−1∑
κ=0

µκ(k, ∆x̂κ).

(43)

Differentiating this with respect to ∆x̂κ and setting
the result to 0, we obtain

∆x̂κ = λκx̂κ+1 × x̂κ+2 + λκ−1x̂κ+1 × x̂κ−1

+λκ−2x̂κ−2 × x̂κ−1 + µκk − x̃κ. (44)

Multiplying P k = diag(1, 1, 0) on both sides and not-
ing that P k∆x̂κ = ∆x̂κ and P kk = 0, we obtain
Eq. (13).

C. Derivation of Eq. (21)

The projection direction ∆x0 ⊕ · · · ⊕ ∆xM−1 or-
thogonal to all the hyperplanes in Π, if exists, is de-
termined by minimizing

E =
M−1∑
κ=0

‖∆xκ‖2, (45)

subject to Eq. (20) and

ki∆xi
κ = 0, (46)

which state that the third component of ∆xκ be zero
(k ≡ (0, 0, 1)> as before). Introducing Lagrange mul-
tiplies to Eqs. (20) and (46), we write

1
2

M−1∑
κ=0

‖∆xκ‖2−
M−3∑
κ=0

λpq
(κ)εljpεmkqT

lm
(κ)i

(
∆xi

κxj
κ+1x

k
κ+2

+xi
κ∆xj

κ+1x
k
κ+2+xi

κxj
κ+1∆xk

κ+2

)
−

M−1∑
κ=0

µ(κ)ki∆xi
κ.

(47)

Differentiating this with respect to ∆xn
κ and letting

the result be 0, we obtain

∆xn
κ = εljpεmkqλ

pq
(κ)T

lm
(κ)nxj

κ+1x
k
κ+2

+εlnpεmkqλ
pq
(κ−1)T

lm
(κ−1)ix

i
κ−1x

k
κ+1

+εljpεmnqλ
pq
(κ−2)T

lm
(κ−2)ix

i
κ−2x

j
κ−1 + µ(κ)kn, (48)

where terms with subscript κ outside the range of
0, ..., M − 3 are regarded as 0. Multiplying P k =
diag(1, 1, 0) on both sides and noting that P k∆xκ =
∆xκ and P kk = 0, we obtain Eq. (21).

D. Derivation of Eq. (26)

The projection direction ∆x0 ⊕ · · · ⊕ ∆xM−1 or-
thogonal to all the hyperplanes in Π̂, if exists, is de-
termined by minimizing

E =
M−1∑
κ=0

‖xκ−x̂κ+∆x̂κ‖2 =
M−1∑
κ=0

‖x̃κ+∆x̂κ‖2. (49)

Introducing Lagrange multipliers to Eqs. (25) and to

ki∆x̂i
κ = 0, (50)

we write

1
2

M−1∑
κ=0

‖x̃κ + ∆x̂κ‖2 −
M−3∑
κ=0

λpq
(κ)εljpεmkqT

lm
(κ)i

×
(
∆x̂i

κx̂j
κ+1x̂

k
κ+2+x̂i

κ∆x̂j
κ+1x̂

k
κ+2+x̂i

κx̂j
κ+1∆x̂k

κ+2

)
−

M−1∑
κ=0

µ(κ)ki∆x̂i
κ. (51)

Differentiating this with respect to ∆x̂n
κ and setting

the result to 0, we obtain

∆x̂n
κ = εljpεmkqλ

pq
(κ)T

lm
(κ)nx̂j

κ+1x̂
k
κ+2

+εlipεmkqλ
pq
(κ−1)T

lm
(κ−1)ix̂

i
κ−1x̂

k
κ+1

+εljpεmiqλ
pq
(κ−2)T

lm
(κ−2)ix̂

i
κ−2x̂

j
κ−1+µ(κ)kn−x̃i

κ. (52)

Multiplying P k on both sides and noting that
P k∆x̂κ = ∆x̂κ, P kk = 0, and P kx̃κ = 0 (see
Eq. (27)), we obtain Eq. (26).
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