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In order to reconstruct 3-D Euclidean shape by the Tomasi-Kanade factorization, one needs to
specify an affine camera model such as orthographic, weak perspective, and paraperspective. We
present a new method that does not require any such specific models. We show that a minimal
requirement for an affine camera to mimic perspective projection leads to a unique camera
model, which we call a symmetric affine camera, which has two free functions. We determine
their values from input images by linear computation and demonstrate by experiments that an
appropriate camera model is automatically selected.

1. Introduction

One of the best known techniques for 3-D recon-
struction from feature point tracking through a video
stream is the Tomasi-Kanade factorization [20], which
computes the 3-D shape of the scene by approxi-
mating the camera imaging by an affine transfor-
mation. The computation consists of linear calcu-
lus alone without involving iterations (see [10] for the
computational details). The solution is sufficiently
accurate for many practical purposes and is used as
an initial solution for more sophisticated iterative re-
construction based on perspective projection [3].

If the camera model is not specified, other than be-
ing affine, the 3-D shape is computed only up to an
affine transformation, known as affine reconstruction.
For computing the correct shape (Euclid reconstruc-
tion1), we need to specify the camera model. For
this, orthographic, weak perspective, and paraperspec-
tive projections have been used [12]. However, the
reconstruction accuracy does not necessarily follow
that order [2]. To find the best camera models in a
particular circumstance, one needs to choose the best
one a posteriori . Is there any method for automati-
cally selecting an appropriate camera model? This is
the motivation of this paper.
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Basri [1] pointed out that any affine camera can
be regarded as paraperspective projection if the scale
and the reference point are appropriately adjusted,
and Sugimoto [19] exploited this fact for object recog-

∗E-mail kanatani@suri.it.okayama-u.ac.jp
1Since the absolute scale is indeterminate, this should

strictly be called similarity reconstruction, but the term “Eu-
clidean” is widely used now.

nition from a single image. Shapiro et al. [14] de-
scribed the epipolar geometry for affine cameras and
3-D reconstruction methods based on it. Quan [13]
showed that a generic affine camera has three intrin-
sic parameters and that they can be determined by
self-calibration if the same camera is moved (i.e., the
three intrinsic parameters are unchanged).

This paper extends Quan’s result to variable in-
trinsic parameters. However, these three parameters
cannot be determined if they vary freely, i.e., if the
camera is completely arbitrary from frame to frame.
The situation is similar to the dual absolute quadric
constraint [3] for upgrading projective reconstruction
to Euclidean, which cannot be imposed unless mini-
mal constraints are imposed on the internal parame-
ters (e.g., zero skew).

In this paper, we show that minimal requirements
for the general affine camera to mimic perspective
projection leads to a unique camera model, which we
call a symmetric affine camera, having two free func-
tions of motion parameters; specific choices of their
function forms result in the orthographic, weak per-
spective, and paraperspective models.

Here, however, we do not specify such function
forms. We determine their values directly from input
images, taking advantage of the fact that at most two
time varying quantities can be eliminated from the
generic metric constraint. As a result, all the compu-
tation is linear just as in the case of the traditional
factorization method, and an appropriate model is
automatically selected.

Sec. 2 summarizes fundamentals of affine cameras,
and Sec. 3 summarizes the metric constraint. In
Sec. 4, we derive our symmetric affine camera model.
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(c) Weak perspective projection. (d) Paraperspective projection.

Figure 1: Camera models.

Sec. 5 describes the procedure for 3-D reconstruction
using our model. Sec. 6 shows experiments, and Sec. 7
concludes this paper. The full computational details
of our procedure are given in Appendix.

2. Affine Cameras

We first summarize fundamentals about affine
cameras.

Consider a camera-based XY Z coordinate system
with the origin O at the projection center and the
Z axis along the optical axis. Perspective projection
maps a point (X, Y, Z) in the scene onto a point in
the image with coordinates (x, y) such that

x = f
X

Z
, y = f

Y

Z
, (1)

where f is a constant called the focal length
(Fig. 1(a)).

Consider a world coordinate system fixed to the
scene, and let t and {i, j, k} be its origin and the
orthonormal basis vectors described with respect to
the camera coordinate system. For convenience (with
some risk of confusion), we call t the translation, the
matrix R =

(
i j k

)
having {i, j, k} as columns the

rotation, and {t, R} the motion parameters. How-
ever, we should always keep in mind that all the de-
scriptions in this paper are with respect to the camera
coordinate system, not the world coordinate system2.

If
(i) the object of our interest is localized around the

world coordinate origin t, and
(ii) the size of the object is small as compared with

‖t‖,
2The Tomasi-Kanade factorization adopts the standpoint

that the camera is moving relative to a stationary object [11,
12, 20, 21]. Although both are mathematically equivalent, our
formulation is better suited for the subsequent analysis.

the imaging can be approximated by an affine camera
[14] in the form

(
x
y

)
=

(
Π11 Π12 Π13

Π21 Π22 Π23

) 


X
Y
Z


 +

(
π1

π2

)
.

(2)
We call the 2×3 matrix Π = (Πij) and the 2-D vector
π = (πi) the projection matrix and the projection vec-
tor , respectively; their elements are “functions” of the
motion parameters {t, R}. Unlike Quan [13], we do
not separate “intrinsic” parameters from the motion
parameters (or “extrinsic” parameters); the intrinsic
parameters are implicitly defined via the functional
forms of {Π, π} on {t, R}, i.e., as “coefficients” in
them. Typical affine cameras are

Orthographic projection (Fig. 1(b))

Π =
(

1 0 0
0 1 0

)
, π =

(
0
0

)
. (3)

Weak perspective projection (Fig. 1(c))

Π =
(

f/tz 0 0
0 f/tz 0

)
, π =

(
0
0

)
. (4)

Paraperspective projection (Fig. 1(d))

Π=
(

f/tz 0 −ftx/t2z
0 f/tz −ftx/t2z

)
, π=

(
ftx/tz
fty/tz

)
.

(5)

Suppose we track N feature points over M frames.
Identifying the frame number κ with “time”, let tκ

and {iκ, jκ, kκ} be the origin and the basis vectors
of the world coordinate system at time κ (Fig. 2(a)).
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Figure 2: (a) Camera-based description of the world coordinate system. (b) Affine space constraint.

The 3-D position of the αth point at time κ has the
form

rκα = tκ + aαiκ + bαjκ + cαkκ. (6)

Under the affine camera of eq. (2), its image coordi-
nates (xκα, yκα) are given by

(
xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (7)

where t̃κ, ĩκ, j̃κ, and k̃κ are 2-D vectors defined by

t̃κ = Πκtκ + πκ, (8)

ĩκ = Πκiκ, j̃κ = Πκjκ, k̃κ = Πκkκ. (9)

Here, Πκ and πκ are the projection matrix and the
projective vector, respectively, at time κ. The motion
history of the αth point is represented by a vector

pα =
(
x1α y1α x2α y2α . . . xMα yMα

)>
, (10)

which we simply call the trajectory of that point. Us-
ing eq. (7), we can write

pα = m0 + aαm1 + bαm2 + cαm3, (11)

where m0, m1, m2, and m3 are the 2M -dimensional
vectors defined, respectively, by




t̃1
t̃2
...

t̃M


 ,




ĩ1
ĩ2
...

ĩM


 ,




j̃1

j̃2
...

j̃M


 ,




k̃1

k̃2

...
k̃M


 .

(12)
Thus, all the trajectories {pα} are constrained to be
in the 3-D affine space A in R2M passing through m0

and spanned by m1, m2, and m3 (Fig. 2(b)). This
fact is known as the affine space constraint , which
is also the basis for multi-body motion segmentation
[7, 8, 9, 15, 16, 17, 18].

3. Metric Constraint

Next, we summarize the metric constraint on affine
cameras.

Since the world coordinate system can be placed
arbitrarily, we let its origin coincide with the centroid
of the N feature points. This implies

∑N
α=1 aα =∑N

α=1 bα =
∑N

α=1 cα = 0, so we have from eq. (11)

1
N

N∑
α=1

pα = m0, (13)

i.e., m0 is the centroid of the trajectories {pα} in
R2M . It follows that the deviation p′α of pα from the
centroid m0 is written as3

p′α = pα −m0 = aαm1 + bαm2 + cαm3, (14)

which means that {p′α} are constrained to be in the
3-D subspace L in R2M . Hence, the (second-order)
moment matrix 4

C =
N∑

α=1

p′αp′α
> (15)

is of rank 3, having three nonzero eigenvalues. The
corresponding unit eigenvectors {u1, u2, u3} consti-
tute an orthonormal basis of the subspace L, and m1,
m2, and m3 are expressed as a linear combination of
them in the form

mi =
3∑

j=1

Ajiuj . (16)

3In the traditional formulation [11, 12, 20, 21], vectors
{p′α} are combined into the observation (or measurement)
matrix , W =

�
p′1 . . . p′N

�
, and the object coordinates

{(aα, bα, cα)} are combined into the shape matrix , S = 
a1 . . . aN
b1 . . . bN
c1 . . . cN

!
. Then, eq. (14) is written as W = MS,

whereM , the motion matrix , is defined by the first of eqs. (17).
However, our formulation is better suited for the subsequent
analysis.

4This matrix is called by many different names such as the
“covariance matrix” and the “scatter matrix”.
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Let M and U be the 2M × 3 matrices consisting of
{m1, m2, m3} and {u1, u2, u3} as columns:

M =
(
m1 m2 m3

)
, U =

(
u1 u2 u3

)
.
(17)

From eq. (16), M and U are related by the matrix
A = (Aij) in the form5:

M = UA. (18)

The rectifying matrix A = (Aij) should be deter-
mined so that m1, m2 and m3 in eq. (12) are pro-
jections of the orthonormal basis vectors {iκ, jκ, kκ}
in the form of eqs. (9). From eq. (9), we obtain

(
ĩκ j̃κ k̃κ

)
= Πκ

(
iκ jκ kκ

)
= ΠκRκ, (19)

where Rκ is the rotation at time κ. If we let m†
κ(a)

be the (2(κ− 1) + a)th column of the transpose M>

of the matrix M in eqs. (17), κ = 1, ..., M , a = 1, 2.
The transpose of both sides of eq. (19) is

R>
κ Π>

κ =
(

m†
κ(1) m†

κ(2)

)
. (20)

Eq. (18) implies M> = A>U>, so if we let u†κ(a) be

the (2(κ − 1) + a)th column of the transpose U> of
the matrix U in eqs. (17), we obtain

m†
κ(a) = A>u†κ(a). (21)

Substituting this, we can rewrite eq. (20) as

R>
κ Π>

κ = A>
(

u†κ(1) u†κ(2)

)
. (22)

Let U †
κ the 3 × 2 matrix having u†κ(1) and u†κ(2) as

columns:
U †

κ =
(

u†κ(1) u†κ(2)

)
. (23)

Then, eq. (22) can be rewritten as U †>
κ AA>U †

κ =
ΠκRκR>

κ Π>
κ . Since Rκ is a rotation matrix, we have

the generic metric constraint

U †>
κ TU †

κ = ΠκΠ>
κ , (24)

where we define the metric matrix T by

T = AA>. (25)

Eq. (24) is the generic metric constraint given by
Quan [13]. If we take out the elements on both sides,

5In the traditional formulation [11, 12, 20, 21], the obser-
vation matrix W is decomposed by SVD (singular value de-
composition) into W = UΛV>, and the motion and the shape
matrices M and S are set to M = UA an S = A−1ΛV> via
a nonsingular matrix A. However, our formulation is better
suited for the subsequent analysis.

we have the following three expressions:

(u†κ(1),Tu†κ(1)) =
3∑

i=1

Π2
1iκ,

(u†κ(2),Tu†κ(2)) =
3∑

i=1

Π2
2iκ,

(u†κ(1),Tu†κ(2)) =
3∑

i=1

Π1iκΠ2iκ. (26)

If we let, instead of eq. (16), simply mi = ui, i = 1,
2, 3, we can still reconstruct the 3-D shape, but it is
a deformation of the true shape by some affine trans-
formation, known as affine reconstruction6. In order
to restore the true shape (Euclidean reconstruction),
one needs to rectify the basis {u1, u2, u3} of the sub-
space L by some linear transformation A, and eq. (24)
gives the constraint on it. In this sense, eq. (24) cor-
responds to the dual absolute quadric constraint [3]
on the homography that rectifies the projective basis
of projective reconstruction to Euclidean.

Assuming that the three intrinsic parameters are
the same throughout the input sequence, Quan [13]
eliminated them from eqs. (26) and obtained non-
linear constraints on the metric matrix T , which he
solved by nonlinear optimization. Here, we focus on
the fact that at most two time varying unknowns of
the camera model can be eliminated from eqs. (26).
We now show that (i) we can restrict the camera
model without much impairing its descriptive capa-
bility so that it has two free functions and (ii) we can
redefine them in such a way that the resulting 2M
unknowns are linearly estimated.

4. Symmetric Affine Cameras

We now seek a concrete form of the affine camera
by imposing minimal requirements that eq. (2) mimic
perspective projection.

Requirement 1. The frontal parallel plane passing
through the world coordinate origin is projected as
if by perspective projection.

This corresponds to our assumption that the ob-
ject of our interest is small and localized around the
world coordinate origin (tx, ty, tz). A point on the
plane Z = tz is written as (X, Y, tz), so Requirement
1 requires

(
fX/tz
fY/tz

)
=

(
Π11 Π12

Π21 Π22

)(
X
Y

)

+tz

(
Π13

Π23

)
+

(
π1

π2

)
. (27)

6We are assuming an affine camera model. If we use per-
spective images, the resulting shape may not be affine recon-
struction, of course.
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Since this should hold for arbitrary X and Y , we ob-
tain

Π11 = Π22 =
f

tz
, Π12 = Π21 = 0,

tzΠ13 + π1 = 0, tzΠ23 + π2 = 0, (28)

which reduces eq. (2) to
(

x
y

)
=

f

tz

(
X
Y

)
− (tz − Z)

(
Π13

Π23

)
, (29)

where f , Π13 and Π23 are arbitrary functions of {t,
R}. In order to obtain a more specific form, we im-
pose the following requirements:

Requirement 2. The camera imaging is symmetric
around the Z-axis.

Requirement 3. The camera imaging does not
depend on R.

Requirement 2 states that if the scene is rotated
around the optical axis by an angle θ, the resulting
image should also rotate around the image origin by
the same angle θ, a very natural requirement. Re-
quirement 3 is also natural, since the orientation of
the world coordinate system can be defined arbitrar-
ily, and such indeterminate parameterization should
not affect the actual observation.

Let R(θ) be the 2-D rotation matrix by angle θ:

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (30)

Requirement 2 is written as

R(θ)
(

x
y

)
=

f

tz
R(θ)

(
X
Y

)
−(tz−Z)

(
Π′13
Π′23

)
, (31)

where Π′13 and Π′23 are the values of the functions
Π13 and Π23, respectively, obtained by replacing tx
and ty in their arguments by tx cos θ − ty sin θ and
tx sin θ + ty cos θ, respectively; by Requirement 3, the
arguments of Π13 and Π23 do not contain R. Multi-
plying both sides of eq. (29) by R(θ), we obtain

R(θ)
(

x
y

)
=

f

tz
R(θ)

(
X
Y

)
−(tz−Z)R(θ)

(
Π13

Π23

)
.

(32)
Comparing eqs. (31) and (32), we conclude that the
equality (

Π′13
Π′23

)
= R(θ)

(
Π13

Π23

)
(33)

should hold identically for an arbitrary θ. According
to the theory of invariants [4], this implies

(
Π13

Π23

)
= c

(
tx
ty

)
, (34)

where c is an arbitrary function of t2x + t2y and tz.
Thus, if we define

ζ =
tz
f

, β = −ctz
f

, (35)

eq. (29) is written as
(

x
y

)
=

1
ζ

((
X
Y

)
+ β(tz − Z)

(
tx
ty

))
. (36)

The corresponding projection matrix Π and the pro-
jection vector π are

Π=
(

1/ζ 0 −βtx/ζ
0 1/ζ −βty/ζ

)
, π=

(
βtxtz/ζ
βtytz/ζ

)
,

(37)

where ζ and β are arbitrary functions of t2x + t2y and
tz. We observe:

• Eq. (36) reduces to the paraperspective projec-
tion of eq. (5) if we choose

ζ =
tz
f

, β =
1
tz

. (38)

• Eq. (36) reduces to the weak perspective projec-
tion of eq. (4) if we choose

ζ =
tz
f

, β = 0. (39)

• Eq. (36) reduces to the orthographic projection
of eq. (3) if we choose

ζ = 1, β = 0. (40)

Thus, eq. (36) includes the traditional affine camera
models as special instances and is the only possible
form that satisfies Requirements 1, 2, and 3.

However, we need not define the functions ζ and
β in any particular form; we can regard them as time
varying unknowns and determine their values by self-
calibration. This is made possible by the fact that at
most two time varying unknowns can be eliminated
from the metric constraint of eqs. (26).

5. Procedure for 3-D Reconstruction

3-D Euclidean reconstruction using eq. (36) goes
just as when using the traditional camera models [10].
Here is the outline (the full computational details are
given in Appendix):

1. We fit a 3-D affine space A to the trajectories
{pα} by least squares. Namely, we compute the
centroid m0 by eq. (13) and compute the unit
eigenvectors {u1, u2, u3} of the moment matrix
C in eq. (15) for the largest three eigenvalues7.

7This corresponds to the SVD W = UΛV> of the observa-
tion matrix W in the traditional formulation [12, 20].
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2. We eliminate time varying unknowns from the
the metric constraint of eqs. (26) and solve for
the metric matrix T by least squares. To be spe-
cific, substituting eqs. (37) into eqs. (26), we have

(u†κ(1),Tu†κ(1)) =
1
ζ2
κ

+ β2
κt̃2xκ,

(u†κ(2),Tu†κ(2)) =
1
ζ2
κ

+ β2
κt̃2yκ,

(u†κ(1),Tu†κ(2)) = β2
κt̃xκt̃yκ, (41)

where t̃xκ and t̃yκ are, respectively, the (2(κ −
1) + 1)th and the (2(κ − 1) + 2)th components
of the centroid m0. Eliminating ζκ and βκ, we
obtain

Aκ(u†κ(1), Tu†κ(1))− Cκ(u†κ(1),Tu†κ(2))

−Aκ(u†κ(2),Tu†κ(2)) = 0, (42)

where Aκ = t̃xκt̃yκ and Cκ = t̃2xκ − t̃2yκ. This is
a linear constraint on T , so we can determine T
by solving the M equations for κ = 1, ..., M by
least squares. Once we have determined T , we
can determine ζκ and βκ from eqs. (41) by least
squares.

3. We decompose the metric matrix T into the rec-
tifying matrix A in the form of eq. (25), and com-
pute the vectors m1, m2, and m3 from eq. (16).

4. We compute the translation tκ and the rotation
Rκ at each time. The translation components
txκ and tyκ are given by eq. (8) in the form of txκ

= ζκt̃xκ and tyκ = ζκt̃yκ. The three rows rκ(1),
rκ(2), and rκ(3) of the rotation Rκ are given by
solving the linear equations

rκ(1) − βκtxκrκ(3) = ζκm†
κ(1),

rκ(2) − βκtyκrκ(3) = ζκm†
κ(2),

βκtxκrκ(1)+βκtyκrκ(2)+rκ(3) = ζ2
κm†

κ(1)×m†
κ(2).

(43)

The resulting matrix Rκ may not be strictly or-
thogonal, so we compute its SVD (singular value
decomposition) VκΛκU>

κ and redefine VκU>
κ to

be Rκ [5].

5. We recompute the vectors m1, m2, and m3 in
the form of eqs. (12) using the computed rota-
tions Rκ =

(
iκ jκ kκ

)
.

6. We compute the shape vector sα = (aα, bβ , cβ)>
of each point by least-squares expansion of p′α in
the form of eq. (14), minimizing

‖p′α−aαm1− bαm2− cαm3‖2 = ‖p′α−Msα‖2.
(44)

The solution is given by sα = M−pα, using the
pseudoinverse M− of M .

However, the following indeterminacy remains:

1. Another solution is obtained by multiplying all
{tκ} and {sα} by a common constant.

2. Another solution is obtained by multiplying the
all {Rκ} by a common rotation. The shape vec-
tors {sα} are rotated accordingly.

3. Each solution has its mirror image solution. The
mirror image rotation R′

κ is obtained by the ro-
tation Rκ followed by a rotation around axis
(βκtxκ, βκtyκ, 1) by angle 2π. Then, the shape
vectors {sα} change their signs.

4. The absolute depth tz of the world coordinate ori-
gin is indeterminate.

Item 1 is the fundamental ambiguity of 3-D recon-
struction from images, meaning that a large motion
of a large object in the distance is indistinguishable
from a small motion of a small object nearby. Item
2 reflects the fact that the orientation of the world
coordinate system can be arbitrarily chosen. Item
3 is due to eq. (25), which can be written as T =
(±AQ)(±AQ)> for an arbitrary rotation Q, and is
inherent of all affine cameras [13, 14].

Item 4 is due to the fact that eq. (36) involves
only the relative depth of individual point from the
world coordinate origin tκ. The absolute depth tz
is determined only if ζ and β are given as specific
functions of tz, as in the case of the traditional cam-
era models. Here, however, we do not specify their
functional forms, directly determining their values by
self-calibration and leaving tz unspecified.

6. Experiments

Fig. 3 shows four simulated image sequences of
600 × 600 pixels perspectively projected with focal
length f = 600 pixels. Each consists of 11 frames; six
decimated frames are shown here. We added Gaus-
sian random noise of mean 0 and standard deviation 1
pixel independently to the x and y coordinates of the
feature points and reconstructed their 3-D shape (the
frames in Fig. 3(a),(b) are merely for visual ease).

From the resulting two mirror image shapes, we
chose the correct one by comparing the depths of two
points that are known be close to and away from the
camera. Since the absolute depth and scale are in-
determinate, we translated the true and the recon-
structed shapes so that their centroids are at the co-
ordinate origin and scaled their sizes so that the root-
mean-square distance of the feature points from the
origin is 1. Then, we rotated the reconstructed shape
so that root-mean-square distances between the cor-
responding points of the two shapes is minimized. We
adopted the resulting residual as the measure of re-
construction accuracy.
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Figure 3: Simulated image sequences (six decimated frames for each).
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Figure 4: 3-D reconstruction accuracy for the image sequences of Fig. 3(a)∼(d). The horizontal axis is scaled in
proportion to 1/f . Three models are compared: The dashed line: weak perspective (dashed lines), paraperspective (thin
solid lines), and our generic model (thick solid lines).

We compared three camera models: the weak
perspective, the paraperspective, and our symmet-
ric affine camera models. The orthographic model is
omitted, since evidently good results cannot be ob-
tained when the object moves in the depth direction.
For using the weak perspective and paraperspective
models, we need to specify the focal length f (see
eqs. (4) and (5)). If the size of the reconstructed
shape is normalized as described earlier, the choice
of f is irrelevant for the weak perspective model, be-
cause it only affects the object size as a whole. How-
ever, the paraperspective model depends on the value
of f we use.

Fig. 4 plots the reconstruction accuracy vs. the
input focal length f ; the horizontal axis is scaled
in proportion to 1/f . The dashed line is for weak
perspective, the thin solid line is for paraperspective,
and the thick solid line is for our model. We observe
that the paraperspective model does not necessarily
give the highest accuracy when f coincides with the
focal length (600 pixels) of the perspective images.
The error is indeed minimum around f = 600 for
Fig. 4(b),(c), but the error decreases as f increases
for Fig. 4(a) and as f decreases for Fig. 4(d).

We conclude that our model achieves the accuracy
comparable to paraperspective projection given an
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appropriate value of f , which is unknown in advance.
This means that our model automatically chooses ap-
propriate parameter values without any knowledge
about f .

We conducted many other experiments (not shown
here) and observed similar results. We have found
that degeneracy can occur in special circumstances.
By “degeneracy”, we mean that the matrix A is rank
deficient so that the resulting vectors {mi} are lin-
early dependent (see eq. (16)). As a result, the re-
constructed shape is “flat” (see eq. (14)). This oc-
curs when the smallest eigenvalue of T computed by
least squares is negative, while eq. (25) requires T
to be positive semidefinite. In the computation, we
replace the negative eigenvalue by zero, resulting in
degeneracy.

This type of degeneracy occurs for the traditional
camera models, too. In principle, we could avoid it
by parameterizing T so that it is guaranteed to be
positive definite [13]. However, this would require
nonlinear optimization, and the merit of the factor-
ization approach (i.e., linear computation only) would
be lost. Moreover, if we look at the images that cause
degeneracy, they really look as if a planar object is
moving. Since the information is insufficient in the
first place, any methods, including self-calibration us-
ing the dual absolute quadric constraint, which is very
susceptible to noise, may not be able to solve such de-
generacies.

7. Conclusions

We showed that minimal requirements for an affine
camera to mimic perspective projection leads to a
unique camera model, which we call “symmetric
affine camera”, having two free functions, whose spe-
cific choices would result in the traditional camera
models. We regarded them as time varying parame-
ters and determined their values by self-calibration,
using linear computation alone, so that an appropri-
ate model is automatically selected. Our method can
be viewed as an extension of Quan’s method [13] to
varying intrinsic parameters. We have demonstrated
by simulation that the reconstruction accuracy is
comparable to the paraperspective model given an
appropriate focal length estimate.

The full computational details are given in Ap-
pendix.
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Appendix

A. Procedure for 3-D Reconstruction

Input: Image coordinates (xκα, yκα) of the αth fea-
ture point in the κth frame, κ = 1, ..., M , α = 1,
..., N . The origin of the image coordinate system
is assumed to be at the center of the frame with
the x-axis upward and the y-axis rightward.

Output: Two sets of reconstructed 3-D positions
{rα} and {r′α}, each a mirror image of the other.

Procedure:

1. Compute the centroid m0 of the 2M -dimensional
trajectory vectors {pα} (eq. (12)) and the 2M ×
2M moment matrix C (eq. (14)).

2. Let t̃xκ and t̃yκ be the (2(κ − 1) + 1)th and the
(2(κ− 1) + 2)th components of the centroid m0,
respectively.

3. Let u1, u2, and u3 be the 2M -dimensional unit
eigenvectors of the moment matrix C for the
largest three eigenvalues, and define the follow-
ing 2M × 3 matrix U :

U =
(
u1 u2 u3

)
. (45)

4. Let u†κ(a) be the (2(κ − 1) + a)th column of the

transpose U>, κ = 1, ..., M , a = 1, 2.

5. Compute the 3 × 3 metric matrix T (see Ap-
pendix B).

6. Compute the parameters {ζκ} and {βκ} and
the translation components {(txκ, tyκ)} (see Ap-
pendix C).

7. Compute the rotations {Rκ} (see Appendix D).

8. Compute the following 2M × 3 matrix M :

M =
M∑

κ=1

Π̃
>
κ Rκ. (46)

Here, Π̃κ = (Π̃κ(ij)) is a 3 × 2M matrix with
elements

1/ζκ if (i, j) = (1, 2κ− 1), (2, 2κ),
−βκtxκ/ζκ if (i, j) = (3, 2κ− 1),
−βκtyκ/ζκ if (i, j) = (3, 2κ),

0 otherwise.

(47)

9. If the rank of M is 2 or less, exit and switch to
the usual factorization procedure based on the
weak perspective projection model.

10. Else, compute the shape vectors {sα}, α = 1, ...,
N , as follows:

sα = (M>M)−1M>p′α, (48)

11. Compute the mirror image rotations {R′
κ}, κ =

1, ..., M , as follows (see Appendix E):

nκ = N [




βκtxκ

βκtyκ

1


], Ωκ = 2nκn>κ − I,

R′
κ = ΩκRκ. (49)

12. Output the two sets of 3-D positions {rκα} and
{r′κα}, α = 1, ..., N , κ = 1, ..., M , given by

rκα =




txκ

tyκ

tzκ


 + Rκsα,

r′κα =




txκ

tyκ

tzκ


−R′

κsα, (50)

where tzκ is arbitrarily set (e.g., tzκ = 0).

B. Computation of the Metric Constraint

Letting the projection matrix elements Πijκ in the
metric constraint of eqs. (25) be in the form of the
first of eqs. (36), we obtain

(u†κ(1), Tu†κ(1)) =
1
ζ2
κ

+ β2
κt̃2xκ,

(u†κ(2), Tu†κ(2)) =
1
ζ2
κ

+ β2
κt̃2yκ,

(u†κ(1), Tu†κ(2)) = β2
κt̃xκt̃yκ. (51)

The third equation can be solved for βκ in the form

βκ =

√√√√ (u†κ(1),Tu†κ(2))

t̃xκt̃yκ

. (52)

Substituting this into the first and the second of
eqs. (51), we obtain

(u†κ(1), Tu†κ(1)) =
1
ζ2
κ

+
t̃xκ

t̃yκ

(u†κ(1),Tu†κ(2)),

(u†κ(2), Tu†κ(2)) =
1
ζ2
κ

+
t̃yκ

t̃xκ

(u†κ(1),Tu†κ(2)). (53)

Eliminating 1/ζ2
κ by subtraction on both sides, we

obtain after rearrangement

Aκ(u†κ(1), Tu†κ(1))− Cκ(u†κ(1), Tu†κ(2))

−Aκ(u†κ(2), Tu†κ(2)) = 0, (54)

where we put

Aκ = t̃xκt̃yκ, Cκ = t̃2xκ − t̃2yκ. (55)
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We determine the metric matrix T by least squares,
minimizing

K =
M∑

κ=1

(
Aκ(u†κ(1),Tu†κ(1))− Cκ(u†κ(1), Tu†κ(2))

−Aκ(u†κ(2), Tu†κ(2))
)2

, (56)

which can be rewritten as

K =
M∑

κ=1

3∑

i,j,k,l=1

BijklTijTkl, (57)

where we define the 3× 3× 3× 3 tensor B = (Bijkl)
as follows:

Bijkl =
M∑

κ=1

[
A2

κ

(
(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(1))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(1))l

)

+
1
4
C2

κ

(
(u†κ(1))i(u

†
κ(2))j

(u†κ(1))k(u†κ(2))l + (u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

)

−1
2
AκCκ

(
(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(1))l

−(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

)]
. (58)

The function K appears to take its minimum K = 0
for T = O, but we must recall the scale indeterminacy
of T . Doubling T in eq. (22) means multiplying the
rectifying matrix A by

√
2. Hence, the vector mi in

eq. (15) is also multiplied by
√

2. However, we can
still obtain a solution compatible with the observed
data {pα} if we divide aα, bα, and cα in eq. (13) by√

2. Hence, we do not lose generality if we impose
normalization ‖T ‖ = 1, where the matrix norm is
defined by ‖T ‖ =

√∑
i,j=1,3 T 2

ij . Then, the solution

T that minimizes eq. (57) is given by the eigenmatrix
of unit norm of tensor B for the smallest eigenvalue

[6]. This is obtained by first computing the 6-D unit
eigenvector τ = (τi) of the following 6× 6 matrix B
for the smallest eigenvalue [6]:

B =




B1111 B1122 B1133

B2211 B2222 B2233

B3311 B3322 B3333√
2B2311

√
2B2322

√
2B2333√

2B3111

√
2B3122

√
2B3133√

2B1211

√
2B1222

√
2B1233√

2B1123

√
2B1131

√
2B1112√

2B2223

√
2B2231

√
2B2212√

2B3323

√
2B3331

√
2B3312

2B2323 2B2331 2B2312

2B3123 2B3131 2B3112

2B1223 2B1231 2B1212




. (59)

The eigenvector τ is not uniquely determined if the
smallest eigenvalue is a multiple root. In that case,
we return an error message and stop. Otherwise, the
metric matrix T is given by

T =




τ1 τ6/
√

2 τ5/
√

2
τ6/
√

2 τ2 τ4/
√

2
τ5/
√

2 τ4/
√

2 τ3


 . (60)

However, the sign of the eigenvector τ is indetermi-
nate. Since T should be positive semidefinite, we se-
lect the sign that makes det T ≥ 0.

C. Computation of the Translations

If the metric matrix T is determined, the values of
{ζκ} and {βκ} are determined from the metric con-
dition of eqs. (51), which can be rewritten as follows:




1 t̃2xκ

1 t̃2yκ

0 t̃xκt̃yκ




(
1/ζ2

κ

β2
κ

)
=




(u†κ(1), Tu†κ(1))
(u†κ(2), Tu†κ(2))
(u†κ(1), Tu†κ(2))


 .

(61)
This is overdetermination, so we compute the least-
squares solution given by the following normal equa-
tion:

(
2 t̃2xκ + t̃2yκ

t̃2xκ + t̃2yκ t̃4xκ + t̃4yκ + t̃2xκt̃2yκ

)(
1/ζ2

κ

β2
κ

)

=




(u†κ(1),Tu†κ(1)) + (u†κ(2), Tu†κ(2))
t̃2xκ(u†κ(1), Tu†κ(1)) + t̃2yκ(u†κ(2), Tu†κ(2))

+ t̃xκt̃yκ(u†κ(1), Tu†κ(2))


 .

(62)

The solution is indeterminate if t̃xκ ≈ 0 and t̃yκ ≈ 0.
In that case, we let β2

κ = 0 and solve only the first
equation for 1/ζ2

κ in the form

1
ζ2
κ

=
(u†κ(1),Tu†κ(1)) + (u†κ(2), Tu†κ(2))

2
. (63)
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From the resulting 1/ζ2
κ and β2

κ, we let ζκ = 1/
√

1/ζ2
κ

and βκ =
√

β2
κ. If 1/ζ2

κ ≤ 0, we let ζκ be a sufficiently
large value. If β2

κ < 0, we let βκ = 0.
Letting the projection matrix Πκ and the projec-

tion vector πκ in the first of eqs. (8) be in the form
of eqs. (36), we can obtain txκ and tyκ in the form

(
txκ

tyκ

)
= ζκ

(
t̃xκ

t̃yκ

)
. (64)

D. Computation of the Rotations

If we let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of the
metric matrix T and {v1, v2, v3} the orthonormal
system of the corresponding unit eigenvectors, T has
the following spectral decomposition:

T =
(
v1 v2 v3

)
diag(λ1, λ2, λ3)

(
v1 v2 v3

)>
.

(65)
Since we choose the sign of T so that |T | ≥ 0, we have
either λ1 ≥ λ2 ≥ λ3 ≥ 0 or λ1 ≥ 0 ≥ λ2 ≥ λ3. The
latter may occur when λ1 ≈ 0 due to data inaccuracy.
In that case, we let λ1 = 0 and change the signs of
λ2 and λ3.

From eq. (65), the rectifying matrix A has the form

A = ± (√
λ1v1

√
λ2v2

√
λ3v3

)
Q, (66)

where Q is an arbitrary rotation matrix. This inde-
terminacy corresponds to the fact that we can arbi-
trarily define the orientation of the object coordinate
system. The double sign ± implies the existence of
the mirror image solution. So, we choose one solu-
tion by selecting + and letting Q = I. From eq. (15),
the vector mi, or the ith column of the matrix M , is
given by

mi =
√

λi




(u†1(1), vi)
(u†1(2), vi)
(u†2(1), vi)

...
(u†M(2), vi)




. (67)

The three columns m1, m2 and m3 determines
the matrix M , which determines the 3-D vectors
{m†

κ(a)}. Let r†κ(i) the ith column of the transpose

R>
κ . Eq. (19) is rewritten as

ζκm†
κ(1) = r†κ(1) − βκtxκr†κ(3),

ζκm†
κ(2) = r†κ(2) − βκtyκr†κ(3). (68)

Since {r†κ(1), r†κ(2), r†κ(3)} is a right-handed orthonor-
mal system, the vector product of eqs. (68) on both
sides is

ζ2
κm†

κ(1)×m†
κ(2) = βκtxκr†κ(1)+βκtyκr†κ(2)+r†κ(3). (69)

Solving eqs. (68) and (69) for r†κ(1), r†κ(2), and r†κ(3),
we obtain

r†κ(3) = ζκ

(ζκm†
κ(1)×m†

κ(2)−βκ(txκm†
κ(1)+tyκm†

κ(2))

1 + β2
κ(t2xκ + t2yκ)

)
,

r†κ(1) = ζκm†
κ(1) + βκtxκr†κ(3),

r†κ(2) = ζκm†
κ(2) + βκtyκr†κ(3). (70)

However, the resulting {r†κ(1), r†κ(2), r†κ(3)} may not
be strictly orthonormal in the presence of noise in the
data. In order to make them strictly orthonormal, we
compute the following SVD:(

r†κ(1) r†κ(2) r†κ(3)

)
= VκΛκU>

κ . (71)

An optimal rotation Rκ that best fits {r†κ(1), r†κ(2),

r†κ(3)} is given as follows [5]:

Rκ = UκV>κ . (72)

E. Mirror Image Solution

If we choose “−” for the “±” in eq. (66), the vec-
tors {mi} given by eq. (67) change their signs. How-
ever, we can still obtain a solution compatible with
eq. (13) if we change the signs of a, b and c. So,
the shape vector solution {sα} has its mirror image
solution {−sα}.

Changing the signs of the vectors {mi} means
changing the signs of the vectors {m†

κ(a)}. If we take
out equations that involve Rκ from eq. (46), we find
that another solution R′

κ exists such that
(

1 0 −βκtxκ

0 1 −βκtyκ

)
Rκ = −

(
1 0 −βκtxκ

0 1 −βκtyκ

)
R′

κ.

(73)
Transposing both sides and letting

R′
κR>

κ = Ωκ, (74)

we can rewrite eq. (73) in the form

Ωκ




1 0
0 1

−βκtxκ −βκtyκ


 =




−1 0
0 −1

βκtxκ βκtyκ


 .

(75)
This means that Ωκ is a rotation that maps
(1, 0,−βκtxκ) and (0, 1,−βκtyκ) to (−1, 0, βκtxκ) and
(0,−1, βκtyκ), respectively. Hence, Ωκ is a rotation
by angle 180◦ around an axis perpendicular to the
plane passing by (1, 0,−βκtxκ)>, (0, 1,−βκtyκ)>, and
the origin O. The unit vector along the axis is given
by

nκ = N [




1
0

−βκtxκ


×




0
1

−βκtyκ


]. (76)

This is rewritten as the first of eqs. (49). The rota-
tion Ωκ is then written in the form of the second of
eqs. (49). From eq. (74), the mirror image rotation
R′

κ is given by the third of eqs. (49).
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