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Dense point matches are generated over two images by rectifying the two images to align epipolar
lines horizontally, and horizontally sliding a template. To overcome inherent limitations of 2-D
search, we incorporate the “naturalness of the 3-D shape” implied by the resulting matches.
After stating our rectification procedure, we introduce our multi-scale template matching scheme
and our outlier removal technique using tentatively reconstructed 3-D shapes. Doing real image
experiments, we discuss the performance of our method and remaining issues.

1. Introduction

Two approaches exist for 3-D reconstruction from
images: one is based on feature tracking through a
video stream, a typical method being the Tomasi-
Kanade factorization [15, 21]; the other is to directly
match feature points in separate images [9, 14]. Here,
we consider the latter.

The basic principle for point correspondence detec-
tion is first applying a feature extraction filter to the
two images separately and then matching those points
that have similar neighborhoods. However, this usu-
ally produces many incorrect matches, or “outliers”.
So, we impose various constraints such as the epipo-
lar equation, homographies, and global consistencies
and reject those that do not satisfy them as outliers
[16, 25].

If we thus keep rejecting questionable matches, the
number of remaining matches decreases. Often, they
concentrate on a particular portion of the image, and
we cannot reconstruct a detailed 3-D shape of the
scene as a texture-mapped polyhedron having these
points as its vertices.
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The standard technique for overcoming this is to
compute the fundamental matrix from the resulting
matches and search for new matches along epipo-
lar lines, which we hereafter abbreviate as epipolars.
This is a well known procedure for stereo vision, and
many efficient searching techniques have been stud-
ied. Among them is to transform the images so
that epipolars become horizontal and have common
heights, which makes template scanning very easy.
Such an image transformation is called image rectifi-
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cation.
The concept of image rectification was first pro-

posed by Ayache et al. [2, 3, 4], who assumed the cam-
eras were calibrated. Since then, various techniques
for simplification [22] and extension [5, 6] have been
proposed. Hartley [8] presented a comprehensive the-
ory of image rectification for uncalibrated cameras,
and many variants for simplification [1], parameter
optimization [10, 17], and extension to trinocular
views [24] have been proposed.

All these techniques are to warp the images accord-
ing to homographies (projective transformations), so
some parts of the images may be mapped to infinity.
To prevent this, Roy et al. [20] introduced cylindrical
coordinates, and Pollefeys et al. [23] used polar co-
ordinates. Oram [19] generalized them into a hybrid
system.

In this paper, we first present a new rectification
procedure using homographies. This is very close to
existing methods [1, 8, 10, 17], but the computation
is simpler, and its geometric meaning is clearer.

In order to increase matching accuracy, we use
templates of multiple sizes and determine the corre-
spondence by hierarchical search and majority voting.
Then, we remove questionable matches by imposing
global consistency.

However, this type of 2-D search is inherently lim-
ited , because we cannot remove wrong matches that
satisfy the epipolar constraint and have similar neigh-
borhoods. Removing such matches inevitably re-
quires 3-D information that tells us that the implied
3-D shape of the scene is “unnatural” in some sense.

In this paper, we present a technique for outliers
using tentative 3-D shapes. Doing real image experi-
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Figure 1: Rotating the image ((a)→(b)). Rectifying epipolars ((b)→(c)). Adjusting heights ((c)→(d)).

ments, we discuss the performance of our method and
remaining issues.

2. Rectification Procedure

Our rectification procedure is as follows (Fig. 1):

1. Input eight or more correspondences over the two
images.

2. Compute the fundamental matrix from them.

3. Compute the epipoles of the images from it.

4. Rotate the images so that the epipoles are on the
horizontal axis.

5. Apply homographies to the two images and map
the epipoles to infinity in the horizontal direc-
tion.

6. Apply a homography to the second image so that
corresponding epipolars have the same height.

We now describes the details of each step.

2.1 Input correspondences

The input correspondences are supplied either by
an automatic matching algorithm [16, 25] or by hand.
This depends on applications, so our system regards
the initial correspondences simply as input.

2.2 Fundamental matrix computation

Since the number of input correspondences may be
small, we use a statistically optimal algorithm called

renormalization1 [11, 14] for computing the funda-
mental matrix with high accuracy.

Here, we need to specify the image coordinate sys-
tem. In our system, we define the image origin (0, 0)
at the frame center and take the x-axis upward and
y-axes rightward so that we can imagine the z-axis ex-
tending away from the viewer, defining a right-handed
xyz coordinate system. We identify the camera op-
tical axis with that hypothetical z-axis and imagine
that the image is at distance f0 (pixels)2 from the
camera lens center (the viewpoint).

Remark 1. Many people overlook the fact that the
numerical value of the fundamental matrix depends
on the coordinate system involved . For example, the
value will be different from ours if the upper-left cor-
ner of the image frame is taken as (0, 0). 2

Remark 2. The camera model introduced here is hy-
pothetical . For a real camera, the intersection of the
optical axis with the image plane (the principal point)
may not be at the frame center; the aspect ratio, the
ratio of the horizontal and vertical intervals of the
photo cell array, may not be 1; the skew angle, the
angle made by the horizontal and vertical axes, may
not be exactly 90◦. But these are irrelevant as far as
image analysis is concerned . Precise camera calibra-
tion is necessary only when we want to reconstruct
the correct 3-D shape of the scene from images. 2

1The source code is publicly available at
http://www.img.tutkie.tut.ac.jp/

2As far as image analysis is concerned, the value f0 is arbi-
trary. In our system, we set f0 = 600.
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2.3 Epipole computation

Let F be the computed fundamental matrix, and
let e and e′ be the unit eigenvectors of F> and F ,
respectively, for eigenvalue 0. Since eigenvectors have
sign indeterminacy, we chose the sign so that the third
component is nonnegative (the sign is irrelevant if the
third component is 0).

The points on the image plane in the direction of
the vectors e and e′ placed at the viewpoint are called
the epipole.

Remark 3. Even in the presence of image noise, the
fundamental matrix F is computed subject to the
constraint det F = 0, so F> and F both eigenvalue
0. In practice, we simply compute the unit eigen-
vectors e and e′ of positive semi-definite symmetric
matrices FF> and F>F , respectively, for the small-
est eigenvalue. 2

Remark 4. As is well known [9], the viewpoint of
the second image is in the direction of e when viewed
from the viewpoint of the first image, and the view-
point of the first image is in the direction of e′ when
viewed from the viewpoint of the second image, How-
ever, these directions are relative to the hypothetical
cameras we are assuming ; they may not coincide with
the physical directions. In order to let them coincide,
we need precise camera calibration. Here, we do not
do 3-D reconstruction, so we can arbitrarily assume
the camera model. 2

2.4 Image Rotations

The epipole (xe, ye) is given from the eigenvector
e = (e1, e2, e3)> as follows:

xe = f0
e1

e3
, ye = f0

e2

e3
. (1)

We rotate the image around the image origin (0, 0) so
that this point is on the y-axis. By this rotation, each
point (x, y) is mapped to a point (x̃, ỹ) such that

x̃ = x cos θ − y sin θ, ỹ = x sin θ + y cos θ, (2)

where θ is the angle of the vector (xe, ye)> measured
from either the positive or the negative side of the
y-axis. After this rotation, the epipole is at (0, e),
where

e = xe sin θ + ye cos θ. (3)

The second image is rotated similarly.

Remark 5. The angle θ is conveniently computed by

θ =
{

tan−1(e1/e2) |e2| ≥ |e1|
π/2− tan−1(e2/e1) |e1| > |e2| . (4)

Then, the epipole is mapped onto the positive side
of the y-axis (e > 0) if the epipole (e1, e2) is in the
half-plane e1 + e2 ≥ 0 and the negative side (e < 0)
if e1 + e2 < 0. 2

Remark 6. Here, we are assuming that e3 6= 0. If
e3 = 0, the epipole is at infinity in the direction of
(e1, e2)> from the image origin, so e = ±∞. However,
if we determine the angle θ by eq. (4), we can rotate
the image irrespective of whether e3 = 0 or not. 2

Remark 7. We cannot use eq. (4) if (xe, ye) = (0,0).
Here, we are assuming that for both image the epipole
is not inside the image frame, so (xe, ye) 6= (0, 0) and
hence e 6= 0. We discuss this assumption later in
further details. 2

2.5 Rectifying epipolars

As is well known [9], the point p′ that corresponds
to a point p in one image is on its epipolar in the other
image, and all epipolars pass through the epipole of
that image. Hence, if we apply a homography that
maps the epipole to infinity, all the epipolars become
parallel to each other. For this, we apply the following
homography that maps (0, e) to (0,±∞):

x̂ =
x̃

1− ỹ/e
, ŷ =

ỹ

1− ỹ/e
. (5)

The second image is transformed similarly.

Remark 8. A homography is a first order rational
mapping with eight parameters [9], but we obtain
eqs. (5) if we demand that

1. point (0, e) be mapped to (0,±∞),

2. points on the x-axis (including the image origin)
do not move, and

3. the rate of expansion of the y-axis be 1 at the
image origin.

2

Remark 9. Note that the mapping (5) can be com-
puted irrespective of whether e3 = 0 or not; we only
need to let ỹ/e in the denominator be 0 if e3 = 0, in
which case e = ±∞. Recall that we are assuming e
6= 0 (see Remark 7). 2

2.6 Height adjustment

After the above procedure, all epipolars in each
image are parallel to each other. Now, we ex-
pand/compress the second image vertically so that
the corresponding epipolars have the same height.
For this, we apply the following homography:

x̄′ =
ax̂′ + b

cx̂ + 1
, ȳ′ =

aŷ′

cx̂′ + 1
. (6)
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The coefficients a, b, and c are determined as fol-
lows. Let {(x̂α, ŷα)} and {(x̂′α, ŷ′α)}, α = 1, ..., N , be
the positions of the input N corresponding feature
points {(xα, yα)} and {(x′α, y′α)} after the procedure
described so far. We determine a, b, and c so that

x̂α ≈ ax̂′α + b

cx̂′α + 1
, α = 1, ..., N. (7)

Eliminating the denominators, we minimize

J =
2∑

α=1

(
ax̂′α + b− x̂α(cx̂α + 1)

)2

. (8)

After differentiation, we obtain the normal equation



∑N
α=1 x̂′α

2
∑N

α=1 x̂′α −∑N
α=1 x̂αx̂′α

2

∑N
α=1 x̂′α N −∑N

α=1 x̂αx̂′α
−∑N

α=1 x̂αx̂′α
2 −∑N

α=1 x̂αx̂′α
∑N

α=1 x̂2
αx̂′α

2






a
b
c




=




∑N
α=1 x̂αx̂′α∑N

α=1 x̂α

−∑N
α=1 x̂2

αx̂′α


 , (9)

from which we obtain a, b, and c. If the input matches
were exact, eq. (7) should hold with equality. Since
this is not the case in general (e.g., they can be spec-
ified at most to integer pixel values), we measure the
accuracy of the resulting rectification by

h =

√√√√ 1
N

N∑
α=1

(x̂α − x̄′α)2, (10)

where (x̄′α, ȳ′α) is the corrected position of (x̂′α, ŷ′α).

Remark 10. A homography has eight parameters as
mentioned earlier, but we obtain eqs. (6) if we de-
mand that

1. horizontal lines be mapped to horizontal lines,

2. points on the y-axis be mapped to points on the
y-axis, and

3. the rate of expansion be the same for the x-axis
and the y-axis at the image origin

2

Remark 11. The above procedure is slightly different
from those described in the literature [1, 8, 10, 17].
Hartley [8] showed that the homography that hori-
zontally aligns epipolars are analytically given from
the fundamental matrix F , and existing methods all
follow this strategy. Hence, no height adjustments
are necessary. However, the homography determined
by Hartley’s method has three degrees of indetermi-
nacy. In fact, epipolars remain the same position if
the second image is

• horizontally translated,

• horizontally expanded/compressed, and

• sheared (or skewed) in such a way that the x-axis
is slanted while the y-axis is fixed.

Existing methods differ in how to fix them using some
kind of optimization. Our method is equivalent to fix
them so that

1. the origin of the first image is fixed,

2. the horizontal position of the origin of the second
image is fixed, and

3. the aspect ratio (the ratio between of vertical and
horizontal rates of expansion/compression) and
the orthogonality are preserved at the origin of
each image.

Thus, not only do we need no optimization but also
the geometric properties of the resulting images are
clear, while they are often difficult to grasp for exist-
ing methods. In this respect, our method is consid-
ered to be more suitable. 2

Remark 12. Theoretically, we should adjust the
height so as to minimize eq. (10) (or its square). Here,
we use the least-squares minimization of eq. (8) for
computational simplicity. This is optimal if the ex-
pansion/compression is uniform (i.e., c = 0), and this
should be sufficient in practical applications, where c
is usually very small.

2

3. Template Matching

3.1 Image rectification

For the first image, the composition of all the map-
pings is written in terms of vectors and matrices in
the form

x̂ = Z[GRx], x =




x/f0

y/f0

1


 , x̂ =




x̂/f0

ŷ/f0

1




(11)

R=




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 , G=




1 0 0
0 1 0
0 −γ 1


 (12)

γ =
e3

e1 sin θ + e2 cos θ
(13)

where Z[ · ] denotes scale normalization so that the
z component is 1, and θ is the angle computed by
eq. (4). For the second image, we obtain

x̄′ = Z[KG′R′x′] (14)

47



January 2006 Generating Dense Point Matches Using Epipolar Geometry

x′ =




x′/f0

y′/f0

1


 , x̄′ =




x̂′/f0

ŷ′/f0

1


 (15)

K =




a 0 b/f0

0 a 0
cf0 0 1


 (16)

where G′ and R′ are the matrices defined by eqs. (12)
and (13) for the second image.

Remark 13. For actual computation, we define two
empty image frames and copy the intensity (or color)
values of the original images via the inverse mappings
of eqs. (11) and (14):

x = Z[R>G−1x̂], x′ = Z[R′>G′−1K−1x̄′] (17)

2

Remark 14. The value γ in eq. (13) is simply f0/e,
but this expression allows us to compute it irrespec-
tive of whether e3 = 0 or not. 2

Remark 15. As mentioned in Remark 7, we are as-
suming that the epipole is outside the image frame for
both images. If it is inside the image frame, the part
that approaches the epipole from the image origin is
mapped infinitely far away while the part that passes
through it comes back from the opposite direction.
We can avoid such a singularity by using cylindrical
or polar coordinates around the epipole [19, 23, 20].
However, this anomaly occurs when the camera mo-
tion is nearly along the optical axis, and such a cam-
era motion significantly reduces the accuracy of 3-D
reconstruction [23]. In practice, we should avoid such
a camera motion. Here, we assume that camera mo-
tion is more or less horizontal and output a warning
message if the epipole is within a distance3 L from
the origin in either image. The warning condition is

|γ| ≥ f0

L
. (18)

2

Remark 16. If the mappings (17) are applied to pixel
positions, the computed positions are between pixels
in general. Our system estimates the intensity value
there by bilinear interpolation. 2

3.2 Multi-scale template matching

For generating point correspondences over the rec-
tified images, we first extract feature points from
the first original images, using the Harris operator4

3In our system, we take L to be the image size.
4The source code is publicly available at
http://www.img.tutkie.tut.ac.jp/programs/

[7] and map them onto the first rectified image by
eq. (11). Then, we search for their corresponding
positions on the second rectified image by horizon-
tal template matching: we cut out a square region
around each feature point in the first image as a tem-
plate and look for the position in the second at which
the template matches with the least residual. The de-
tected positions are inversely mapped onto the origi-
nal second image by eq. (17).

The difficulty is the choice of the template size. If
the two images look almost the same, the matching
becomes robust by using a large template. If not,
we should use a small template, but we do not know
which is the case in advance.

In our system, we use templates of five sizes 33×33,
17 × 17, 9 × 9, 5 × 5, and 3 × 3 and apply Gaussian
smoothing of sizes 17 × 17, 9 × 9, 5 × 5, 3 × 3, and
0× 0 (i.e., no filtering), respectively, before the tem-
plate matching (the smoothing is done over the orig-
inal images). The standard deviation of smoothing
is 8, 4, 2, 0.5, and 0, respectively. For determining
correspondence, we use the following two strategies:

• Hierarchical search. Letting s = 16, we search
for a corresponding pixel using the template of
size (2s + 1)× (2s + 1). If we find one, we search
nearby using the template of size (2s+1)× (2s+
1). If the newly found pixel is apart from the
previous one by s pixels or more, we judge that
no correspondence exists. Otherwise, we halve s
and repeat the same procedure until s = 1.

• Majority voting. We find for each feature
point in the first image five corresponding points
using the templates of five different sizes sepa-
rately. Let y1 ≤ · · · ≤ y5 be their positions. If
the shortest of the intervals [y1, y3], [y2, y4], and
[y3, y5] is of four pixels or less, we decide the cor-
responding point to be at the average of the four
positions in that shortest interval. Otherwise, we
judge that no correspondence exists.

According to our experiments, both worked satis-
factorily, and we were unable to decide which is uni-
versally better than the other. So, we let the user
choose either as an option.

Remark 17. The similarity of images is usually mea-
sured by the residual sum of square

RSS =
∑

(x,y)∈T
(I1(x, y)− I2(x′, y′))2, (19)

where T is the template region, I1 and I2 are the
intensity values of the first and second images, re-
spectively, and (x′, y′) is the pixel to be compared
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with pixel (x, y) in the template region. If illumina-
tion changes occur between the images, this RSS may
not give a low value for correct matching. This can be
avoided by normalizing the intensity values of the two
images in such a way that their mean is 0 and their
variance is 1 inside the template region. This is math-
ematically equivalent to maximizing what is known as
the normalizing correlation. However, this also dete-
riorates the matching performance, sometimes match-
ing two points that should not be matched. So, we
let the user decide as an option whether or not the
intensity is normalized. 2

Remark 18. The heights the feature points in the
first rectified image are real numbers in general. Not
rounding them to integers, we directly search along
the corresponding horizontal lines in the second rec-
tified image. The inter-pixel intensity value is com-
puted by bilinear interpolation. 2

Remark 19. According to our experiments, the effect
of the Gaussian smoothing is very small, producing
no appreciable differences. In some cases, however,
it helps match points on object occluding boundaries
with different backgrounds. 2

Remark 20. The Gaussian smoothing is applied to
all pixels including those near the frame boundary,
in which case we use a truncated Gaussian kernel.
Similarly, the template is scanned over all pixels in-
cluding those near the frame boundary, in which case
we evaluate the similarity in terms of per pixel. So,
no anomalies occur near the frame boundary. 2

3.3 Subpixel correction

Theoretically, corresponding points should exactly
be on their epipolars. However, the original feature
points can be located only up to integers even if no
other noise sources exist, and the computed epipo-
lars are not exact, either. On top of that, we search
along the epipolars only at one-pixel intervals, so the
matching accuracy is limited at most to one pixel.

We improve this by doing subpixel search: we
translate the template around the detected position
up, down, left, and right by distance h and move to
the position that gives the smallest residual value.
From there, we repeat the same procedure after halv-
ing the distance h until h is sufficiently small. The
initial value of h should reflect the accuracy of the
rectification, so start with the value given by eq. (10).

3.4 Global consistency

Some outliers may still remain after the above pro-
cedure. These can be easily found if we observe the

“optical flow” (the horizontal line segments connect-
ing corresponding positions by identifying the two
frames). Very long segments are mostly due to mis-
matches, so we remove them. To be specific, we eval-
uate the mean µ and the standard deviation σ of the
segment lengths and remove those outside the interval
[µ− 2σ, µ + 2σ] around µ.

4. Use of 3-D Information

Although almost all outliers are removed by the
above procedure, there may still remain a few, for
which

1. the epipolar constraint is satisfied, and

2. the neighborhoods of the two points look the
same.

Such outliers occurs, for example, at a “T-
junction” (the intersection of the boundaries of a
nearby object and another object behind it); their
appearances look as if the same, yet they are physi-
cally different parts of the scene. Theoretically, it is
impossible to remove such false matches by 2-D image
processing alone.

However, such false matches can be detected if we
use 3-D information about the scene. If we do 3-D re-
construction from the detected matches, the 3-D po-
sitions computed from false matches have very large
variations in their depths. If we display the 3-D shape
as a polyhedron having the matching points as ver-
tices, false matches usually result in marked “spikes”.
So, we remove such spikes by the following procedure.

We compute the fundamental matrix optimally
from the given matches [11] and computing the depth
Z of each feature point p by the method of Kanatani
and Ohta [14]. Then, we remove those points that
have negative depths (for one or both of the images).
Recomputing the fundamental matrix from the re-
maining matches, we repeat the same procedure until
no negative depths arise.

Next, we define a Delaunay triangular mesh with
vertices at the feature points in the first image and
represent the 3-D shape of the scene as polyhedral
surface. We define for each vertex p the discrete
Laplacian L(p) by

L(p)=
Z−(average depth of incident points)

(average horizontal length of incident edges)
,

(20)
where the “incident points” means those points that
are connected to the point p by the edges of the
Delaunay triangulation, and the “incident edges”
mean those edges. Then, the “horizontal length”
of points (X,Y, Z) and (X ′, Y ′, Z ′) is defined to be√

(X −X ′)2 + (Y − Y ′)2.
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a), (b) Input images and input correspondences. (c) Correspondences generated by automatic matching
(“optical flow”). (d) Feature points in the first rectified image. (e) Detected corresponding points in the second rectified
image. (f) “Optical flow” of the correspondence between (d) and (e). Thick line segments are removed by the global
consistency judgment.

Setting a threshold5 θ, we decide that a vertex p
is a “spike” if

|L(p)| > θ, (21)

and if p is an extremal point, i.e.,

Z > (maximum depth of incident points)
or

Z < (minimum depth of incident points).

After removing such “spikes”, we recompute the
fundamental matrix from the remaining matches and
repeat the same procedure until no spikes appear.

Remark 21. The method Kanatani and Ohta [14]
first computes the focal lengths of the two cam-
eras and then computes the depths of the individ-
ual feature points. If the correspondences contain
false matches, the computed fundamental matrix may
not be accurate, resulting in imaginary focal lengths
(i.e., some expressions inside root squares become
negative), and elaborate methods were presented for
avoiding this [13, 18]. Here, however, we do not need
precise focal lengths. If we use wrong values, the

5In our system, we set θ = 3.

reconstructed shape is a transformation of the true
shape by a 3-D homography, known as projective re-
construction [9]. Still, the qualitative shape is pre-
served. The purpose of 3-D reconstruction here is
tentative for removing “spikes”, so it suffices to use
an appropriate approximation to the focal lengths. 2

5. Real Image Examples

Figs. 2(a),(b) show two input images. If we ex-
tract 300 feature points from them separately using
the Harris operator and automatically match them
by the method of Kanazawa and Kanatani6 [16], we
obtain 109 correspondences in Fig. 2(c), where the
positions in the first image and their “optical flow”
are shown. We can see that they concentrate on pla-
nar background parts.

Figs. 2(d),(e) are rectification of Figs. 2(a),(b) us-
ing 10 point correspondences given by hand. We de-
tected 300 feature points from the first original im-
age using the Harris operator and mapped them onto
Fig. 2(d) as shown there. Doing multi-scale template

6The source code is publicly available at
http://www.img.tutkie.tut.ac.jp/programs/
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Tentative 3-D reconstruction from the correspondences in Fig. 2. (b), (c) Final corresponding points using
3-D information. (d) Corresponding 3-D shape. (e), (f) Positions of removed feature points by our method.

matching described in Sec. 3.2 (we used hierarchi-
cal search), we found 255 corresponding points as in-
dicated in Fig. 2(e). Fig. 2(f) shows their “optical
flow”. The thick line segments are judged to be mis-
matches by the global consistency judgment described
in Sec. 3.4.

Fig. 3(a) shows the resulting tentative 3-D shape.
Removing 16 matches that cause marked spikes (no
negative depths arises in this case), we finally ob-
tain 198 matches as shown in Fig. 3(b),(c). We ob-
tain many matching points on the isolated object sur-
face, too. Fig. 3(d) shows the resulting 3-D shape.
Figs. 3(e),(f) show all the positions of feature points
removed by our method.

We did many experiments using many other im-
ages and found that the removal of matches occur in
the following cases:

1. Some points in the first image may do not have
corresponding points in the second image: they
are occluded by objects in front or outside the
image frame.

2. Some points in a nearly periodical pattern are
matched to similar but wrong points in the pat-
tern.

3. Some points have similar neighborhoods by
chance but they do not correspond to each other.

4. T-junctions are matched to the corresponding T-
junctions in the other

5. Some correct matches are removed because large
depth variations exit; they are removed by the
global consistency judgment or regarded as caus-
ing spikes.

It has been well known that mismatches arise in
Cases 1∼4. This is a major obstacle to 3-D recon-
struction from images. In Cases 1∼4, it is difficult to
remove such mismatches by 2-D image processing as
long as they satisfy the epipolar constraint. In order
to remove them, we must necessarily resort to 3-D
information as we did here.

On the other hand, if we require some kind of “nat-
uralness” of the scene, as we did here, some correct
matches may also be removed (Case 5). This is an in-
evitable trade-off, and reducing such false negatives
without increasing false positives is an important re-
maining issue.

6. Concluding Remarks

We described a new procedure7 for generating
dense point matches over two images: we compute
the fundamental matrix from given initial matches,

7The source code is publicly available at
http://www.suri.it.okayama-u.ac.jp/
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rectify the two images so that all epipolars are hor-
izontal, and find dense matches by template match-
ing. To increase the matching accuracy, we intro-
duced multi-scale template matching and global con-
sistency judgment.

Our rectification procedure is different from exist-
ing ones based on Hartley’ theory [8]. Our method
does not require any optimization procedure, and the
geometric meaning is very clear.

However, such 2-D search is inherently limited. In
order to overcome this, we introduced an outlier re-
moval technique using a tentative reconstructed 3-D
shape. Using real images, we confirmed the effective-
ness of our method and discussed remaining issues.
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