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We present a new method for optimally computing the 3-D rotation from two sets of 3-D data.
Unlike 2-D data, the noise in 3-D data is inherently inhomogeneous and anisotropic, reflecting
the characteristics of the 3-D sensing used. To cope with this, Ohta and Kanatani introduced
a technique called “renormalization”. Following them, we represent a 3-D rotation in terms of
a quaternion and compute an exact maximum likelihood solution using the FNS of Chojnacki et
al. As an example, we consider 3-D data obtained by stereo vision and optimally compute the
3-D rotation by analyzing the noise characteristics of stereo reconstruction. We show that the
widely used method is not suitable for 3-D data. We confirm that the renormalization of Ohta and
Kanatani indeed computes almost an optimal solution and that, although the difference is small,
the proposed method can compute an even better solution.

1. INTRODUCTION

The task of autonomous robots to reconstruct the
3-D structure of the scene using stereo vision and si-
multaneously compute its location in the map of the
environment is called SLAM (Simultaneous Localiza-
tion and Mapping) and is one of the central themes of
robotics studies today. One of the fundamental tech-
niques for this is to compute the 3-D motion (trans-
lation and rotation) of the robot between two time
instances. This information is acquired by comput-
ing the 3-D motion of the scene relative to the robot.
Translation is easily computed by the time change
of the centroid of the 3-D points that the robot is
tracking. However, rotation is not so easy to com-
pute, because 3-D data, unlike 2-D data, necessarily
have inhomogeneous and anisotropic noise originating
from the nature of 3-D sensing. If this fact is ignored,
a correct rotation cannot be computed.

Similar problems occur in reconstructing the entire
3-D object shape using 3-D sensing. We need multi-
ple sensors, because each sensor can reconstruct only
the part that is visible from it. In order to obtain
the entire 3-D shape, we need to integrate multiple
3-D parts reconstructed from different sensors. How-
ever, each sensor has different noise characteristics,
depending on its type, position and orientation. If
this fact is ignored, relative rotations among different
parts cannot be correctly computed.

———————
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This problem is not limited to computer vision
∗E-mail kanatani@suri.cs.okayama-u.ac.jp

but is universal to all problems involving 3-D sens-
ing, including geodetic science, which concerns mea-
surement of the earth surface from multiple satel-
lite sensor data [4]. Thus, 3-D rotation estimation
is an important problem in many engineering appli-
cations and has been extensively studied since 1980s
[1, 3, 7, 8, 11, 19]. However, almost all proposed
algorithms assume homogeneous and isotropic noise.
Among them, which are all mathematically equiva-
lent, the simplest formulation may be the use of the
singular value decomposition (SVD) [10, 11, 19] (Ap-
pendix A).

However, the assumption of homogeneous and
isotropic noise is totally unrealistic to 3-D data.
For 2-D image positions extracted by image pro-
cessing operations, it may be natural to assume
that the x and y coordinates undergo homogeneous
and isotropic noise unless the images are known to
have special positional and directional characteristics.
However, 3-D data are acquired by 3-D sensing such
as stereo vision and laser/ultrasonic range finders.
Their accuracy is different in the depth orientation
and the direction orthogonal to it, resulting in an in-
homogeneous and anisotropic noise distribution.

It is Ohta and Kanatani [18] who first pointed out
the inevitable inhomogeneity and anisotropy of the
noise in 3-D data and presented an optimal 3-D ro-
tation estimation scheme that takes it into account.
They used a technique called renormalization (Ap-
pendix B), which iteratively removes statistical bias
of reweight least squares by doing detailed statistical
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Figure 1: Geometry of 3-D rotation.

error analysis [12]. As a result, a solution statisti-
cally equivalent to maximum likelihood (ML) is ob-
tained. However, the solution does not necessarily co-
incide with the exact ML solution. Later, Chojnacki
et al. [2] proposed an iterative scheme, called FNS
(Fundamental Numerical Scheme), similar to renor-
malization but able to compute an exact ML solution.
The same solution can be computed by the method
called HEIV (Heteroscedastic Errors in Variable) of
Leedan and Meer [16] and Matei and Meer [17] as
well.

In this paper, we adopt, following Ohta and
Kanatani [18], the quaternion representation of 3-D
rotation and derive a scheme for computing an exact
ML solution using the FNS of Chojnacki et al. [2].
Analyzing the uncertainty of 3-D reconstruction by
stereo vision, we optimally estimate the 3-D rotation
and compare the result with the theoretical accuracy
limit called the KCR lower bound [12, 13]. It is shown
that the widely used method assuming homogeneous
and isotropic noise [1, 3, 7, 8, 11, 19] performs very
poorly. It is confirmed that the renormalization of
Ohta and Kanatani [18] indeed produces almost an
optimal solution and that our new method can com-
pute a slightly more accurate solution.

2. QUATERNION REPRESENTATION

If a point r rotates around an axis l (unit vector)
by angle Ω (radian) screwwise to r′, the geometry of
rotation implies the following relationship (Fig. 1):

r′ − r = 2 tan
Ω
2

l × r + r′

2
. (1)

This is rewritten as

q0(r′ − r) − ql × (r′ + r) = 0, (2)

where we define

q0 = cos
Ω
2

, ql = l sin
Ω
2

. (3)

This definition implies q2
0 + ‖ql‖2 = 1. Hence, a 3-D

rotation is specified by a unit vector

q =
(

q0

ql

)
, (4)

which is known as the quaternion1. Given a quater-
nion q, the angle Ω and the axis l of the rotation it
represents are given by

Ω = 2 cos−1 q0, l = N [ql], (5)

where N [ · ] denotes normalization into unit norm.
In the following, we define the product a × T of a
vector a and a matrix T as the matrix whose three
columns are the vector products of a and the respec-
tive columns of T . From this definition, we see that
for a vector a = (ai) and the unit matrix I

a × I =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (6)

which is an antisymmetric matrix. It is easy to see
the identities (a×I)b = a×b and (a×I)T = a×T
for any vectors a and b and any matrix T . Hereafter,
we abbreviate T (a × I)> to T × a.

3. OPTIMAL ESTIMATION

Suppose we have measurement data of 3-D posi-
tions rα before rotation and their positions r′

α after
rotation, α = 1, ..., N . Measurement entails uncer-
tainty to some extent. Modeling it by Gaussian noise,
we assume that the covariance matrices of rα and
r′

α have the form of ε2V0[rα] and ε2V0[r′
α], respec-

tively, where ε, which we call the noise level , repre-
sents the magnitude of the noise, while V0[rα] and
V0[r′

α], which we call the normalized covariance ma-
trices, describe the directional characteristics of the
noise distribution. Optimal estimation in the sense
of maximum likelihood (ML) is to minimize the Ma-
halanobis distance (the multiplier 1/2 is merely for
convenience)

J =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α)), (7)

with respect to r̄α, r̄′
α subject to

q0(r̄′
α − r̄α) − ql × (r̄′

α + r̄α) = 0, (8)

for some q0 and ql. Throughout this paper, we de-
note the inner product of vectors a and b by (a, b).
If we let V0[rα] = V0[r′

α] = I, the above formula-
tion reduces to the case of homogeneous isotropic
noise, which has been extensively studied in the past
[1, 7, 8, 11, 19]. If that is the case, we may regard rα

as noiseless and only r′
α as noisy, or r′

α as noiseless
1Mathematically, q is called a “quaternion” when associated

with its algebra, i.e., the rule of composition [9]. However, the
quaternion algebra does not play any role in this paper.
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and rα as noisy; the solutions are the same [5]. If
the noise is inhomogeneous and anisotropic, however,
the noise characteristics before and after the rotation
both affect the solution. Introducing Lagrangian mul-
tipliers λα for the constraint of Eq. (8), we consider

J̃ =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α))

−
N∑

α=1

(λα, q0(r̄′
α − r̄α) − ql × (r̄′

α + r̄α)). (9)

Using the identities (λα, ql × r̄α) = −(ql × λα, r̄α)
and (λα, ql × r̄′

α) = −(ql × λα, r̄′
α), we can obtain

the derivatives of J̃ with respect to r̄α and r̄′
α in the

form

∇r̄α J̃ = −V0[rα]−1(rα − r̄α) + q0λα − ql × λα,

∇r̄′
α
J̃ = −V0[r′

α]−1(r′
α − r̄′

α) − q0λα − ql × λα.

(10)

Setting these to 0, we obtain

r̄α = rα − V0[rα](q0λα − ql × λα),
r̄′

α = r′
α + V0[r′

α](q0λα + ql × λα). (11)

Substitution of these into Eq. (8) yields

q0(r′
α − rα) + q2

0(V0[r′
α] + V0[rα])λα

+q0(V0[r′
α] − V0[rα])(ql × λα) − ql × (r′

α + rα)
−ql × (q0(V0[r′

α] − V0[rα])λα)
−ql × (V0[r′

α] + V0[rα])(ql × λα) = 0, (12)

which is rewritten as

−q0(r′
α − rα) + ql × (r′

α + rα) = V αλα, (13)

where we define the matrix V α by

V α = q2
0(V0[r′

α] + V0[rα])
−2q0S[ql × (V0[r′

α] − V0[rα])]
+ql × (V0[r′

α] + V0[rα]) × ql. (14)

The operator S[ · ] designates symmetrization (S[A]
= (A + A>)/2). Letting W α = V −1

α , we obtain λα

from Eq. (13) in the form

λα = −W α

(
r′

α − rα (r′
α + rα) × I

) (
q0

ql

)
= W αXαq, (15)

where q is the quaternion defined in Eq. (4), and Xα

is a 3 × 4 matrix in the form

Xα =
(
r′

α − rα (r′
α + rα) × I.

)
(16)

Substituting Eqs. (11) into Eq. (7), we see that

J =
1
2

N∑
α=1

(
(V0[rα](q0λα − ql × λα), q0λα − ql × λα)

+(V0[r′
α](q0λα + ql × λα), q0λα + ql × λα)

)
=

1
2

N∑
α=1

(λα, V αλα). (17)

After substitution of Eq. (15), we obtain

J =
1
2

N∑
α=1

(W αXαq, V αW αXαq)

=
1
2

N∑
α=1

(q,X>
α W αW−1

α W αXαq)

=
1
2
(q, Mq), (18)

where we have defined the 4 × 4 matrix M by

M =
N∑

α=1

X>
α W αXα. (19)

This is the formulation introduced by Ohta and
Kanatani [18].

4. OPTIMIZATION PROCEDURE

For minimizing Eq. (18), Ohta and Kanatani [18]
used a technique called renormalization, which it-
eratively removes statistical bias of reweight least
squares by doing detailed statistical error analysis
[12]. As a result, a solution statistically equivalent
to ML is obtained, but it does not necessarily coin-
cide with the exact ML solution. Here, we directly
minimize Eq. (18). Differentiation of Eq. (18) with
respect to qκ, κ = 0, 1, 2, 3, gives

∂J

∂qκ
=

3∑
λ=0

Mκλqλ +
1
2
(q,

∂M

∂qκ
q), (20)

where Mκλ is the (κλ) element of M . From Eq. (19),
the derivative of the matrix M is

∂M

∂qκ
=

N∑
α=1

X>
α

∂W α

∂qκ
Xα. (21)

First, we evaluate ∂W α/∂qκ. The matrix W α is de-
fined by W α = V −1

α . Differentiating V αW α = I
with respect to qκ on both sides, we have

∂V α

∂qκ
W α + V α

∂W α

∂qκ
= O, (22)

from which we obtain ∂W α/∂qκ in the form

∂W α

∂qκ
= −V −1

α

∂V α

∂qκ
W α = −W α

∂V α

∂qκ
W α. (23)
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Hence, (q, ∂M/∂qκq) is expressed from Eq. (21) in
the form

(q,
∂M

∂qκ
q) = −(q,

N∑
α=1

X>
α W α

∂V α

∂qκ
W αXαq)

= −
N∑

α=1

(W αXαq,
∂V α

∂qκ
W αXαq)

= −
N∑

α=1

(pα,
∂V α

∂qκ
pα), (24)

where we put
pα = W αXαq. (25)

Next, we evaluate ∂V α/∂qκ, κ = 0, 1, 2, 3. From
Eq. (14), we obtain

∂V α

∂q0
= 2q0(V0[r′

α] + V0[rα])

−2S[ql × (V0[r′
α] − V0[rα])]

∂V α

∂q1
= −2q0S[i × (V0[rα] − V0[r′

α])]

+2S[i × (V0[rα] + V0[r′
α]) × ql]

∂V α

∂q2
= −2q0S[j × (V0[rα] − V0[r′

α])]

+2S[j × (V0[rα] + V0[r′
α]) × ql]

∂V α

∂q3
= −2q0S[k × (V0[r′

α] − V0[rα])]

+2S[k × (V0[r′
α] + V0[rα]) × ql], (26)

where we put i = (1, 0, 0)>, j = (0, 1, 0)>, and k =
(0, 0, 1)>. Thus, we can express (pα, ∂V α/∂qκpα) as
follows:

(pα,
∂V α

∂q0
pα) = 2q0(pα, (V0[r′

α] + V0[rα])pα)

+2(ql, pα × (V0[r′
α] − V0[rα])pα),

(pα,
∂V α

∂q1
pα) = 2q0(i, pα × (V0[r′

α] − V0[rα])pα)

+2(i,pα × (V0[r′
α] + V0[rα]) × pα)ql),

(pα,
∂V α

∂q2
pα) = 2q0(j,pα × (V0[r′

α] − V0[rα])pα)

+2(j, pα × (V0[r′
α] + V0[rα]) × pα)ql),

(pα,
∂V α

∂q3
pα) = 2q0(k, pα × (V0[r′

α] − V0[rα])pα)

+2(k, pα × (V0[r′
α] + V0[rα]) × pα)ql).

(27)

From these, the term (1/2)(q, ∂M/∂qκq) in Eq. (24)
is expressed as

1
2
(q,

∂M

∂q0
q) = −q0a − (ql, b),

1
2
(q,

∂M

∂q1
q) = −q0(i, b) − (i,Cql)

1
2
(q,

∂M

∂q2
q) = −q0(j, b) − (j,Cql),

1
2
(q,

∂M

∂q3
q) = −q0(k, b) − (k, Cql), (28)

where we define the scalar a, the vector b, and the
matrix C as follows:

a =
N∑

α=1

(pα, (V0[r′
α] + V0[rα])pα),

b = pα × (V0[r′
α] − V0[rα])pα,

C =
N∑

α=1

pα × (V0[r′
α] + V0[rα]) × pα. (29)

Thus, the vector consisting of (1/2)(q, ∂M/∂qκq), κ
= 0, 1, 2, 3, is given by

−


q0a + (ql, b)

q0(i, b) + (i, Cql)
q0(j, b) + (j, Cql)
q0(k, b) + (k, Cql)

 = −
(

q0a + (ql, b)
q0b + Cql

)

= −
(

a b>

b C

)
q = −Lq, (30)

where L is the following 4 × 4 matrix:

L =
N∑

α=1

(
(pα, (V0[r′

α] + V0[rα])pα)
pα × (V0[r′

α] − V0[rα])pα

(pα × (V0[r′
α] − V0[rα])pα)>

pα × (V0[r′
α] + V0[rα]) × pα

)
. (31)

Now, Eq. (20) can be expressed as a vector equation

∇qJ = Mq − Lq. (32)

5. FNS PROCEDURE

Our task is to compute the unit vector q that
makes Eq. (32) 0, for which we can use the FNS of
Chojnacki et al. [2]. The FNS procedure goes as fol-
lows:

1. Compute the matrices Xα in Eq. (16) from the
positions rα and r′

α before and after the rotation,
and provide an initial guess of q.

2. Compute the matrices V α in Eq. (14) and W α

= V −1
α .

3. Compute the matrix M in Eq. (19), the vectors
pα in Eq. (25), and the matrix L in Eq. (31).

4. Solve the eigenvalue problem

(M − L)q′ = λq′, (33)

and compute the unit eigenvector q′ correspond-
ing to the smallest eigenvalue λ.
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5. If q′ ≈ ±q, return q′ and stop. Else, let q ← q′,
and go back to Step 2.

We need an an initial guess of q. The simplest choice
is, as done by Ohta and Kanatani [18], the use of the
unit eigenvector q of the matrix

M0 =
N∑

α=1

X>
α Xα (34)

for the smallest eigenvalue.

6. COVARIANCE MATRIX EVALUATION

The above algorithm involves the normalized co-
variance matrices V0[rα] and V0[r′

α] that characterize
the distributions of noise in rα and r′

α. The noise
characteristics depend on what kind of 3-D sensing
is used for measuring rα and r′

α. Here, we con-
sider stereo vision. We fix an XY Z world coordinate
system and regard the reference camera position as
placed at the coordinate origin O with the optical
axis aligned to the Z-axis. The image xy coordinate
system is defined in such a way that its origin o is
at the principal point (the intersection with the opti-
cal axis) and the x- and y-axis are parallel to the X-
and Y -axis of the world coordinate system, respec-
tively. Then, the camera is rotated around the world
coordinate origin O by R (rotation matrix) and trans-
lated by t from the reference position. We call {R,
t} the motion parameters of the camera. The camera
imaging geometry is modeled by perspective projec-
tion with focal length f , projecting a 3-D point onto
a 2-D point (x, y) by the following relationship [6]:

x ' PX, x ≡

 x/f0

y/f0

1

 , X ≡
(

r
1

)
.

(35)
The symbol ' means equality up to a nonzero con-
stant multiplier, and f0 is a scale constant of approxi-
mately the image size for stabilizing finite length com-
putation. The 3 × 4 projection matrix P is given by

P =

 f/f0 0 0
0 f/f0 0
0 0 1

 (
R> −R>t

)
, (36)

where the aspect ratio is assumed to be 1 with no
image skews, or so corrected by prior calibration.

We consider two cameras with motion parameters
{R, t} and {R′, t′} with focal lengths f and f ′, re-
spectively. Let P and P ′ be the projection matrices
of the respective cameras, and x and x′ the images
of a point in 3-D observed by the respective cam-
eras. Image processing for correspondence detection
entails uncertainty to some extent, and we model it
by independent isotropic Gaussian noise of mean 0

and standard deviation σ (pixels). Due to noise, the
detected points x and x′ do not exactly satisfy the
epipolar constraint (Appendix C), so we correct x
and x′, respectively, to x̂ and x̂′ that exactly satisfy
the epipolar constraint in an optimal manner (Ap-
pendix D). From the corrected positions x̂ and x̂′,
the corresponding 3-D position r̂ is uniquely deter-
mined (Appendix C).

Note that although the noise in xα and x′
α is as-

sumed to be independent, the noise in the corrected
positions x̂α and x̂′

α is no longer independent [12].
The normalized covariance matrices V0[x̂] and V0[x̂

′]
and the normalized correlation matrices V0[x̂, x̂′] and
V0[x̂

′, x̂] are given as follows [12, 15]:

V0[x̂] =
1
f2
0

(
P k − (P kF x̂′)(P kF x̂′)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
,

V0[x̂
′] =

1
f2
0

(
P k − (P kF>x̂)(P kF>x̂)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
,

V0[x̂, x̂′] =
1
f2
0

(
− (P kF x̂′)(P kF>x̂)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
= V0[x̂

′, x̂]>. (37)

Here, we define P k ≡ diag(1, 1, 0).
Since the vector X̂ reconstructed from x̂ and x̂′

satisfies the projection relationship in Eq. (35), vec-
tors x̂ and PX̂ are parallel, and so are x̂′ and P ′X̂.
Thus, we have

x̂ × PX̂ = 0, x̂′ × P ′X̂ = 0 (38)

It follows that if the noise in x̂ and x̂′ is ∆x̂ and
∆x̂′, respectively, the noise ∆X̂ in X̂ satisfies to a
first approximation

∆x̂ × PX̂ + x̂ × P∆X̂ = 0,

∆x̂′ × P ′X̂
′
+ x̂′ × P ′∆X̂ = 0. (39)

These are combined into one equation in the form(
x̂×P̃

x̂′×P̃
′

)
∆r̂=

(
(PX̂)×I O

O (P ′X̂)×I

)(
∆x̂
∆x̂′

)
,

(40)
where P̃ and P̃

′
are the left 3 × 3 submatrices of

the 3× 4 projection matrices P and P ′, respectively.
Multiplying both sides by the transpose of the left-
hand side from left, we obtain(

(x̂ × P̃ )>(x̂ × P̃ ) + (x̂′ × P̃
′
)>(x̂′ × P̃

′
)
)
∆r̂

=
(
(x̂ × P̃ )>((PX̂) × I)

x̂′ × P̃
′
)>((P ′X̂) × I)

) (
∆x̂
∆x̂′

)
. (41)

The following identities hold [12]:

(x̂ × P̃ )>(x̂ × P̃ ) = P̃
>

(x̂ × I)>(x̂ × I)P̃

14
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Figure 2: 3-D measurement of a grid point by stereo
vision and its uncertainty ellipsoid.

= ‖x̂‖2P̃
>

PN [x̂]P̃ ,

(x̂′ × P̃
′
)>(x̂′ × P̃

′
) = P̃

′>
(x̂′ × I)>(x̂′ × I)P̃

′

= ‖x̂′‖2P̃
′>

PN [x̂′]P̃
′
. (42)

Here, we define

PN [x̂] ≡ I−N [x̂]N [x̂]>, PN [x̂′] ≡ I−N [x̂′]N [x̂′]>.
(43)

Similarly, we have

(x̂×P̃ )>((PX̂)×I)= P̃
>(

(x̂, PX̂)I−(PX̂)x̂>
)
,

(x̂′×P̃
′
)>((P ′X̂)×I)= P̃

′>(
(x̂′, P ′X̂)I−(P ′X̂)x̂′>

)
.

(44)

Using these, we can rewrite Eq. (41) in the following
form:

A∆r̂ = B

(
∆x̂
∆x̂′

)
,

A ≡ ‖x̂‖2P̃
>

PN [x̂]P̃ + ‖x̂′‖2P̃
′>

PN [x̂′]P̃
′
,

B ≡
(
P̃

>(
(x̂, PX̂)I − (PX̂)x̂>

P̃
′>(

(x̂′, P ′X̂)I − (P ′X̂)x̂′>
))

. (45)

Hence, we obtain

∆r̂∆r̂>=A−1B

(
∆x̂∆x̂> ∆x̂∆x̂>

∆x̂′∆x̂> ∆x̂′∆x̂′>

)
B>(A−1)>.

(46)
Taking expectation on both sides, we obtain the nor-
malized covariance matrix V0[r̂] of the reconstructed
position r̂ in the following form:

V0[r̂] = A−1B

(
V0[x̂] V0[x̂, x̂′]

V0[x̂
′, x̂] V0[x̂

′]

)
B>(A−1)>.

(47)

7. EXPERIMENTS

Our simulation setting is as follows (Fig. 2). A
curved grid surface is rotated by angle 10◦ around an
axis passing through the world coordinate origin O,
and the 3-D position of each grid point is measured
before and after the rotation by stereo vision. The
grid is placed with its center at the origin O, and the

Before rotation

After rotation

Figure 3: Simulated stereo images of the grid before and
after the rotation.

two cameras are placed so that their lines of sight
meet at O with angle 10◦. Figure. 3 shows simulated
images of the grid surface before and after the rota-
tion. The image size is 500×800 pixels, and the focal
length is set to 600 pixels. Gaussian noise of mean
0 and standard deviation σ pixels is independently
added to the x and y coordinates of the grid points
in the images, and their 3-D positions before and af-
ter the rotation are reconstructed by the method of
Kanatani et al. [14] (Appendices B and C).

Evaluating the normalized covariance matrix
V0[r̂α] in Eq. (47), we find that the uncertainty distri-
bution has an ellipsoidal shape elongated in the depth
direction, as illustrated in Fig 2. The ratio of radii is,
on average over all the points, 1.00 : 1.685 : 5.090 in
the vertical, horizontal, and depth directions, respec-
tively, meaning that the error in the depth direction
is approximately five times as large as in the vertical
direction. We actually measured this ratio by adding
noise to the images many times and found that it is
about 1.00 : 1.686 : 5.095, a very close value to the
prediction by Eq. (47).

Using the thus predicted normalized covariance
matrices V0[r̂α] and V0[r̂

′
α] before and after the ro-

tation, we estimated the rotation of the grid surface
and evaluated the deviation the quaternion q̂ of the
computed rotation from its true value q̄ by

∆q = P q̄q̂, P q̄ ≡ I − q̄q̄>. (48)

Since q̂ is a unit vector, it is on a 3-D sphere S3

in 4-D near q̄. We are interested only in the error
component ∆q of q̂ orthogonal to q̄, because there
is no deviation in the direction of q̄ (Fig. 4). The
matrix P q̄ in Eq. (48) orthogonally projects q̂ onto
the tangent plane to S3 at q̄. After 1000 independent
trials using different nose each time, we evaluated the
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q

∆ q

q

O

Figure 4: The component ∆q of the computed quater-
nion vector q̂ orthogonal to its true value q̄.

Figure 5: The RMS error of the computed rotation vs.
the standard deviation σ of the noise added to the stereo
images. The dotted line shows the KCR lower bound.
1. Optimal estimation assuming homogeneous isotropic
noise. 2. Renormalization. 3. Proposed method.

root-mean-square (RMS) error

E =

√√√√ 1
1000

1000∑
a=1

‖∆q(a)‖2, (49)

where ∆q(a) is the ath value. The theoretical accu-
racy limit, called the KCR lower bound [12, 13], is
given by

EKCR = σtr
( N∑

α=1

X̄
>
α W̄ αX̄α

)−
, (50)

where X̄α and W̄ α are, respectively, the values of
Xα and W α when q, rα and r′

α in their defining
equations are replaced by their true values q̄, r̄α, and
r̄′

α, respectively. The operation ( · )− means the pseu-
doinverse, and tr denotes the matrix trace.

Figure 5 plots the RMS error E for the standard
deviation σ of the noise added to the stereo images,
and the dotted line shows the KCR lower bound. We
compared three methods:

1. The optimal method for homogeneous isotropic
noise (Appendix A).

2. The renormalization of Ohta and Kanatani [18]
(Appendix B).

3. The proposed method.

We can immediately see that the well known
method for homogeneous isotropic noise performs
very poorly. In contrast, the renormalization of Ohta
and Kanatani [18] is confirmed to be highly accurate,
nearly reaching the KCR lower bound. Yet, our pro-
posed method is even better than renormalization,
although the difference is very small.

8. CONCLUSIONS

We have presented a new method for optimally
computing the 3-D rotation from two sets of 3-D data.
Unlike 2-D data, the noise in 3-D data is inherently in-
homogeneous and anisotropic, reflecting the 3-D sens-
ing procedure. Following Ohta and Kanatani [18], we
represented a 3-D rotation in terms of quaternion and
derived a numerical procedure for computing an ex-
act ML solution using the FNS of Chojnacki et al. [2].
We analyzed the uncertainty of 3-D reconstruction
by stereo vision and optimally computed the 3-D ro-
tation. It was shown that the widely used method,
which assumes homogeneous and isotropic noise, is
not suitable for 3-D data. We confirmed that the
renormalization of Ohta and Kanatani [18] indeed
computes almost an optimal solution and that, al-
though the difference is small, the proposed method
can compute an even better solution.

Acknowledgments. The authors thank Orhan Aky-
ilmaz of Istanbul Institute of Technology, Turkey, and
Naoya Ohta of Gunma University, Japan, for helpful dis-
cussions. They also thank our student Hiroki Hara for
helping our numerical experiments. This work was sup-
ported in part by the Ministry of Education, Culture,
Sports, Science, and Technology, Japan, under a Grant
in Aid for Scientific Research (C 21500172).

References

[1] K. S. Arun, T. S. Huang and S. D. Blostein,
Least squares fitting of two 3-D point sets, IEEE
Trans. Patt. Anal. Mach. Intell., 9-5 (1987-5),
698–700.

[2] W. Chojnacki, M. J. Brooks, A. van den Hen-
gel and D. Gawley, On the fitting of surfaces to
data with covariances, IEEE Trans. Patt. Anal.
Mach. Intell., 22-11 (2000), 1294–1303.

[3] L. Dorst, First order error propagation of the
Procrustes method for 3D attitude estimation,
IEEE Trans. Patt. Anal. Mach. Intell., 27-2
(2005-2), 221–229.

[4] Y. A. Felus and R. C. Burch, On symmetrical
three-dimensional datum conversion, GPS Solu-
tions 13-1 (2009-1), 65–74.

[5] D. Goryn and S. Hein, On the estimation of rigid
body rotation from noisy data, IEEE Trans.
Patt. Anal. Mach. Intell., 17-12 (1995-12), 1219–
1200.

16



Kenichi KANATANI and Hirotaka NIITSUMA MEM.FAC.ENG.OKA.UNI. Vol. 45

[6] R. Hartley and A. Zisserman, Multiple View Ge-
ometry in Computer Vision, 2nd ed., Cambridge
University Press, Cambridge, U.K., 2004.

[7] B. K. P. Horn, Closed-form solution of absolute
orientation, using quaternions, Int. J. Opt. Soc.
Am. A-4-4 (1987-4), 629–642.

[8] B. K. P. Horn, H. M. Hildren and S. Negah-
daripour, Closed-form solution of absolute orien-
tation, using orthonormal matrices, Int. J. Opt.
Soc. Am. A-5-7 (1988-7), 1127–1135.

[9] K. Kanatani, Group-Theoretical Methods in Im-
age Understanding , Springer, Berlin, Germany,
1990.

[10] K. Kanatani, Geometric Computation for Ma-
chine Vision, Oxford University Press, Oxford,
U.K., 1993.

[11] K. Kanatani, Analysis of 3-D rotation fitting,
IEEE Trans. Patt. Anal. Mach. Intell., 16-5
(1994-5), 543–449.

[12] K. Kanatani, Statistical Optimization for Ge-
ometric Computation: Theory and Practice,
Elsevier, Amsterdam, the Netherlands, 1996;
reprinted Dover, New York, NY, U.S.A., 2005.

[13] K. Kanatani, Statistical optimization for geo-
metric fitting: Theoretical accuracy analysis and
high order error analysis, Int. J. Comput. Vi-
sion, 80-2 (2008-11), 167–188.

[14] K. Kanatani, Y. Sugaya, and H. Niitsuma, Tri-
angulation from two views revisited: Hartley-
Sturm vs. optimal correction, Proc. 19th British
Machine Vision Conf., September 2008, Leeds,
U.K., pp. 173–182.

[15] Y. Kanazawa and K. Kanatani, Reliability of 3-
D reconstruction by stereo vision, IEICE Trans.
Inf. & Syst., E78-D-10 (1995-10), 1301–1306.

[16] Leedan, Y. and Meer, P.: Heteroscedastic regres-
sion in computer vision: Problems with bilinear
constraint, Int. J. Comput. Vision., 37-2 (2000-
6), pp. 127–150.

[17] J. Matei and P. Meer, Estimation of nonlinear
errors-in-variables models for computer vision
applications, IEEE Trans. Patt. Anal. Mach. In-
tell., 28-10 (2006-10), 1537–1552.

[18] N. Ohta and K. Kanatani, Optimal estimation of
three-dimensional rotation and reliability evalua-
tion, IEICE Trans. Inf. & Syst., E81-D-11 (1998-
11), 1247–1252.

[19] S. Umeyama, Least-squares estimation of trans-
formation parameters between two point sets,
IEEE Trans. Patt. Anal. Mach. Intell., 13-4
(1991-4), 379–380.

APPENDIX

A. Homogeneous Isotropic Noise Case

Various methods are known for optimally comput-
ing the 3-D rotation for homogeneous and isotropic
noise [1, 7, 8, 11, 19], but all are mathematically
equivalent. The simplest is the following method in
terms of the singular value decomposition (SVD) [10]:

1. Compute the following correlation matrix N be-
tween the 3-D positions rα and r′

α before and
after the rotations:

N =
N∑

α=1

r′
αr>

α . (51)

2. Compute the SVD of N in the form

N = Udiag(σ1, σ2, σ3)V >, (52)

where U and V are orthogonal matrices, and σ1

≥ σ2 ≥ σ3 (≥ 0) are the singular values.

3. Return the following rotation matrix:

R = Udiag(1, 1, det(UV >))V >. (53)

B. Renormalization

The renormalization procedure of Ohta and
Kanatani [18] goes as follows:

1. Compute the matrix Xα in Eq. (16) from the
3-D positions rα and r′

α before and after the ro-
tations.

2. Let c = 0 and W α = I (3 × 3 unit matrix).

3. Compute the 4 × 4 matrix M in Eq. (19).

4. Compute the following scalar n, vector n, and
3 × 3 matrix N ′:

n =
N∑

α=1

(W α; V0[r′
α] + V0[rα]),

n = 2
N∑

α=1

vec[A[W α(V0[r′
α] − V0[rα])]],

N ′ =
N∑

α=1

[W α × (V0[r′
α] + V0[rα])]. (54)

Here, the inner product (A; B) of matrices A
= (Aij) and B = (Bij) is defined by (A; B) =∑3

i,j=1 AijBij , and the operator A[ · ] means an-
tisymmetrization (A[A] = (A−A>)/2). For an
antisymmetric matrix A = (Aij) (A> = −A),
we define the vectorization operation vec[ · ] by
vec[ · ] = (A32, A13, A21)>. We also define the
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exterior product [A × B] of matrices A = (Aij)
and B = (Bij) to be a matrix whose (ij) ele-
ment is

∑3
k,l,m,n=1 εiklεjmnAkmBln, where εijk

is a permutation symbol, assuming 1 when (ijk)
is an even permutation of (123), −1 when it is
an odd permutation, and 0 otherwise (i.e., with
repeated indices).

5. Compute the following 4 × 4 matrix N :

N =
(

n n>

n N ′

)
. (55)

6. Solve the eigenvalue problem

(M − cN)q = λq, (56)

and compute the unit eigenvector q correspond-
ing to the smallest eigenvalue λ.

7. If |λ| ≈ 0, return q and stop. Else, go back to
Step 3 after updating c and W α by

c ← c +
λ

(q, Nq)
,

W α ←
(
q2
0(V0[r′

α] + V0[rα])

−2q0S[ql × (V0[r′
α] − V0[rα])]

+ql × (V0[r′
α] + V0[rα]) × ql

)−1

. (57)

C. 3-D Reconstruction by Stereo Vision

If a point (x, y) in the first image of a stereo pair
corresponds to (x′, y′) in the second, they satisfy the
following epipolar constraint [6]:

(

 x/f0

y/f0

1

 , F

x′/f0

y′/f0

1

) = 0, (58)

Here, the matrix F = (Fij), called the fundamental
matrix , is defined by

F11 =

˛

˛

˛

˛

˛

˛

˛

˛

P21 P22 P23 P24

P31 P32 P33 P34

P ′
21 P ′

22 P ′
23 P ′

24

P ′
31 P ′

32 P ′
33 P ′

34

˛

˛

˛

˛

˛

˛

˛

˛

, F12 =

˛

˛

˛

˛

˛

˛

˛

˛

P21 P22 P23 P24

P31 P32 P33 P34

P ′
31 P ′

32 P ′
33 P ′

34

P ′
11 P ′

12 P ′
13 P ′

14

˛

˛

˛

˛

˛

˛

˛

˛

,

F13 =

˛

˛

˛

˛

˛

˛

˛

˛

P21 P22 P23 P24

P31 P32 P33 P34

P ′
11 P ′

12 P ′
13 P ′

14

P ′
21 P ′

22 P ′
23 P ′

24

˛

˛

˛

˛

˛

˛

˛

˛

, F21 =

˛

˛

˛

˛

˛

˛

˛

˛

P31 P32 P33 P34

P11 P12 P13 P14

P ′
21 P ′

22 P ′
23 P ′

24

P ′
31 P ′

32 P ′
33 P ′

34

˛

˛

˛

˛

˛

˛

˛

˛

,

F22 =

˛

˛

˛

˛

˛

˛

˛

˛

P31 P32 P33 P34

P11 P12 P13 P14

P ′
31 P ′

32 P ′
33 P ′

34

P ′
11 P ′

12 P ′
13 P ′

14

˛

˛

˛

˛

˛

˛

˛

˛

, F23 =

˛

˛

˛

˛

˛

˛

˛

˛

P31 P32 P33 P34

P11 P12 P13 P14

P ′
11 P ′

12 P ′
13 P ′

14

P ′
21 P ′

22 P ′
23 P ′

24

˛

˛

˛

˛

˛

˛

˛

˛

,

F31 =

˛

˛

˛

˛

˛

˛

˛

˛

P11 P12 P13 P14

P21 P22 P23 P24

P ′
21 P ′

22 P ′
23 P ′

24

P ′
31 P ′

32 P ′
33 P ′

34

˛

˛

˛

˛

˛

˛

˛

˛

, F32 =

˛

˛

˛

˛

˛

˛

˛

˛

P11 P12 P13 P14

P21 P22 P23 P24

P ′
31 P ′

32 P ′
33 P ′

34

P ′
11 P ′

12 P ′
13 P ′

14

˛

˛

˛

˛

˛

˛

˛

˛

,

F33 =

˛

˛

˛

˛

˛

˛

˛

˛

P11 P12 P13 P14

P21 P22 P23 P24

P ′
11 P ′

12 P ′
13 P ′

14

P ′
21 P ′

22 P ′
23 P ′

24

˛

˛

˛

˛

˛

˛

˛

˛

, (59)

where Pij and P ′
ij are the (ij) elements of the pro-

jection matrices P and P ′ of the first and the second
camera, respectively, as defined in Eq. (36). If we let
r = (X,Y, Z)> be the 3-D point we are looking at, we
obtain from the perspective projection relationship in
Eqs. (35)

x = f0
P11X + P12X + P13X + P14f0

P31X + P32X + P33X + P34f0
,

y = f0
P21X + P22X + P23X + P24f0

P31X + P32X + P33X + P34f0
,

x′ = f0
P ′

11X + P ′
12X + P ′

13X + P ′
14f0

P ′
31X + P ′

32X + P ′
33X + P ′

34f0
,

y′ = f0
P ′

21X + P ′
22X + P ′

23X + P ′
24f0

P ′
31X + P ′

32X + P ′
33X + P ′

34f0
. (60)

Clearing the fraction, we obtain the following simul-
taneous linear equations:

xP31−f0P11 xP32−f0P12 xP33−f0P13

yP31−f0P21 yP32−f0P22 yP33−f0P23

x′P ′
31−f0P

′
11 x′P ′

32−f0P
′
12 x′P ′

33−f0P
′
13

y′P ′
31−f0P

′
21 y′P ′

32−f0P
′
22 y′P ′

33−f0P
′
23


 X

Y
Z



= −


xP34−f0P14

yP34−f0P24

x′P ′
34−f0P

′
14

y′P ′
34−f0P

′
24

 . (61)

These are four equations for three unknowns X, Y ,
and Z, but because the epipolar constraint in Eq. (58)
is satisfied, the solution is unique. In fact, Eq. (58) is
derived as the necessary and sufficient condition for
Eq. (61) to have a unique solution.

D. Optimal Triangulation

Let (x, y) and (x′, y′) be a pair of correspond-
ing points between stereo images. Since correspon-
dence detection by an image processing operations
inevitably entails uncertainty to some degree, they
do not necessarily satisfy the epipolar constraint in
Eq. (58). Geometrically, this corresponds to the fact
that the lines of sight starting from the lens center
of the two cameras and passing through (x, y) and
(x′, y′) in the image plane do not necessarily meet in
the scene (Fig. 6). For optimal 3-D reconstruction, we
need to correct (x, y) and (x′, y′) optimally to (x̂, ŷ)
and (x̂′, ŷ′) so that their lines of sight intersect, i.e.,
Eq. (58) is satisfied. By “optimally”, we mean that
the correction is done in such a way that the reprojec-
tion error (x̂−x)2 +(ŷ−y)2 +(x̂′−x′)2 +(ŷ′−y′)2 is
minimized. This correction procedure goes as follows
[14]:

1. Let E0 = ∞ (a sufficiently large number), x̂ =
x, ŷ = y, x̂′ = x′, ŷ′ = y′, and x̃ = ỹ = x̃′ = ỹ′

= 0, and express the fundamental matrix F =
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Figure 6: The detected corresponding points are op-
timally corrected so that their lines of sight intersect.

(Fij) in the 9-D vector form

f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>.
(62)

2. Compute the following 9×9 matrix V0[ξ̂] and the
9-D vector ξ∗:

V0[ξ̂] =



x̂2 + x̂′2 x̂′ŷ′ f0x̂
′ x̂ŷ

x̂′ŷ′ x̂2 + ŷ′2 f0ŷ
′ 0

f0x̂
′ f0ŷ

′ f2
0 0

x̂ŷ 0 0 ŷ2 + x̂′2

0 x̂ŷ 0 x̂′ŷ′

0 0 0 f0x̂
′

f0x̂ 0 0 f0ŷ
0 f0x̂ 0 0
0 0 0 0

0 0 f0x̂ 0 0
x̂ŷ 0 0 f0x̂ 0
0 0 0 0 0

x̂′ŷ′ f0x̂
′ f0ŷ 0 0

ŷ2 + ŷ′2 f0ŷ
′ 0 f0ŷ 0

f0ŷ
′ f2

0 0 0 0
0 0 f2

0 0 0
f0ŷ 0 0 f2

0 0
0 0 0 0 0


(63)

ξ∗=



x̂x̂′ + x̂′x̃ + x̂x̃′

x̂ŷ′ + ŷ′x̃ + x̂ỹ′

x̂ + x̃
ŷx̂′ + x̂′ỹ + ŷx̃′

ŷŷ′ + ŷ′ỹ + ŷỹ′

ŷ + ỹ
x̂′ + x̃′

ŷ′ + ỹ′

1


. (64)

3. Update x̃, ỹ, x̃′, ỹ′, x̂, ŷ, x̂′, and ŷ′ as follows:

(
x̃
ỹ

)
← (f , ξ∗)

(f , V0[ξ̂]f)

(
F11 F12 F13

F21 F22 F23

)  x̂′

ŷ′

1

 ,

(
x̃′

ỹ′

)
← (f , ξ∗)

(f , V0[ξ̂]f)

(
F11 F21 F31

F12 F22 F32

) x̂
ŷ
1

 ,

(65)

x̂ ← x − x̃, ŷ ← y − ỹ,

x̂′ ← x′ − x̃′, ŷ′ ← y′ − ỹ′. (66)

4. Compute the reprojection error E by

E = x̃2 + ỹ2 + x̃′2 + ỹ′2. (67)

If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop.
Else, let E0 ← E and go back to Step 2.
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