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Many feature tracking algorithms have been proposed for motion segmentation, but the
resulting trajectories are not necessarily correct. In this paper, we propose a technique
for removing outliers based on the knowledge that correct trajectories are constrained to
be in a subspace of their domain. We first fit the subspace to the detected trajectories
robustly using RANSAC and then remove those that have large residuals. Using real
video sequences, we demonstrate that our method is effective even if multiple objects are
moving in the scene. We also confirm that the separation accuracy is indeed improved
by our method.

1. Introduction

Segmenting individual objects from backgrounds
is one of the most important techniques of video pro-
cessing. For images taken by a stationary camera,
many segmentation algorithms based on interframe
subtraction have been proposed. For images taken by
a moving camera, however, the segmentation is very
difficult because the objects and the backgrounds are
both moving in the images.

While most existing methods for multi-body seg-
mentation combine such information as optical flow,
color, and texture along with miscellaneous heuris-
tics, Costeira and Kanade [1] presented a segmenta-
tion algorithm based only on the image motion of
feature points. Since then, various modifications and
extensions of their method have been proposed.

Gear [3] used the reduced row echelon form and
graph matching. Ichimura [5] applied the discrimi-
nation criterion of Otsu [18]. He also used the QR
decomposition for feature selection [6]. Inoue and
Urahama [9] introduced fuzzy clustering. Kanatani
[13, 14] introduced model selection and robust esti-
mation based on a new geometric interpretation of
the Costeira-Kanade algorithm. Maki and Wiles [17]
and Maki and Hattori [16] used Kanatani’s method
for analyzing the effect of illumination on moving ob-
jects. Wu, et al. [22] introduced orthogonal subspace
decomposition.
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In all these methods, two issues need to be re-
solved. One is the estimation of the number of inde-
pendent motions. Many authors set an appropriate
threshold for this, but it has been reported that esti-
mating the number of motions is often more difficult
than the segmentation itself [3]. To cope with this
problem, Kanatani and Matsunaga [15] proposed the
use of model selection criteria.

The other issue is the feature tracking. Most au-
thors use the Kanade-Lucas-Tomasi algorithm [20]
for this, but the resulting trajectories are not always
correct. In order to improve the tracking results,
Ichimura and Ikoma [8] and Ichimura [7] introduced
nonlinear filtering. Huynh and Heyden [4], motivated
by 3-D reconstruction applications, showed that out-
lier trajectories in an image sequence of a static scene
taken by a moving camera can be removed by robustly
fitting a 4-dimensional subspace to them.

In this paper, we extend the method of Huynh
and Heyden [4] to multiple moving objects. Adopting
Kanatani’s geometric interpretation of the segmenta-
tion problem [13, 14], we robustly fit an appropriate
subspace to the detected trajectories using RANSAC
and remove those that have large residuals.

Section 2 summarizes the subspace constraint used
by Kanatani [13]. Sections 3 and 4 describe our out-
lier removal procedure. In Sec. 5, we show real video
sequence examples and demonstrate that our method
is effective even if multiple objects are moving in the
scene. We also confirm that the separation accuracy
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is indeed improved by our method. Section 6 gives
our conclusion.

2. Subspace Constraint

We track N rigidly moving feature points over M
frames and let (xκα, yκα) be the image coordinates of
the αth point in the κth frame. If we stack all the
image coordinates vertically into a 2M -dimensional
vector in the form

pα = (x1α y1α x2α y2α · · · xMα yMα)>, (1)

the trajectory of a moving point can be represented
as a single point in a 2M -dimensional space.

We take an XY Z camera coordinate system with
the Z-axis in the direction of the optical axis. We
fix an object coordinate system to the moving object
and let tκ and {iκ, jκ, kκ} be, respectively, its origin
and orthonormal basis in the κth frame. If we let
(aα, bα, cα) be the object coordinates of the αth point,
its position in the κth frame is

rκα = tκ + aαiκ + bαjκ + cαkκ (2)

with respect to the camera coordinate system.
Assuming an affine camera model (e.g., ortho-

graphic, weak perspective, or paraperspective projec-
tion [10]), we have

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix
and a 2-dimensional vector determined by the posi-
tion and the orientation of the camera and its internal
parameters in the κth frame. From Eq. (2), Eq. (3)
can be rewritten as(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and the orienta-
tion of the camera and its internal parameters in the
κth frame. If the vectors m̃0κ, m̃1κ, m̃2κ, and m̃3κ

are stacked over the M frames vertically into 2M -
dimensional vectors m0, m1, m2 and m3, respec-
tively, the vector pα has the form

pα = m0 + aαm1 + bαm2 + cαm3. (5)

This implies that the trajectories of points that be-
long to the same object are constrained to be in the 4-
dimensional subspace spanned by {m0, m1, m2,m3}
in R2M .

3. Subspace Separation

It follows from the above observation that mul-
tiple moving objects can be segmented by separat-
ing the corresponding points in R2M into distinct 4-
dimensional subspaces. This is the principle under-
lying the subspace separation of Kanatani [13], who

O

Figure 1: Removing outliers by fitting a subspace.

constructed a robust segmentation algorithm by com-
bining the Costeira-Kanade algorithm [1] with model
selection using the geometric AIC [12] and robust es-
timation using LMedS [19]. Applying his method
to real and synthetic images, he demonstrated that
the performance was indeed superior to other exist-
ing methods.

However, his method, as well as other similar
methods, works only when all the trajectories are cor-
rect. In real video processing, detected trajectories
are not all correct. Motivated by 3-D reconstruction
applications, Huynh and Heyden [4] proposed a pro-
cedure for removing outlier trajectories from an image
sequence of a static scene taken by a moving camera.
They robustly fitted a 4-dimensional subspace to the
trajectories by random sampling and removed those
that have large residuals.

In this paper, we extend their method to multiple
objects by noting that if m objects are moving inde-
pendently in a scene, the points {pα} that represent
their trajectories should belong to a 4m-dimensional
subspace. So, we fit a 4m-dimensional subspace to
the detected trajectories using RANSAC [2, 11] and
remove those that have large residuals (Fig. 1).

4. Outlier Removal Procedure

We assume that we know the maximum number
m of independently moving objects in the scene. As-
suming too large a number m is likely to deteriorate
the performance of our algorithm, but we do not go
into the details of estimating it precisely, since this is
a very difficult task with a lot of subtleties involved
[15]. In the following, we are mainly concerned with
the case for m = 1 or 2, which occurs in most prac-
tical applications (though theoretically m can be any
number).

Since we assume a 4m-dimensional subspace to the
detected trajectories, we assume that more than 4m
feature points are tracked throughout the sequence.
Let n = 2M and d = 4m. Our procedure is as follows:

1. Randomly choose d vectors q1, q2, . . ., qd from
{pα}, α = 1, . . ., N .

2. Define an n× n matrix

Md =
d∑

i=1

qiq
>
i . (6)
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Figure 2: (a) Five decimated frames of an image sequence of a static scene with 126 feature points successfully tracked.
(b) The trajectories of detected outliers. (c) The trajectories of detected inliers. (d) The residuals of the trajectories.
(e) The locations of the outliers.

3. Let λ1 ≥ λ2 ≥ . . . ≥ λd be the d eigenvalues of
matrix Md, and {u1, u2, . . ., ud} the orthonor-
mal set of the corresponding eigenvectors.

4. Define an n× n projection matrix

P n−d = I −
d∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−dpα‖2 < (n− d)σ2. (8)

Here, ‖P n−dpα‖2, which we call the residual , is
the squared distance of point pα from the fitted
d-dimensional subspace in Rn, and σ measures
the uncertainty of locating feature positions in
images.

6. Repeat the above procedure a sufficient number
of times1, and determine the projection matrix
P n−d that maximizes S.

7. Remove those pα that satisfy

‖P n−dpα‖2 ≥ σ2χ2
n−d;99, (9)

1In our experiment, we stopped if S did not increase 200
times consecutively.

where χ2
r;a is the ath percentile of the χ2 distri-

bution with r degrees of freedom.

If the noise in the coordinates of the feature points
is an independent random Gaussian variable of mean
0 and standard deviation σ and if the fitted sub-
space is correct, the residual ‖P n−dpα‖2 divided by
σ2 should be subject to a χ2 distribution with n− d
degrees of freedom, hence its expectation is (n−d)σ2,
provided pα is an inlier. The above procedure effec-
tively fits a d-dimensional subspace that maximizes
the number of the points whose residuals are smaller
than (n − d)σ2. After determining the subspace, we
remove those points which cannot be regarded as in-
liers with significance level 1%.

5. Experiments

We tested our method using real video sequences
of static scenes and multiple moving objects. We gen-
erated and tracked feature points through the entire
video stream using the Kanade-Lucas-Tomasi algo-
rithm [20].

Figure 2(a) shows five frames decimated from a 100
frame sequence (320 × 240 pixels) of a static scene
taken by a moving camera. We tracked 126 points as
indicated by the symbol 2 in the images. Setting σ
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Figure 3: (a) Five decimated frames of an image sequence of a static scene with 155 feature points successfully tracked.
(b) The trajectories of detected outliers. (c) The trajectories of detected inliers. (d) The residuals of the trajectories.
(e) The locations of the outliers.

= 0.5 (pixels), we removed outlier trajectories by our
method. Figures 2(b) and (c) show the trajectories
judged to be outliers and inliers, respectively.

Figure 2(d) plots the residuals of the 126 trajec-
tories; they are marked on the horizontal axis in nu-
merical order. The horizontal line in the graph in-
dicates the threshold determined by Eq. (9). Fig-
ure 2(e) shows the locations of the detected outliers
in the first frame. We see that many of them are on
the occluding contours.

Closely inspecting all the images frame by frame,
we checked if the trajectories judged to be outliers
were really incorrect. In Fig. 2(d), those trajectories
that are indeed false are indicated by the symbol ×.
As can be seen, their residuals are large enough to
be rejected by our procedure. However, some appar-
ently correct trajectories are also rejected as outliers.
A close examination revealed that they were caused
by points that were fluctuating around their supposed
positions by a few pixels throughout the sequence. In
practice, removing them, correct as they may be, is
a reasonable choice, since inclusion of such unreliable
trajectories would lower the reliability of the subse-
quent segmentation.

Figure 3(a) shows another sequence of a static
scene. The results are arranged in the same way

in Figs. 3(b)–(e), and similar observations hold. In
this case, however, the number of outliers is relatively
small, probably because the scene is a planar surface
without occluding contours.

In the sequence shown in Fig. 4(a), an object (a
human body) is moving independently of the back-
ground, which is also moving in the images. Fig-
ure 4(b) shows the residuals of the 107 feature points
successfully tracked. This time, the rejected trajec-
tories are all incorrect, while the remaining ones are
all correct. Figure 4(c) shows the locations of the
detected outliers in the first frame. As can be seen,
many of them are on the occluding contours of the
moving object.

In order to see the effect of outliers on segmenta-
tion, we applied the subspace separation algorithm2

of Kanatani [13] to this image sequence with and
without removing outliers: Figure 4(d) shows the
segmentation result without removing outliers; Fig-
ure 4(e) shows the result after removing outliers.
The symbol 2 indicates points classified to the back-
ground; the symbols × indicates points classified to
the moving object.

2The source program is publicly avaiable from
http://www.suri.it.okayama-u.ac.jp/e-program.html.
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Figure 4: (a) Five decimated frames of an image sequence of a static scene and a moving object with 107 feature points
successfully tracked. (b) The residuals of the trajectories. (c) The locations of the outliers. (d) The segmentation with
outliers (× for object points; 2 for background points). (e) The segmentation without outliers (× for object points; 2 for
background points). (f) The correctness of segmentation and the classification details. (g) The trajectories of detected
outliers. (h) The trajectories of detected background points. (i) The trajectories of detected object points.

In Fig. 4(d), all inliers are correctly classified; mis-
classifications occur only for outliers, most of which
are on the occluding boundaries of the moving ob-
ject. In Fig. 4(e), in contrast, all points are correctly
classified. The second column of the table in Fig. 4(f)
lists the correctness of the segmentation: (the number
of misclassified points)/(the total number of points)
in percentage for Figs. 4(d) and (e), respectively.
The third column lists (the number of misclassifica-
tions)/(the number of points classified to the object)
and (the number of misclassifications)/(the number
of points classified to the background). Figures 4(g),
(h), and (i) show, respectively, the trajectories of the
detected outliers, the inliers classified to the back-
ground, and the inliers classified to the moving ob-

ject.

Figure 5 shows another example similarly ar-
ranged. In this example, the existence of outliers ad-
versely affects the segmentation of inliers, as shown
in Figs. 5(d) and (e). In fact, the accuracy of segmen-
tation is improved by removing outliers beforehand.

From Fig. 5(b), we see that some correct trajecto-
ries are rejected as outliers. We also see that correct
trajectories consists of those with very small residuals
and those with relatively large residuals. This clear
distinction implies that the detected feature points
are divided into two types, unambiguous and am-
biguous. An unambiguous point is correctly tracked
thoughout the sequence, while an ambiguous point is
always ambiguous in the course of the tracking. This
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Figure 5: (a) Five decimated frames of an image sequence of a static scene and a moving object with 140 feature points
successfully tracked. (b) The residuals of the trajectories. (c) The locations of the outliers. (d) The segmentation with
outliers (× for object points; 2 for background points). (e) The segmentation without outliers (× for object points; 2 for
background points). (f) The correctness of segmentation and the classification details. (g) The trajectories of detected
outliers. (h) The trajectories of detected background points. (i) The trajectories of detected object points.

phenomenon can be observed more or less in all the
previous examples but is particularly strong for this
sequence. This is probably because the scene is very
far away and the range of the gray levels is relatively
narrow.

This is the very reason why we did not set the
threshold automatically. If the noise in the coordi-
nates of the feature points were Gaussian and inde-
pendent for each point and each frame, we could use
LMedS [19], estimating the noise level σ from the
median of the residuals as described in [19]. In re-
ality, however, this is difficult due to the existence
of strong temporal correlations, so we empirically set
σ (0.5 pixels in our experiment) and the siginificance
level (1% in our experiment) of the rejection decision.

The computation time for the outlier removal pro-
cedure was 33.17 sec., 36.83 sec, 32.57 sec, and 1.95
sec for the examples of Figs. 2, 3, 4, and 5, respec-
tively. We used Pentium IV 1.8GHz for the CPU and
Linux for the OS.

6. Concluding Remarks

In this paper, we have proposed a technique for re-
moving outliers from the trajectories of feature points
detected over a video sequence. Our algorithm ro-
bustly fits a subspace to the trajectories and removes
those that have large residuals.

Using real video sequences, we demonstrated that
our method was effective even if multiple objects are
moving in the scene. We also confirmed that the sepa-
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ration accuracy was indeed improved by our method.
Our method is based on an affine camera model.

Also, feature points must be tracked throughout the
sequence. These limit the use of our method to a
relatively short sequence of images. For a long se-
quence, however, we can divide it into overlapping
short segments and apply our method to them sepa-
rately. We can safely assume an affine camera model
if the depth of the scene does not vary much in each
segment. How to cope with strong perspective effects
and how to automatically set the involved parameters
are left for future research.

Our approach is based on the geometric constraint
that the image motion of feature points should be
interpreted to be projections of rigid motions in the
scene. In contrast, the use of nonlinear filtering pro-
posed by Ichimura [7] and Ichimura and Ikoma [8]
is based on the stochastic constraint that the image
motion of feature points should be “smooth” with
a strong temporal coherence. Since these two ap-
proaches are complementary in nature, it is expected
that the segmentation accuracy will be further in-
creased by combining them.

Acknowledgments: This work was supported in part
by the Ministry of Education, Culture, Sports, Science
and Technology, Japan, under a Grant in Aid for Scien-
tific Research C(2) (No. 13680432), the Support Center
for Advanced Telecommunications Technology Research,
and Kayamori Foundation of Informational Science Ad-
vancement.

References

[1] J. P. Costeira and T. Kanade, “A multibody factor-
ization method for independently moving objects,”
Int. J. Computer Vision, vol.29, no.3, pp.159–179,
Sept. 1998.

[2] M. A. Fischer and R. C. Bolles, “Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartogra-
phy,” Comm. ACM, vol.24, no.6, pp.381–395, June
1981.

[3] C. W. Gear, “Multibody grouping from motion im-
ages,” Int. J. Comput. Vision, vol.29, no.2, pp.133–
150, Aug./Sept. 1998.

[4] D. Q. Huynh and A. Heyden, “Outlier detection
in video sequences under affine projection,” Proc.
IEEE Conf. Computer Vision Pattern Recog., vol.1,
pp.695–701, Kauai, Hawaii, U.S.A., Dec. 2001.

[5] N. Ichimura, “Motion segmentation based on fac-
torization method and discriminant criterion,” Proc.
7th Int. Conf. Comput. Vision, vol.1, pp.600–605,
Kerkyra, Greece, Sept. 1999.

[6] N. Ichimura, “Motion segmentation using feature se-
lection and subspace method based on shape space,”
Proc. 15th Int. Conf. Pattern Recog., vol.3, pp.858–
864, Barcelona, Spain, Sept. 2000.

[7] N. Ichimura, “Stochastic filtering for motion trajec-
tory in image sequences using a Monte Carlo filter

with estimation of hyper-parameters,” Proc. 16th
Int. Conf. Pattern Recog., Quebec City, Canada,
Aug. 2002, to appear.

[8] N. Ichimura and N. Ikoma, “Filtering and smooth-
ing for motion trajectory of feature point using non-
gaussian state space model,” IEICE Trans. Inf. Syst.,
vol.E84-D, no.6, pp.755–759, 2001.

[9] K. Inoue and K. Urahama, “Separation of multiple
objects in motion images by clustering,” Proc. 8th
Int. Conf. Comput. Vision, vol.1, pp.219–224, Van-
couver, Canada, July 2001.

[10] C. J. Poelman and T. Kanade, “A paraperspective
factorization method for shape and motion recovery,”
IEEE Trans. Pat. Anal. Mach. Intell., vol.19, no.3,
pp.206–218, 1997.

[11] R. Hartley and A. Zisserman, Multiple View Geome-
try in Computer Vision, Cambridge University Press,
Cambridge, U.K., 2000.

[12] K. Kanatani, Statistical Optimization for Geometric
Computation: Theory and Practice, Elsevier, Ams-
terdam, 1996.

[13] K. Kanatani, “Motion segmentation by subspace
separation and model selection,” Proc. 8th Int.
Conf. Comput. Vision, vol.2, pp.301–306, Vancouver,
Canada, July 2001.

[14] K. Kanatani, “Evaluation and selection of models for
motion segmentation,” Proc. 7th Euro. Conf. Com-
put. Vision, Copenhagen, Denmark, June 2002.

[15] K. Kanatani and C. Matsunaga, “Estimating the
number of independent motions for multibody seg-
mentation,” Proc. 5th Asian Conf. Comput. Vision,
vol.1, pp.7-12, Melbourne, Australia, Jan. 2002.

[16] A. Maki and K. Hattori, “Illumination subspace for
multibody motion segmentation,” Proc. IEEE Conf.
Comput. Vision Pattern Recog., vol.2, pp.11–17,
Kauai, Hawaii, U.S.A., 2001.

[17] A. Maki and C. Wiles, “Geotensity constraint for 3D
surface reconstruction under multiple light sources,”
Proc. 6th Euro. Conf. Comput. Vision, vol.1, pp.725–
741, Dublin, Ireland, June/July 2000.

[18] N. Otsu, “A threshold selection method from gray-
level histograms,” IEEE Trans. Sys. Man Cyber.,
vol.9, no.1, pp.62-66, 1979.

[19] P. J. Rousseeuw and A. M. Leroy, Robust Regression
and Outlier Detection, Wiley, New York, 1987.

[20] C. Tomasi and T. Kanade, Detection and Tracking
of Point Features, CMU Tech. Rep. CMU-CS-91-132,
April 1991;
http://vision.stanford.edu/~birch/klt/.

[21] C. Tomasi and T. Kanade, “Shape and motion from
image streams under orthography—A factorization
method,” Int. J. Comput. Vision, vol.9, no.2, pp.137–
154, Nov. 1992.

[22] Y. Wu, Z. Zhang, T. S. Huang and J. Y. Lin, “Multi-
body grouping via orthogonal subspace decompo-
sition, sequences under affine projection,” Proc.
IEEE Conf. Computer Vision Pattern Recog., vol.2,
pp.695–701, Kauai, Hawaii, U.S.A., Dec. 2001.


