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In order to facilitate smooth communications with researchers in other fields including
statistics, this paper investigates the meaning of “statistical methods” for geometric in-
ference based on image feature points. We point out that statistical analysis does not
make sense unless the underlying “statistical ensemble” is clearly defined. We trace back
the origin of feature uncertainty to image processing operations for computer vision in
general and discuss the implications of asymptotic analysis for performance evaluation
in reference to “geometric fitting”, “geometric model selection”, the “geometric AIC”,
and the “geometric MDL”. Referring to such statistical concepts as “nuisance param-
eters”, the “Neyman-Scott problem”, and “semiparametric models”, we point out that
simulation experiments for performance evaluation will lose meaning without carefully
considering the assumptions involved and intended applications.

1. Introduction

Statistical inference from images has been one of
the key components of computer vision, and today’s
advanced computer power makes feasible many sta-
tistical methods once regarded as mere theoretical cu-
riosities.

While statistical methods have usually been em-
ployed for recognition and classification purposes, the
author has introduced statistical methods for geomet-
ric inference based on geometric primitives such as
points and lines extracted by image processing opera-
tions and derived theoretical accuracy bounds and op-
timization techniques that achieve those bounds [7].

However, the term “statistical” has somewhat a
different meaning for geometric inference than for
recognition and classification purposes. This differ-
ence has often been overlooked, causing controversies
over the validity of the statistical approach for geo-
metric problems in general.

In this paper, we focus on this difference, start-
ing with the question of why we need a statistical
method at all. We point out that statistical analy-
sis does not make sense unless the underlying “en-
semble” is clearly defined. We trace back the origin
of feature uncertainty to image processing operations
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for computer vision in general and discuss the impli-
cations of asymptotic analysis for performance eval-
uation. This is illustrated in reference to “geometric
fitting” and “geometric model selection”. Referring
to such statistical concepts as “nuisance parameters”,
the “Neyman-Scott problem”, and “semiparametric
models”, we point out that simulation experiments
for performance evaluation will lose meaning without
carefully considering the assumptions involved and in-
tended applications.

2. What Is a Statistical Method?

2.1 Statistical ensembles

Most problems of mathematics and physics are de-
terministic: various properties and propositions are
deduced from a fixed set of axioms and fundamental
equations. Such an approach can be found in com-
puter vision research, too, a typical example being
the geometric and algebraic theories of 3-D recon-
struction from images based on an assumed camera
imaging geometry [6].

Statistical methods, on the other hand, are not for
studying the properties of observed data themselves
but for inferring the properties of the ensemble from
which we regard the observed data as having been
sampled. The ensemble may be a collection of exist-
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ing entities (e.g., the entire population), but often it
is a hypothetical set of conceivable possibilities.

When a statistical method is employed, the un-
derlying ensemble is often taken for granted without
being specifically mentioned what it is. For charac-
ter recognition, for instance, it is understood that we
are thinking of an ensemble of all prints and scripts
of individual characters printed or written in all cir-
cumstances. Since some characters are more likely to
appear than others, a probability distribution is de-
fined over the ensemble.

The definition of the ensemble depends on the pur-
pose of the analysis. For handwritten character recog-
nition, for example, our attention is restricted to the
set of all handwritten characters. The ensemble is
further restricted if we want to recognize characters
written by a specific writer (e.g., his/her signatures),
but the difference is too obvious to be mentioned.
For geometric inference from images, however, this is
a very crucial issue.

2.2 Characteristics of uncertainty

All elements of an ensemble share some specified
characteristics, but otherwise their individual proper-
ties are different. Referring to this fact, we say that
the elements have uncertainty . It can be classified
into external uncertainty and internal uncertainty .
A. External uncertainty

This occurs in many experiments in physics. Even
if an identical physical phenomenon is measured, un-
certainty exists because of the imperfection of the
measurement device (due to, e.g., uncontrollable im-
purities, thermal noise, and the use of approximate
values of physical constants) as well as environmental
disturbances (e.g., temperature, pressure, wind, radi-
ant heat, light, and small oscillations of the device).
As a result, the observed value, which should ideally
be the same, fluctuates unpredictably from measure-
ment to measurement. It follows that the underlying
ensemble is the set of all values that could be observed
in that experiment. This set can be identified with
the set of all possible observation processes. Theoret-
ically, this ensemble can be reduced by using a higher
accuracy device and better controlling the environ-
ment; we would reach in the limit a set of a single
element (the true value) with the delta function as
the probability distribution.
B. Internal uncertainly

This uncertainty occurs because individual ele-
ments are inherently different even when the measure-
ment is exact. The term “statistical method” often
implies existence of this type of uncertainty. The en-
semble for handwritten character recognition, for ex-
ample, contains different characters because they are
written by different writers and in different circum-

stances, while the character reading device is assumed
to be accurate. Medicine and pharmacology deal with
ensembles of patients affected with the same disease
but otherwise with different characteristics (e.g., age,
sex, occupation, medical history, physical strength,
and health conditions), but the diagnosis is assumed
to be correct. In some experiments in physics, obser-
vations by an ideal measuring device can fluctuate if
the individual items are in different microscopic states
(e.g., atomic decay, thermal fluctuations, and turbu-
lence). The uncertainty of meteorological data, for in-
stance, is intrinsic and independent of the uncertainty
of the thermometers and pressure gauges used. As a
result, this type of uncertainty cannot be reduced by
controlling measurement devices or environments. It
can be reduced only statistically by repeating mea-
surements, resorting to the law of large numbers.

Then, what is the ensemble underlying geometric
inference from images, and what kind of uncertainty
is involved there?

3. What Is Geometric Inference?

3.1 Ensembles for geometric inference

Although images are used as input, the geometric
inference problem studied by the author and others
has a different characteristic from recognition prob-
lems using images. The ensemble for recognizing,
say, persons is a set of images of different persons
in different poses taken under different illumination
conditions.

Geometric inference, on the other hand, deals with
a single image (or a single set of images). For exam-
ple, we observe an image of a building and extract
feature points such as isolated points, corners, and
intersections of lines. Our task is to test if a particu-
lar geometric constraint exists. If so, we estimate the
parameters of the constraint and evaluate the degree
of uncertainty of that estimation.

The reason why we need a statistical method is
that the extracted feature positions have uncertainty .
For example, we judge the extracted feature points as
collinear if they are sufficiently aligned even though
they are not strictly collinear. We also evaluate the
degree of uncertainty of the fitted line by propagating
the uncertainty of the individual points. What is the
ensemble that underlies this type of inference?

This question reduces to the question of why the
uncertainty of the feature points occurs at all. After
all, statistical methods are not necessary if the data
are exact. Using a statistical method means regard-
ing the current feature position as randomly sampled
from a set of its possible positions. But where else
could it be if not in the current position?
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(a) (b)

Figure 1: (a) A feature point in an image of a building.
(b) Its enlargement and the uncertainty of the feature
location.

3.2 Uncertainty of feature extraction

Many algorithms have been proposed for extract-
ing feature points including the Harris operator [5]
and SUSAN [20], and their performance has been ex-
tensively compared [3, 16, 19]. Feature points can
also be extracted and traced over a video sequence,
for which the Kanade-Lucas-Tomasi method [22] is
best known.

However, if we use, for example, the Harris opera-
tor to extract a particular corner of a particular build-
ing image, the output is unique (Fig. 1). No matter
how many times we repeat the extraction, we obtain
the same point because no external disturbances ex-
ist and the internal parameters (e.g., thresholds for
judgment) are unchanged. It follows that the current
position is the only possible position. How can we
find it elsewhere?

If we closely examine the situation, we are com-
pelled to conclude that other possibilities should exist
for the feature position because the extracted position
is not necessarily correct . But if the extracted posi-
tion is not correct, why did we extract it? Why didn’t
we extract the correct position in the first place? The
answer is: we cannot. Why is this impossible?

3.3 Image processing for computer vision

The reason why there exist so many feature ex-
traction algorithms, none of them being definitive,
is that they are aiming to achieve an essentially im-
possible task . If we were to extract a point around
which, say, the intensity varies to the largest degree
measured in such and such a criterion, the algorithm
would be unique (variations may exist in the interme-
diate steps, but the final output should be the same).

However, what we want is not “image properties”
but “3-D properties” such as corners of a building,
and the way a 3-D property is translated into an im-
age property is essentially a heuristic. Hence, as many
algorithms can exist for extracting a 3-D property as
the number of heuristics for its 2-D interpretation.

If we specify a 3-D feature that we want to ex-
tract, its appearance in the image is not unique. It is
affected by various properties of the scene including

the details of its 3-D shape, the viewing orientation,
the illumination condition, and the light reflectance
properties of the material, and a slight difference in
the image capturing process may result in a different
appearance of the image.

Theoretically, exact feature extraction would be
possible if the properties of the scene were exactly
known, but to infer them from images is the very task
of computer vision. Thus, we must necessarily make
a guess by a heuristic means in the image processing
stage. For the current image, some guesses may be
correct, but others may be wrong.

It follows that the exact feature position could be
located only by a (non-existing) “ideal” algorithm
that could guess everything correctly, but in reality
a wrong position may be located because we use a
non-ideal algorithm based on wrong guesses. This ob-
servation allows us to interpret the “possible feature
positions” to be the positions that would be located
by different (non-ideal) algorithms based on different
guesses.

In this sense, the set of hypothetical positions can
be associated with the set of hypothetical algorithms.
The current position can be regarded as produced
by an algorithm sampled from it. That is why one
always obtains the same position no matter how many
times one repeats extraction using that algorithm. In
order to obtain a different position, one has to sample
another algorithm from that ensemble.

4. Statistical Model of Feature
Location

4.1 Covariance matrix of a feature point

For actual statistical analysis based on the inter-
pretation described above, we need some additional
assumptions. First, we must assume that the “mean”
of the potential positions coincide with the true posi-
tion. In other words, we assume that all hypothetical
algorithms are unbiased .

The performance of feature point extraction de-
pends on the image properties around that point. If,
for example, we want to extract a point in a region
with an almost homogeneous intensity, the result-
ing position may be ambiguous whatever algorithm
is used. In other words, the positions that the hypo-
thetical algorithms would extract should have a large
spread around the true position. If, on the other
hand, the intensity greatly varies around the point
that we want to extract, any algorithm will easily lo-
cate it accurately, meaning that the positions that the
hypothetical algorithms would extract should have a
strong peak at the true position. This observation
suggests that we may introduce for each feature point
its covariance matrix that measures the spread of its
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potential positions.
Let V [pα] be the covariance matrix of the αth fea-

ture point pα. The above argument implies that we
can determine the qualitative characteristics of un-
certainty in relative terms but not its absolute magni-
tude. If, for example, the intensity variations around
pα are almost the same in all directions, we can think
of the probability distribution as isotropic, a typical
equiprobability line, often called the uncertainty el-
lipses, being a circle (Fig. 1(b)). If, on the other
hand, pα is on an object boundary, distinguishing it
from nearby points should be difficult whatever algo-
rithm is used, so its covariance matrix should have an
elongated uncertainty ellipse along that boundary.

From these observations, we write the covariance
matrix V [pα] in the form

V [pα] = ε2V0[pα], (1)

where ε is an unknown magnitude of uncertainty,
which we call the noise level [7]. The matrix V0[pα],
which we call the normalized covariance matrix [7],
describes the relative magnitude and the dependence
on orientations.

We should note, however, that although we call
eq. (1) “the covariance matrix of pα”, it is not a prop-
erty of pα; it is a property of the set of hypothetical
feature extraction algorithms applied to the neighbor-
hood of pα.
4.2 Characteristics of feature extraction

Most of existing feature extraction algorithms are
designed to output those points that have large im-
age variations around them, so points in a region with
an almost homogeneous intensity or on object bound-
aries are rarely chosen as feature points. As a result,
the covariance matrix of a feature point extracted by
such an algorithm can be regarded as isotropic. This
has also been confirmed by experiments [10], justify-
ing the use of the identity as the normalized covari-
ance matrix.

The intensity variations around different feature
points are usually unrelated, so their uncertainty can
be regarded as statistically independent. However, if
we track feature points over consecutive video frames,
it has been observed that the uncertainty of each
point has strong correlations over the frames [21].

Many interactive applications require humans to
extract feature points by manipulating a mouse. Ex-
traction by a human is also an “algorithm”, and it has
been shown by experiments that humans are likely
to choose “easy-to-see” points such as isolated points
and intersections, avoiding points in a region with an
almost homogeneous intensity or on object bound-
aries [10]. In this sense, the statistical characteristics
of human extraction are very similar to machine ex-

(a) (b)

Figure 2: (a) An indoor scene. (b) Detected edges.

traction. This is no wonder if we recall that image
processing for computer vision is essentially a heuris-
tic to simulate human perception. It has also been
reported that strong microscopic correlations exist
when humans manually select corresponding feature
points over multiple images [13].
4.3 Image processing in computer vision

Thus, we have observed that the ensemble behind
geometric inference from images is the set of algo-
rithms and that statistical concepts and assumptions
such as normality, independence, unbiasedness, and
correlations are properties of the underlying set of al-
gorithms. In the past, however, a lot of confusion
occurred because these were often taken to be prop-
erties of the image.

The main cause of this confusion may be the tra-
dition that the uncertainty of feature points is simply
referred to as “image noise”. In fact, the assump-
tion described by eq. (1) is usually called the “noise
model” rather than “the model of uncertainty of fea-
ture location”. This confusion is compounded by the
convention that the constant ε in eq. (1) is called the
“noise level”, giving a misleading impression as if the
feature location is fluctuating by a mysterious ran-
dom force.

Of course, we may obtain better results if we use
higher-quality images whatever algorithm is used (in-
cluding human intervention). Hence, the performance
of any algorithm depends on the image quality. As
stated earlier, however, the task of computer vision
is not to analyze “image properties” but to study the
“3-D properties” of the objects that we are viewing.
Since the image properties and the 3-D properties do
not correspond to each other one to one, any image
processing for computer vision inevitably entails some
degree of uncertainty, however high the image quality
may be.

Historically, the study of image feature extraction
has mainly focused on what is known as edge detec-
tion (Fig. 2). Its goal is to find the boundaries of 3-D
objects in the scene, but in reality all existing algo-
rithms seek edges, i.e., lines and curves across which
the intensity changes discontinuously. Since this is
essentially a heuristic, no definitive algorithm has yet
been found and perhaps will ever be.

One of recent studies of edge detection is to remove
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Figure 3: (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as the number of
experiments n→∞, because admissible accuracy can be reached with a smaller number of experiments. (b) For geometric
inference, it is desired that the accuracy increases rapidly as the noise level ε → 0, because admissible accuracy can be
reached in the presence of larger uncertainty.

the boundaries of shadows, which qualify as edges in
the usual sense, as non-edges. For this purpose, var-
ious clues including the spectrum of color values are
analyzed to judge if both sides of an edge belong to
the same object. However, the judgment of whether
two parts belong to the same object or not should
be different from application to application (e.g., the
face and the body are different objects for face recog-
nition while they belong to the same object for hu-
man recognition). Thus, the 3-D analysis via image
analysis has an inherent limitation.

After all, any process of computer vision accom-
panies uncertainty independent of the image quality,
and the result must be interpreted statistically in such
terms as likelihood and confidence. The underlying
ensemble is the set of hypothetical (inherently imper-
fect) algorithms of image processing , which should be
distinguished from “image noise” such as poor res-
olution and poor illumination. Also, it should be
distinguished from the ensemble of input images (for
face recognition, for example) of different 3-D objects
taken in different conditions.

5. What Is Asymptotic Analysis

5.1 Standard statistical estimation

As stated earlier, statistical estimation is to esti-
mate the properties of an ensemble from a finite num-
ber of samples chosen from it, assuming some knowl-
edge, or a model , about the ensemble.

If the uncertainty originates from external condi-
tions, as in experiments in physics, we can increase
the accuracy of estimation by controlling the mea-
surement devices and environments. For internal
uncertainty, on the other hand, there is no way of
increasing the accuracy except by repeating experi-
ments and doing statistical inference based on the as-
sumed model. However, repeating experiments usu-
ally entails costs, and often the number of experi-
ments is limited in practice.

Taking account of such practical considerations,
statisticians usually evaluate the performance of esti-
mation asymptotically , analyzing the growth in accu-
racy as the number n of experiments increases. This is

justified because a method whose accuracy increases
more rapidly as n →∞ than others can reach admis-
sible accuracy with a fewer number of experiments
(Fig. 3(a)).

5.2 Geometric inference

As we have seen, we can think of the ensemble for
geometric inference based on feature points as the set
of potential feature positions that could be located if
other (hypothetical) algorithms were used. The goal
is to estimate geometric quantities as closely as pos-
sible to their expectations over that ensemble, which
we assume are their true values. In other words, we
want to minimize the discrepancy between obtained
estimates and their true values on average over all
hypothetical algorithms.

However, the crucial fact is, as stated earlier, we
can choose only one sample from the ensemble as long
as we use a particular image processing algorithm. In
other words, the number n of experiments is 1. Then,
how can we evaluate the performance of statistical
estimation?

Evidently, seeking a method whose accuracy
rapidly increases as the number n of experiments is
meaningless, since we have always n = 1. Rather,
we want a method whose accuracy is sufficiently high
even for large feature uncertainty . This observation
implies that we need to analyze the growth in accu-
racy as the noise level ε decreases, since a method
whose accuracy increases more rapidly as ε → 0 than
others can reach admissible accuracy with larger un-
certainty of feature extraction (Fig. 3(b)).

6. Asymptotic Analysis for Geometric
Inference

We now illustrate our strategy described in the pre-
ceding section in more specific terms.

6.1 Geometric fitting

Let p1, ..., pN be the extracted feature points.
Their true positions p̄1, ..., p̄N are assumed to sat-
isfy the constraint

F (p̄α,u) = 0, α = 1, ..., N, (2)
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(a) (b)

Figure 4: (a) Two images of a building and extracted feature points. (b) “Optical flow” consisting of segments connecting
corresponding feature points (black dots correspond to the positions in the left image). The two endpoints can be
identified with a point in a four-dimensional space.

parameterized by a p-dimensional vector u. Our task,
which we call geometric fitting , is to estimate the pa-
rameter u from observed positions p1, ..., pN . Eq. (2)
is called the (geometric) model .

A typical problem to is to fit a line or a curve (e.g.,
a circle or an ellipse) to given N points in the image.
For example, assuming that the true positions of the
N points are on a parameterized line or curve, we
estimate the parameters of the line or curve. The
same formulation also applies to constraints on mul-
tiple images [7]. For example, if a point (xα, yα) in
the first image corresponds to a point (x′α, y′α) in the
second image, we can regard these two points as a
single point pα in a 4-dimensional joint space with
coordinates (xα, yα, x′α, y′α) (Fig. 4).

If the camera imaging geometry is modeled as per-
spective projection, the constraint (2) corresponds to
what is known as the epipolar equation, and the pa-
rameter u corresponds to the fundamental matrix ,
which encodes the relative positions of the two cam-
eras that took these images [6]. If the scene is a pla-
nar surface or located very far away, eq. (2) can be re-
garded as imposing a (2-dimensional) homography (or
projective transformation) on the two images, where
the parameter u is the homography matrix [9].

If we write the covariance matrix of pα in the form
of eq. (1) and regard the distribution of uncertainty
as Gaussian, maximum likelihood estimation over the
potential positions of the N feature points is to min-
imize the squared Mahalanobis distance with respect
to the normalized covariance matrices V0[pα]:

J =
N∑

α=1

(pα − p̄α, V0[pα]−1(pα − p̄α)). (3)

Here, pα and p′α are identified as 2-dimensional vec-
tors and ( · , · ) designates the inner product of vec-
tors. Eq. (3) is minimized with respect to {p̄α}, α =
1, ..., N and u subject to the constraint (2).

Assuming that the noise level ε is small and using
Taylor expansion with respect to ε, we can show that
the covariance matrix V [û] of the maximum likeli-
hood solution û converges to O as ε→ 0 (consistency)

and that V [û] coincides with a theoretical accuracy
bound if terms of O(ε4) are ignored (asymptotic ef-
ficiency) [7]. Thus, maximum likelihood estimation
achieves admissible accuracy in the presence of larger
uncertainty than other methods.
6.2 Geometric model selection

Geometric fitting is to estimate the parameter u of
a given model in the form of eq. (2). If we have mul-
tiple candidate models F 1(p̄α, u1) = 0, F 2(p̄α,u2) =
0, ..., from which we are required to select an appro-
priate one, the problem is called (geometric) model
selection [7].

A naive idea is to first estimate the parameter u

by maximum likelihood estimation and compute the
residual (sum of squares), i.e., the minimum value
Ĵ of J given by (3), for each model and then select
the one that has the smallest residual. This does not
work, however, because the maximum likelihood so-
lution û is determined so as to minimize the residual
Ĵ . As a result, the residual Ĵ can be made smaller if
the model has more parameters to adjust.

This observation leads to the idea of compensat-
ing for the bias caused by substituting the maximum
likely solution. This is the principle of Akaike’s AIC
(Akaike Information Criterion) [1], whose theoreti-
cal basis is the Kulback-Leibler information (or di-
vergence) and its asymptotic behavior as the number
n of experiments goes to infinity. If we do a similar
analysis to Akaike’s and examine the asymptotic be-
havior as the noise level ε goes to zero, we obtain the
following geometric AIC [8]:

G-AIC = Ĵ + 2(Nd + p)ε2 + O(ε4). (4)

Here, d is the dimension of the manifold defined by
the constraint (2). Its existence in the right-hand
is the main difference, at least in appearance, from
Akaike’s AIC, reflecting the uncertainty of N feature
positions.

Another well known criterion is Rissanen’s MDL
(Minimum Description Length) [17, 18], which mea-
sures the goodness of a model by the minimum in-
formation theoretic code length of the data and the
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model. The standard form of the MDL is derived by
asymptotic analysis as the number n of experiments
goes to infinity. If, following Rissanen, we quantize
the real-valued parameters, determine the quantiza-
tion width in such a way that the total code length
becomes smallest, and analyze its asymptotic behav-
ior as the noise level ε goes to zero, we obtain the
following geometric MDL [8]:

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

+ O(ε2). (5)

Here, L is a reference length chosen so that its ratio
to the magnitude of data is O(1) (e.g., L can be taken
to be the image size for feature point data). Its exact
determination requires an a priori distribution that
specifies where the data are likely to appear, but the
model selection is not very much affected by L as long
as it has the same order of magnitude [8].

6.3 Equivalent statistical interpretation

Although the above asymptotic analysis is in the
“opposite” direction to that of the standard statisti-
cal estimation, the final results are similar to the cor-
responding standard statistical estimation in many
respects.

It is known that the covariance matrix of a max-
imum likelihood estimator for a standard statistical
problem converges, under a mild condition, to O as
the number n of experiments goes to infinity (consis-
tency) and that it agrees with the Cramer-Rao lower
bound expect for O(1/n2) (asymptotic efficiency). If
follows that 1/

√
n plays the same role as ε for geo-

metric inference.
The same correspondence exist for model selection,

too. Akaike’s AIC is derived not from eq. (3) but from
its division by ε2. In other words, the normalized co-
variance matrix V0[pα] in eq. (3) is replaced by the
covariance matrix V [pα] given by eq. (1), so that J

can be identified with −2 times the logarithmic like-
lihood. Then, the right-hand side of eq. (4) becomes
Ĵ/ε2 + 2(Nd + p) + O(ε2), which is (−2 times the
logarithmic likelihood)+2(the number of unknowns).
This is the same form as Akaike’s AIC, since the un-
knowns are the p parameters of the constraint plus the
N true positions, each specified by d coordinates of
the d-dimensional manifold defined by the constraint.
The same hold for eq. (5), which reduces to Rissanen’s
MDL if ε is replaced by 1/

√
n.

This correspondence can be interpreted as follows.
Since the underlying ensemble is hypothetical, we can
actually observe only one sample from it. However,
suppose we can repeatedly sample other possibilities.
If we observe n samples, an optimal estimate of the
true position is the sample mean under the assump-
tion of Gaussian noise. The covariance matrix of the

sample mean is 1/n times that of the individual sam-
ples. Hence, this hypothetical estimation is equiva-
lent to dividing the noise level ε in eq. (1) by

√
n.

In fact, there were attempts to generate multiple
points by a single feature detector by randomly vary-
ing the internal parameters (e.g., the thresholds for
judgments) [12]. One can then compute the means of
the resulting positions and evaluate their covariance
matrix. Such a process as a whole can be regarded
as one operation that effectively achieves higher ac-
curacy.

In short, the asymptotic analysis for ε→ 0 is equiv-
alent to the asymptotic analysis for n → ∞, where
n is the number of hypothetical observations. Natu-
rally, the asymptotic behavior of the standard statis-
tical estimation as n → ∞ appears in the asymptotic
analysis of geometric inference for ε → 0. As a result,
the expression · · · + O(1/

√
nk) in the standard sta-

tistical estimation turns into · · ·+O(εk) in geometric
inference.

7. Nuisance Parameters and
Semiparametric Model

7.1 Asymptotic parameters

The number n that appears in the asymptotic anal-
ysis of the standard statistical estimation is the num-
ber of experiments. It is also called the number of
trials, the number of observations, and the number of
samples. Evidently, the properties of an ensemble are
revealed more precisely as we sample more elements
from it.

However, the number n is often called the number
of data, which has caused considerable confusion. For
example, if we observe a 100-dimensional vector data
in one experiment, one may think that the “number of
data” is 100, but of course this is wrong: the number
n of experiments is 1. We are observing one sample
from an ensemble of 100-dimensional vectors.

For character recognition, the underlying ensemble
is a set of character images, and the learning process
concerns the number n of training steps necessary
to establish satisfactory responses. This is indepen-
dent of the dimension N of the vector that represents
each character. The learning performance is evalu-
ated asymptotically as n → ∞, not N → ∞.

For geometric inference, however, many re-
searchers have taken the dimension of the data as
the “number of data” perhaps because the ensemble
is hypothetical and hence one cannot sample more
than one datum from it. If we extract, for example,
50 feature points, they constitute a 100-dimensional
vector consisting of their x and y coordinates. If no
other information, such as the intensity value, is used,
the image is completely characterized by that vec-
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tor. Applying a statistical method means regarding
it as a sample from a hypothetical ensemble of 100-
dimensional vectors and inferring its properties based
on an assumed model.

7.2 Neyman-Scott problem

Many studies of geometric inference for computer
vision in the past have analyzed the asymptotic be-
havior of estimation as N → ∞ with respect to the
number N of extracted feature points without ex-
plicitly mentioning what the underlying ensemble is.
However, increasing N means considering a different
set of feature points. This means we are considering
nested ensembles: an ensemble of “images” having
different number of feature points, each image being
equipped with an ensemble that describes the feature
position uncertainty.

A similar formulation exists in the statistical liter-
ature. Suppose, for example, a long rod-like structure
lies on the ground in the distance. We emit a laser
beam toward it and estimate its position and orien-
tation by observing the reflection of the beam, which
is contaminated by noise. We assume that the laser
beam can be emitted in any orientation any number of
times but the emission orientation is measured with
noise, which may depend on that orientation. The
task is to estimate the position and orientation of
the structure as accurately as possible by emitting as
small a number of beams as possible. Naturally, the
estimation performance should be evaluated in the
asymptotic limit n → ∞ with respect to the number
n of emissions.

Evidently, this problem has nested ensembles be-
hind. Since we are interested in the position and ori-
entation of the structure but not the exact orienta-
tion of each emission, the variables for the former
are called the structural parameters while the latter
the nuisance parameters [2]. This type of formula-
tion is called the Neyman-Scott problem [14]. A sim-
ilar mathematical structure is also found in what is
known as the errors-in-variables model [4]. In the
above example, an optimal solution can be obtained
by introducing a parametric model for the laser emis-
sion orientations and regarding the actual emissions
as randomly sampled from it. This type of formula-
tion is called a semiparametric model [2]. However, if
each laser emission is regarded as a randomly chosen
independent experiment, rather than a single prefixed
set of experiments, the noise characteristics change
from experiment to experiment. Such a pathological
situation is said to be heteroscedastic [11].

7.3 Semiparametric model for geometric
inference

Since the semiparametric model described above
has something different from the geometric inference

problem described in Sec. 6, a detailed analysis is re-
quired for examining if application of a semiparamet-
ric model to geometric inference will yield a desirable
result [15]. In any event, one should explicitly state
what kind of ensemble (or ensemble of ensembles) is
assumed before doing statistical analysis.

This is not merely a conceptual issue. It also af-
fects the performance evaluation of simulation exper-
iments using artificial noise. In doing a simulation,
one can freely change the number N of feature points
and the noise level ε. If the accuracy of Method A
is higher than Method B for particular values of N

and ε, one cannot conclude that Method A is superior
to Method B, since opposite results may be obtained
for other values of N and ε. Here, we have two ap-
proaches for the comparison: fixing ε and varying N

to see if admissible accuracy is attained for a smaller
number of feature point; fixing N and varying ε to
see if admissible accuracy is attained for less certain
feature extraction. Since these two approaches have
different meanings, the results of one approach cannot
directly be compared with the results of the other.

8. Conclusions

In this paper, we have investigated the meaning of
“statistical methods” for geometric inference based
on image feature points. We traced back the origin of
feature uncertainty to image processing operations for
computer vision in general and discussed the implica-
tions of asymptotic analysis for performance evalua-
tion. This was illustrated in reference to “geometric
fitting”, “geometric model selection”, “nuisance pa-
rameters”, the “Neyman-Scott problem”, and “semi-
parametric models”. The main conclusions of this
paper are as follows:

• A statistical method is not to study the proper-
ties of observed data but to infer the properties
of the ensemble from which we regard the ob-
served data as having been sampled, assuming
some knowledge (or model) of the ensemble.

• Statistical analysis does not make sense unless
the underlying ensemble is clearly defined.

• The uncertainty of feature location reflects the
imperfection of image processing operations.
This imperfection is unavoidable, because it is
inherent to all computer vision problems.

• The ensemble that reflects the uncertainty of fea-
ture location is the set of potential feature posi-
tions that could be located by other hypothetical
image processing operations.

• If we extract N feature points from an image, we
are considering an ensemble of 2N -dimensional
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vectors consisting of their x and y coordinates.
This ensemble is hypothetical, and only one sam-
ple can be observed.

• In such a case, the performance of estimation can
be evaluated by an asymptotic analysis for ε →
0 with respect to the noise level ε.

• If we could repeat sampling from the hypothet-
ical ensemble, the asymptotic analysis for ε →
0 is equivalent to the standard asymptotic anal-
ysis for n → ∞ with respect to the number n

of hypothetical observations. Hence, all proper-
ties of the standard statistical estimation in the
asymptotic limit n → ∞ appear as asymptotic
properties of geometric inference for ε → 0.

• The asymptotic analysis for N → ∞ with re-
spect to the number N of feature points is a non-
standard mathematical process based on a semi-
parametric model with nested ensembles. This
type of analysis requires careful considerations
about the assumptions involved and intended ap-
plications, without which performance evalua-
tion by simulation experiments will lose mean-
ing.
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