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Abstract

Although the 3D orientations of edges and surfaces are theoretically sufficient for reconstructing the 3D object
shape, this does not mean that the 3D object shape can actually be reconstructed. Specifying the edge and surface
orientations is often overspecification, and inconsistency may result if image data contain errors. We propose a
scheme of optimization to construct a consistent polyhedron shape from inconsistent data. Our optimization is
achieved by solving a set of linear equations; no searchers and iterations are necessary. This technique is first
applied to the problem of shape-from-motion and then to the 3D recovery based on the rectangularity hypothesis
and the parallelism hypothesis. We also present a strategy of heuristic reasoning on rectangularity and parallelism.

1 What Does 3D Shape Recovery Mean?

In the past, various 3D shape recovery paradigms called
“shape from...” have been proposed—shape-from-
motion, shape-from-shading, and shape-from-texture,
for example. Now, we must ask the following question:
Do these techniques really enable us to recover the 3D
object shape? They certainly provide us with sufficient
information for the 3D shape recovery. However, “to
provide sufficient information” does not necessarily
mean “to recover the 3D shape.” The purpose of this
paper is to illustrate this fact and present an optimiza-
tion strategy to fill this gap.

If we closely look into the “‘shape from. .. para-
digms, we find that the information we obtain is the 3D
orientations of edges and surfaces constituting the ob-
ject. For example, the surface gradient can be recovered
from optical flow (shape-from-motion), intensity of
light reflectance (shape-from-shading), or texture den-
sity (shape-from-texture), and the 3D orientations of
edges can be recovered from the 2D orientations of their
projections. In other words, we are in general unable
to recover the absolute depth; we can estimate only the
3D orientations of edges and surfaces.

Mathematically speaking, the object shape is uniquely
determined if the 3D orientations of its constituent
edges and surfaces are specified.! In other words, the
'Here and in the following, we disregard the absolute size when we

talk about the “3D shape.” In other words, the “shape” is the same
if it is multipled by an abritrary scale factor.

3D orientations of edges and surfaces are sufficient for
3D shape recovery. In spite of this trivial fact, however,
there arises a serious difficulty in real situations: Speci-
fying the 3D orientations of edges and surfaces is often
overspecification.

For example, suppose the image is segmented into
regions resulting from projection of a planar part of the
object surface—Ilet us call such regions planar patches.
If the object is a polyhedron, regions representing its
faces naturally constitute planar patches. If the object
has a smooth surface, the image region is segmented
into a collection of approximate planar patches; the ob-
ject is approximated by an appropriate polyhedron?
Assume that the surface gradient is known for each
planar patch. Can we reconstruct the 3D object shape?
Theoretically, yes: We can reconstruct the shape by
patching together appropriate planar surfaces one by
one in the scene according to the prescribed orienta-
tions in such a way that each of them is projected ex-
actly onto the corresponding region of the image plane.

However, we are working in the real world; the image
analysis is based on the data supplied by low-level image
processing stages, and these data necessarily contain
errors. If the surface gradient estimates are not accurate,
the reconstructed object shape depends on the order
of the patching, and there may arise incompatibility of
face adjacency; two faces may not meet at a common
boundary (figure la).

2We mean the visible part of the object surface. In the following,
we ignore the invisible part occluded by the object itself.
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Fig. 1 (a) Incompatibility of face adjacency: If faces are placed in the scene according to their surface gradient estimates in such a way that
they are projected onto the observed image, adjacent faces may not meet with common boundaries. (b) Incompatibility of edge adjacency:
If edges are placed in the scene according to their 3D orientation estimates in such a way that they are projected onto the observed image,

edges constituting the boundary of a face may not form a closed loop.

A similar trouble arises when 3D edge orientations are
estimated. Theoretically, we can reconstruct the 3D ob-
Ject shape by placing its edges in the scene according
to their prescribed 3D orientations in such a way that
each edge is projected exactly onto the corresponding
edge image. In the presence of noise, however, if we
apply this process to edges constituting the boundary
of a face, they do not necessarily form a closed loop;
the end point may not coincide with the starting point
(figure 1b). Even if they do coincide, the resulting face
may not be planar.

It follows that there is a big gap between obtaining
sufficient information for 3D recovery and actually
reconstructing the 3D shape. This consideration leads
to the following observation: As long as the object is
approximated by a polyhedron, the surface gradient
values cannot be assigned arbitrarily. This fact has been
realized by many researchers, but it was Sugihara
[35-38] that first studied this problem in explicit
algebraic terms. In the next section, we study this strong
constraint in detail.

Next, we present a scheme of optimization for com-
puting a consistent polyhedron shape from inconsis-
tent image data. A basic idea was already given by
Sugihara [37]. In this paper, we show that by an in-
genious change of variables the optimization reduces
to solving a set of simultaneous linear equations. Then,
our technique is applied to the following three typical
types of shape clues3

We first apply our technique to the shape-from-
motion problem and demonstrate how a consistent ob-
ject is reconstructed from inaccurate data. Then, we
consider 3D shape recovery of polyhedra from a single
image. First, we adopt the rectangularity hypothesis,
assuming corners to be rectangular unless inconsistency
results. The optimization technique can reconstruct a
consistent 3D shape once rectangular corners are iden-
tified. We present a heuristic strategy for finding rec-
tangular corners. Next, we adopt the parallelism
hypothesis, assuming edges to be parallel unless incon-
sistency results. Again, the optimization technique can
reconstruct a consistent 3D shape if parallel edges are
identified. We also present a heuristic strategy for fin-
ding parallel edges.

The subject of this paper encompasses almost all
aspects of 3D interpretation of images; here, they are
viewed from the standpoint of optimizing inconsistent
data. Hence, it is practically impossible to refer to all
existing works related to the present work, since it
would mean listing virtually all literature on computer
vision. Thus, the references made in this paper are in-
evitably incomplete.

%0f course, there exist many other ways of 3D shape reasoning, e.g.,
direct methods such as stereo and range sensing, analytical methods
such as shape-from-shading and shape-from-texture, and various
heuristic types. Also see Pollard et al. [30], Porrill et al. [31], and
Sugihara [37,38], for example, for the consistent use of such clues.
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Since the subsequent discussions cover a very wide
range of topics, only the mathematical framework of
our optimization scheme and relevant principles of
heuristic reasoning are discussed in the main body;
related miscellaneous topics are discussed in appen-
dixes, where many already published results are sum-
marized, including the author’s own, in the context of
our optimization scheme. They are presented only for
the sake of consistency; they are not meant to be
original.

2 Constraints on 22D Sketches

As we pointed out in the preceding section, the “shape

from. . paradigms usually present us with object

images equipped with the following types of 3D
information:

1. The surface gradient (p, g), or equivalently the unit
surface normal n, is densely estimated (i.c., as a
function of location) over the region corresponding
to the object surface (figure 2a).

2. The region corresponding to the object surface is
segmented into planar patches, and the surface gra-
dient (p, g), or equivalently. the unit surface normal
n, is estimated for each patch (figure 2b). In other
words, the object surface is approximated by a
polyhedron.

(a)

3. The region corresponding to the object surface
is segmented into planar patches and approx-
imated by a polyhedron with estimated 3D edge
orientations (figure 2c).

Let us call an image equipped with such 3D informa-
tion a 244D sketch.* Among these three, case (1) may
be the one we most often encounter, because what we
can estimate is often the local surface gradient—the sur-
face gradient obtained on the assumption that the ob-
ject surface is locally flar. If the object is itself a
polyhedron, its faces themselves constitute planar
patches. If the object has a smooth surface, it is approx-
imated by a collection of planar patches.

First, consider case (2), and assume that the object
surface is (or is approximated by) a polyhedron. Case
(3) will be considered later. (See appendix A for case
(1)). As pointed out in the preceding section, being a
polyhedron is a very strong constraint, and the surface
gradient cannot be assigned arbitrarily: If the surface
gradient is assigned to one face, the surface gradients
of the adjacent faces are partially constrained. Then,
there arises a natural question: How much freedom do
we have in assigning values? This question leads to the
definition of the degree of freedom of a polyhedron
image.

“This term was coined by David Marr [24], although he meant only
case (1).

(b) (c)

Fig. 2. 214D sketch. (a) The surface gradient, or equivalently the surface normal, is estimated densely over the region corresponding to an
object surface. (b) The image region corresponding to an object surface is segmented into planar patches, and the surface gradient, or equivalently
the surface normal, is estimated for each patch. (c) The image region corresponding to an object surface is segmented into planar patches,
and the 3D orientation is estimated for each edge.
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This issue was first raised by Sugihara [35-38], who
introduced the notion of the incidence structure of a
polyhedron. Following him, we define the incidence
structure as follows: We say that a vertex is incident to
a face if the vertex is on the boundary of the face. Con-
sider a polyhedron image. Let V = {¥, ..., V,} be
the set of its vertexes, and F = {F,, ..., F,} be the
set of its faces. The incidence structure is specified by
a set R of incidence pairs (F,, V;) meaning that vertex
V; is incident to face F,.5 Let / be the number of such
incidence pairs.

Let (X;, Y;, Z) be the scene coordinates of vertex V,
i=1...,n, and let Z=pX + q,Y + r, be the
equation of face F,, o = 1, ..., m. The pair (p,, q,)
indicates its surface gradient. Let us call p,, qq, r, the
surface parameters of face F,. The incidence pair (Fy
V) states that vertex V; is incident to face F:

Zi = paxi + ani + Ty (l)

In this paper, we use a coordinate system fixed to
the camera in such a way that the Z axis coincides with
the optical axis and point (0, 0, —f) (which we hence-
forth call the viewpoint) coincides with the center of the
lens. Then, we can think of the X¥-plane as the image
plane (figure 3): A point in the scene is perspectively

To put it in algebraic terms, the incidence structure R is a relation
over Fand V i.e., a subset of the Cartesian product F x V.

Z
(X.y2)

Fig. 3. Perspective projection: A point (X, Y, Z) is projected onto
point (x, y) on the image plane Z = 0 by the lay passing through
the viewpoint (0, 0, —f).

projected onto the image plane from the viewpoint,
which is on the negative side of the Z-axis away from
the image plane by distance £ (See Remark 2 for the
reason why the coordinate system is chosen this way.)
We call the constant f the focal length.$

From figure 3, it is easy to see that the image coor-
dinates (x;, y;) of vertex V; are related to its scene coor-
dinates (X;, Y;, Z) by the projection equations

X fYi
X = Yi=T—= V3]
f+Z f+z
Now, we introduce a new quantity
z= £ 3)
f+Z

and call it the reduced depth. 1t follows that there ex-
ists a one-to-one correspondence between the scene
coordinates (X;, Y;, Z;) of vertex V; and (x;, y;, 2)):

_=& _=i ,=£(4)

Ltz 7 f+z T f+g

x, = L y =D g B
f-z f-z f-z

Remark 1. Equations (4) and (5) can be regarded as
defining a one-to-one mapping between the XYZ space
and the xyz space.

X = X y=L z= 12 (6)
f+Zz f+2z f+z
X= fx Y= 1A Z = fz ¢
f—z -z f—z

This is a projective transformation of the XYZ space,
preserving collinearity and coplanarity: A line is
mapped onto a line, and a plane is mapped onto a
plane. From equations (6) and (7), we find that a plane
Z = const. is mapped onto a plane z = const. In par-
ticular, the X¥-plane (Z = 0) is mapped onto the xy-
plane (z = 0), and the “plane” Z = oo at infinity is
mapped onto the plane z = f, while the plane Z = —f
is mapped onto the “plane” z = oo at infinity. We can
also prove easily that lines passing through the view-
point (0, 0, —f) in the XYZ-space are mapped onto lines
parallel to the z-axis in the xyz-space. Thus, the trans-
formation is like the one shown in figure 4. This

¢It does not necessarily coincide with the focal length of the lens itself.
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Fig. 4. Reduced depth z. The XYZ-space (a) is mapped onto the xyz-space (b) by a projective transformation which preserves collinearity and
coplanarity. The infinite depth Z = oo is reduced to z = £ In the xyz-space, the projection can be regarded as if being orthographic.

transformation is frequently used in computer graphics,
because it makes the removal of hidden lines very easy:
Rays starting from the viewpoint become parallel to the
z-axis, and visibility can be checked as if the projec-
tion were orthographic.

Substituting equations (5) into equation (1), we can
express the reduced depth z; of vertex V; in terms of
its image coordinates (x;, y;):

.ﬁ’u fqu ﬁa
z="""" xt+7T. - Vvit7 — ®
f+r f+r, f+rg
Now, we define new parameters
.ﬁ’a fqd ﬁ(!
w= T Qu=T o R=T O
f+r, ftry [+,

and call these the reduced surface parameters. The in-
verse relationship to the original surface parameters
Pas o> To 1S given by

P _ o _ R
f-R, " f-R. " f-R

In terms of the reduced surface parameters P,, Q,,
R,,, the reduced depth z; is written as

7z = Pux; + Qi + R,

Pa 9a (10)

(1

Since the image coordinates (x;, ;) of vertex V; are
known, the 3D position of vertex V; is determined by
equations (5) if its reduced depth z; is known. Conse-
quently, the reduced depths z;, i = 1, ..., n, can be
taken as unknowns to specify the 3D vertex positions
instead of the original depths Z;,, i = I, ....n
Similarly, the reduced surface parameters Py, Qq. Ry,
a = 1, ..., m, can serve as unknowns for the surface
shape instead of the original surface parameters p,.
Qo To» @ = 1, ..., m. Thus, we obtain | (= the
number of incidence pairs) equations
(12)

xiPa+yiQa+Ru_Zi=0 (Fa,V,‘)GR

These equations are linear in the reduced depths z;,
i =1, ...,n, and the reduced surface parameters P,
Qu» Ry» a = 1, ..., m. Let us call these / equations
simply the constraints of the polyhedron image.
Suppose the ! constraints are linearly independent.
The number of unknowns is N = n + 3m (the number
of vertexes plus three times the number of faces). This
means that the solution is a point in an N-dimensional
space. Since equation (12) imposes / linear constraints
on the N variables, the solution is constrained to an
(N — D-dimensional linear subspace. The dimension-
ality of the solution space is called the degree of
freedom. Thus, if the degree of freedom is 7, the
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solution contains r indeterminate parameters. This
means that we can specify at most r values to the
polyhedron image

If the ! constraints are linearly independent, the
degree of freedom is givenby r = n + 3m — I (=
N — I). If the [ constraints are not independent, say
only /' (<I) of them are independent, the degree of
freedomisr =n + 3m — I’ (>n + 3m - I). Thus,
the degree of freedom is at least n + 3m — I. However,
the degree of freedom of a polyhedron image should
be at least four if the polyhedron is not coplanar, that
is, not “flattened out” (see appendix B). In regard to
this problem, Sugihara [35-38] introduced the notion
of singularity of the incidence structure, and gave a
complete algebraic treatment to test if a given poly-
hedron image can be interpreted to be a projection of
a real polyhedron (see appendix C).

Remark 2. The use of the image coordinates (x;, ;)
and the reduced depths z; as well as the reduced sur-
face parameters P,, Q,, R, enables us to forget the
difference between perspective and orthographic pro-
Jections. In fact, orthographic projection is attained in
the limit of f = oo, and in this limit we can see from
equations (4), (5), (9), and (10) that all the reduced
parameters simply coincide with the original par-
ameters: x; > X, y; = Y, 2, > Z, P, > p;, Q; = q;,
R; = r;. Hence, all the subsequent discussions also
hold for orthographic projection if this limit is taken.
This is the reason why we adopt the coordinate system
centered at the image plane instead of the viewpoint 8

3 Optimization of a 212D Sketch
3.1 Surface Gradients Estimated

Suppose we are given a 24D sketch. Let V =
Vi, ...,V,}and F = {F, ..., F,} be the sets of its
vertexes and faces, respectively. Let R = {(F,, V))} be
its incidence structure. We assume that this incidence
structure is nonsingular? Let (p,, g,) be the estimate

"However, this does not mean that we can assign r surface gradients
arbitrarily. The interdependence of surface gradients depends on the
incidence structure.

#It would certainly be possible to stick to either throughout, but then
we would miss many critical observations buried in notational
complexity.

’If it is singular, we can always make it nonsingular with a small
modification as shown in appendix C.

Fig. 5. Optimization: From among infinitely many inconsistent
polyhedron solutions which are exactly projected onto the observed
image, we seck the one whose surface gradients are the closest to
the given estimates on the average.

of the surface gradient of face F,. As we argued in the
preceding section, there does not in general exist
polyhedron that is compatible with the given projec-
tion image and yet exactly has the prescribed surface
gradients.

Here, we assume that the surface gradient estimates
(o> 4o), @ = 1, ..., m, are not accurate, while the
given image coordinates (x;,y),{ = 1, ..., n, are ac-
curate.)® Let (po, g,) be the true surface gradient of
face F,. Here, we seck, from among the infinitely
many consistent polyhedron solutions that are exactly
projected onto the observed image, the one whose sur-
face gradients are the closest to the given estimates on
the average (figure 5). Specifically, let us consider the
least-square method to minimize

1 & . -
J =2 L Wl@u — P + (g ~ 307 )
a=l
where W,, is the weight for face F,. If equations (12)
are substituted, equation (13) is rewritten in terms of
the reduced surface parameters as follows:

'The observed image coordinates (x;, y), i = 1, ..., n, may also
contain errors if the object is a “real” polyhedron. However, most
surface gradient estimation processes involve these image coordinates.
Consequently, the computed surface gradient estimates are more in-
direct than these coordinates. If the image is a polyhedral approx-
imation of a smooth surface, the image coordinates are always “exact,”
since the tessellation is completely arbitrary.
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a=1 f
Pa . 2
P, + 2R, — pa
[[ f ”]
G 2
—Ra_'\a
¥ [Q“+f ; ” 1)

In order to make our analysis easy, we now introduce
a small trick: We replace r, in the above equation by
its estimate 7,, assuming that it is somehow available.

Put
f+r“‘,‘]2 1
w, | =] - = 5
[ 7 : ®)

Now, {, is a constant assigned to face F, whose value
is yet to be determined.

Remark 3. One example of assigning the value of {,
is as follows. If face F, has a large depth r,, estima-
tion of the surface gradient may not be very accurate,
so a small weight W, should be assigned. At the same
time, if either p,, or g, has a very large magnitude, the
measurement may also be inaccurate, so a small weight
W, should be assigned, too. In view of these con-
siderations, it may be appropriate to choose the follow-
ing weight:"!

| ; ,
W, = — - ] (16)
pi+aqgi+1 f+r

For this weight, the constraint {, becomes simply
Sa =P+ G + 1 an

Of course, the choice is not unique. Different choices
may result in different solutions. The validity of the
choice must be checked a posteriori.

The problem now reduces to minimization of J under
the constraints (12) for all incidence pairs (F,, V;) € R.
However, as long as we try to reconstruct the 3D object
shape from a single image by using surface gradient
cues, the absolute depth cannot be determined.!? Hence,
we must give the depth Z, or equivalently the reduced
depth z, to one vertex. Let that vertex be V,,. Since J

In the denominator, +1 is added to avoid zero division in case p,
= aa = (.

12Note that the projection image and the surface gradient of each face
is kept identical if the object is translated in the scene away from
the viewer and at the same time its size is proportionally increased.

is quadratic and the constraints (12) are linear in the
unknowns, the minimum is attained by solving a set
of linear equations. If we introduce Lagrangian
multipliers A; to all the incidence pairs (F,, V;) € R,
the final result becomes as follows:

Proposition 1. The reduced depths z; of vertexes V;,
i=1,...,n — 1, are given by solving the following
n + 3m + [ — 1 linear equations inn + 3m + [ — 1
unknowns z;, i = 1, ...,n = 1,P,, Qu Ry a=1,
...,m, and A for (F,, V}) € R:

xiPa +yiQoz +Ra - & =0¢ (Fqui)eR (18)

P, + Pa Ry + & X
f i(FV) eR

a=1...,m 19)

Xi Aai = ﬁw

G .
Qs + ?Ra + g‘a E Yi Aa' = qo»

i(F V) €R
a=1..,m 20)
52+ G
) [pax. qay_lj A, =0,
it(F,V) €R f
a=,...,m @y

Y A.=0 i=1...,n—-1 (22
a(F,V) € R

Remark 4. In Proposition 1, we assumed that surface
gradient estimates (P, g,) are given for all faces. This
is, however, not always necessary; if some faces are
given no estimates, the corresponding terms are simply
dropped from equation (13). As a result, if face F, is
given no surface gradient estimate, equations (19-21)
are respectively replaced by the following equations:

E x;A,,,- =0

i(F V) €R
Y yAa=0 23)
i(FV)€eR
Y Ai=0
i (F,V)eR
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Remark 5. In the orthographic limit f — oo, equations
(19-21) simply reduce to

Pot 8y Y Xhyi=po a=1...,m (24
i(F,V)eR

Qa + g-a E yiAoti = éa: o= l) s m (25)
it(F,V)€R

Y Ai=0 a=1,...,m (26)

i (F,V)ER

3.2 Edge Orientations Estimated

Next, consider case (3)—the 3D edge orientations
estimated. Again, Let V = {V|,...,V,} and F =
{F, ..., F,} be the sets of vertexes and faces, respec-
tively. Let E, = {e,, ..., en,} be the set of edges
constituting the boundary of face F,, and let &, =
(ék(l)9 ék(z), ék(B)) be the unit vector indicating the
estimated 3D orientation of edge ¢;. If (p,, q,) is the
surface gradient of face F,, the unit surface normal n,,
= (na(l), a2)s Ba(3)s to face Foz is given by

9
N +a2+l\/p A

____L___] @
VP + gi + 1

The vectors é, for edges ¢, € E, should be all or-
thogonal to n,, but this is not necessarily guaranteed
in the presence of noise. Hence, it is reasonable to
estimate the surface normal n, by the least-square
method which minimizes!3

1 R
E Eon)* =2 Y2 G

ekeE e,€E,

(3]

+ Gofae) + aofae)®  (28)

However, this minimization need not be done for each
face separately. The surface normals of all the faces
are estimated by minimizing

3In this paper, (a, b) (= a,b,+a,b,+a,b;) denotes the inner prod-
uct of vectors a = (a,,a,,a;) and b = (b,,b,,b4).

m
E Wy E (Ckayaq)

a=1 ek,

+ ) Moy + €3 M)’

ly " ¥
=5 (exap
2 a=] ot gyt 1 e€E, *
+ &)da — éi3)? (29)

where W, is the weight for face F,. If equations (10)

are substituted, this expression is rewritten in terms of

the reduced surface parameters P,, Q,, R,, @ = 1,
.., m, as follows:

o1y frr)?
Y’ z-+qs'+1 [ f J

o=l

x Y (wPa + €0y + }ékaa — &3)?
e€E, 30)

It follows that we can apply optimization as a single
step by minimizing this J under the constraints (12).
Again, we resort to a trick to make the subsequent
analysis easy. We replace r,, in the above equation by
its estimate £, as before. Moreover, we also replace p,
and g, in equation (30) by their estimates p,, Gq»
assuming that they are somehow available. Put

W, + 7, )2 1
— [t L 3
P+ g +1 f o

Then, ¢, is a constant for face F, whose value is yet
to be determined.

Remark 6. For example, we can reason that if face
F, has a large depth value 7,, the orientation estima-
tion of its boundary edges may not be very accurate,
50 a small weight W, should be assigned. On the other
hand, if p, and g, are close to zero, the variation of
the 3D edge orientation in the Z-direction will cause
only a small effect on its projection image, so it may
be appropriate to assign a small weight W,. In view
of these considerations, one candidate is

f 2
W, = + g2 + 1 32
@G:+a+ D { + 7 (32)
For this weight, the constant {, becomes simply
S =1 (33)
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Of course, other factors—the projected areas of the
faces, the projected lengths of the edges, etc.—can also
be taken into account if considered to be relevant.
Thus, the problem reduces to minimization of J under
the constraints (12) for all incidence pairs (F,, V)) € R.
Since the absolute depth cannot be determined as long
as only 3D edge orientation cues are used, we must
give the depth Z, or equivalently the reduced depth z,
to one vertex. Let that vertex be V,. Since J is
quadratic, and the constraints (12) are linear in the
unknowns, the minimum is attained by solving a set
of linear equations. The final result is given as follows.

Proposition 2. The reduced depths z; of vertexes V;,
i=1,...,n— 1, are given by solving the following
n + 3m + 1 — 1 linear equations inn + 3m + [ —
lunknowns z;, i = 1,...,n — 1, Py, O, Ry, @ =
1,...,m, and A for (F,, V}) € R:

xiPo: + yiQo: + Ra -4 = 0’ (Fcn Vt) €R (34)

1
APy + A0, + }AnRa + {o

X Y xhy=A, a=1...,m (35
i(F,V)eR
1
AZlPa + A22Qa + }AzgRa + g‘a
X ¥ yAu=Apm a=1..,m (36)

i(F,V)eR

1
Ay P, + ApQ, + }A”Ra + $o

X E ani=A33, a=1....m (37)
i(F,V)€eR
Y Au=0 i=1...,n-1 (38)
aF V) eR
where
Aw = E b ey @b =123 39
e €E,

Remark 7. Again, 3D orientation estimates need not
be given for all edges. If some edges are given no
orientation estimates, the set E,, in the above equations

is interpreted as the set of edges for which the 3D orien-
tation estimates are given. If no boundary edges of face
F, are given their 3D orientation estimates, the cor-
responding terms are simply dropped from equation
(30). This means that equations (35-37) are respectively
replaced by equations (23).

Remark 8 In the orthographic limit f = oo, equations
(35-37) are simply replaced by

AllPa + AlZQa + g'a

X E Xihgi = A1, a=1,...,m (40)
i(F,V)eR

A2|Pa + A22Qa + g‘a

X Y Xy =Ay a=1....m 4)
i(F,V)€eR

A3\Py + A0, + $o

X Y Ay=0 a=1...,m (42
i(F,V)€R

4 Optimization of Shape from Motion

In this section, we apply our optimization technique
to the shape-from-motion problem. Suppose we are
given a sequence of images of a polyhedron moving
in a scene. Let us assume that the point-to-point
correspondence has already been detected, telling us
which vertex corresponds to which between consecutive
frames. Then, we can write down the equations that
determine the 3D shape and motion from these ob-
served finite displacements of the vertexes on the im-
age plane (e.g., see Longuet-Higgins [19] and Tsai and
Huang [39]). In the presence of noise, however, the
computed 3D positions of vertexes incident to one face
will not necessarily be coplanar.

One way to avoid this inconsistency is to choose, as
unknowns, not the 3D positions of vertices but the sur-
face gradients of the object faces. Then, computed solu-
tions necessarily have planar faces, and we can obtain
a 21D sketch. Since noise is unavoidable, the com-
puted surface gradients are in general inaccurate; the
resulting 2% D sketch does not necessarily define a con-
sistent polyhedron. This difficulty is, however, over-
come by the optimization technique discussed in the
preceding section.
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Consider a face which has four or more corners. If
the image velocities are observed at at least four
vertexes, and if no three of them are collinear, the hypo-
thetical optical flow is uniquely determined because op-
tical flow resulting from planar surface motion con-
tains only eight parameters, which we call flow
parameters. Once these eight flow parameters are
estimated, say by the least-square fitting, we can com-
pute the surface gradient and the 3D motion of the
face.!* In particular, we can analytically compute the
rotation velocity (w,, w,, w;) and the surface gradient
(. 9) (appendix D), and no indeterminate parameters
are involved. Although two sets of solutions exist, the
spurious solutions can be discarded if two or more faces
of the polyhedron are observed, since the true rotation
velocity (w,, w,, w;) must be common to all faces.
Thus, we can estimate the surface gradient (p, g) for
the faces which have four or more corners. Then, the
optimization technique is applied to the resulting 24D
sketch.

Remark 9. The theory of optical flow is based on the
assumption that instantaneous velocities are observed
on the image plane. If a sequence of images is given,
the instantaneous velocities must be approximated by
the displacements between consecutive frames by tak-
ing the time lapse between frames as unit time. This
approximation introduces considerable error into the
subsequent processes even if measurements on indi-
vidual images are very accurate.

Remark 10. The rotation velocity (w,, w,, &5) should
be common to all the faces. In the presence of noise,
however, we may not be able to find a strictly common
rotation velocity. It follows that we need some “cluster-
ing” technique in the three-dimensional w,w,w;-space
to find the one most likely to be the common rotation
velocity.

Remark 11.  If the surface gradients are computed for
individual faces, we can obtain a 212D sketch by assign-
ing them to either the first image frame or the second,
or we can assign them to the “middle” image obtained by
connecting the midpoints of the vertex displacements.

"For example, see Kanatani [12]), Longuet-Higgins [20], Negahdari-
pour and Horn [26], and Subbarao and Waxman [33]. Also see Buxton
etal. [3,4], Kanatani [11], Koenderink et al. [17,18], Longuet-Higgins
and Prazdney [21], Subbarao [34], Waxman et al. [40,41] for various
aspects of optical flow analysis.

Remark 12. If the object has a triangular face, its sur-
face gradient is not assigned. However, our optimiza-
tion works even if some faces do not have assigned sur-
face gradient estimates (cf. Remarks 4 and 7).

Example 1. Consider the two images of figures 6a,b.
Let us label the vertexes and the faces as shown in fig-
ure 7a.!'s The displacements of the vertexes are shown
in figure 7b. Regarding the displacements as instantan-
eous velocities, and applying the procedure described
above, we can reconstruct the 3D shape uniquely up
to a single scale factor. If surface gradient estimates
are assigned to the first image, and equation (16) (i.e.,
{« of equation (17) is used for the weight W,, the 3D
shape shown in figure 8 is obtained. Figure 8a shows
the top view (orthographic projection onto the YZ-
plane), while figure 8b shows the side view (ortho-
graphic projection onto the ZX-plane). In spite of the
presence of noise and the inaccuracy of the estimated
surface gradient values, the final result is fairly correct.

5 Optimization of Rectangularity Heuristics

In this section, we study the 3D reconstruction of a
polyhedron from a single image by invoking the rec-
tangularity hypothesis. The 3D orientation of a corner
can be computed if its three edges are assumed to meet
perpendicularly. Since many man-made objects—
buildings, machine parts, furniture, etc.—have rec-
tangular corners, the study of this assumption is very
useful for practical purposes. Besides, this hypothesis
is also very natural from the viewpoint of human
perception psychology (cf. Barnard [2] and Mackworth
[22]) If one corner is known to be rectangular and has
three visible edges, we can compute the 3D orienta-
tions of the three edges up to the mirror image (cf.
Kanatani [10] and Shakunaga and Kaneko [32]). Here,
we use the formulation of Kanatani [15] (appendix E).
Each edge orientation indicates the surface normal to
the face defined by the other two edges. Hence, we can
determine the surface gradient of the three faces.
For each rectangular corner, we obtain two mirror
image solutions. However, it is usually easy to choose
the true solution. For example, we can apply a scheme
of line-drawing interpretation.'s We may also use other

The condition (C1) of appendix C is satisfied, and hence the in-
cidence structure is nonsingular.

'For example, the Huffman-Clowes edge labeling (cf. Clowes [S]
and Huffman [9]) and Kanatani’s scheme (Kanatani [10]).
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Fig. 6 Two object images.

Fig. 7 (a) Labeled line drawing for the object image of figure 6a. (b) Displacements of vertexes obtained from the two images of figure 6.
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(a)

(b)

Fig. 8 The 3D shape reconstructed from figure 6: (a) The top view (orthographic projection onto the YZ-plane). (b) The side view (orthographic

projection onto the ZX-plane).

sources of information if available—range sensing,
shading information, etc. If neither of the two mirror
image solutions can be eliminated, we can simply re-
tain both and produce multiple solutions. In the follow-
ing, let us assume for simplicity that the true solution
can be distinguished from its mirror image.

If a face has two or more rectangular corners with
three visible edges, and multiple surface gradients are
obtained, their average is assigned. Then the optimiza-
tion technique is applied to the resulting in a 24D
sketch. Alternatively, the optimization technique can
be directly applied to the 24D sketch with 3D edge
orientation estimates. Recall that all faces and edges
need not be given estimates; our optimization works
if some faces or edges lack their orientation estimates
(cf. Remarks 4 and 7).

Thus, the remaining question is how to find rec-
tangular corners. Theoretically, this is an impossible
problem, since all we have is a single image. Here, we
resort to a heuristic: As many corners are assumed to
be rectangular as possible unless inconsistency results
by assuming so. This means that all we need to do is
reject those corners that are definitely nonrectangular,
The first criterion available is the following rec-
tangularity test. For a corner image with
three visible edges, consider its canonical image, (that
is, the corner image defined by its canonical angles,

(cf. appendix E)."” The corner cannot be rectangular if
the three angles made by the three edges satisfy one
of the following conditions (see Kanatani [15] for the

proof):

(@) (b) (c)

Fig. 9 Rectangularity test: If these configurations arise in the canoni-
cal position, none of these can be the projection of a rectangular corner.

1. Onre is an acute angle, and the remaining two are
obtuse angles (figure 9a).

2. One is an acute angle, another is an obtuse angle,
and the other is larger than 7 (figure 9b).

3. Two are acute angles, and the other is larger than
3x/2 (figure 9c).

"7This is the image of the corner we would obtain if the camera were

rotated around the center of the lens so that the corner vertex coin-
cides with the image origin (cf. Kanatani [15]).
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The next critierion available is the compatibility test
for two corners. We choose two corners which share
at least one face, and compute the 3D edge orientations
and the surface gradients at these two corners, assum-
ing that both are rectangular corners. If this assump-
tion is correct, the computation must predict an iden-
tical 3D orientation for the connecting edge (if the two
corners are connected) and identical surface gradients
for the common faces (within some fixed tolerance).
If not, we say that they are incompatible as rectangular
corners.

Then, we form maximal compatible sets of corners
in such a way that as many corners are included as
possible unless imcompatible pairs arise among them.
Then, assuming that the corners belonging to each set
are all rectangular, we end up with as many 2'2D
sketches as the number of these maximal compatible
sets.

Example 2. Figure 10a is a real image of a
polyhedron. Suppose the line drawing of figure 10b is
obtained, and its vertexes and faces are labeled as in-
dicated in the figure.'8 Vertexes 1, V5, ¥, Vi, W have
three visible edges. First the rectangularity test rejects
vertexes V; as nonrectangular. The rest are combined
18The condition (Cl) of appendix C is satisfied, and hence this in-
cidence structure is nonsingular.
9Vertex V; is judged as a T-junction, and hence it is incident to F;
alone.

(@)

into pairs sharing at least one common face, resulting
in {V|, V-I}v {V;! Vl(]}v {l'{h Vé}’ {Vh VIO}v {Vm V;O}
Then, we perform the compatibility test by computing
the canonical angles and estimating the surface gra-
dients by the procedure of Kanatani [15] (appendix E).
All the above pairs pass this test. So, all of these corners
are assumed to be rectangular. Then, surface gradient
estimates are assigned to the faces to which these cor-
ners are incident (the average is taken if necessary),
and the optimization technique is applied to the
resulting 24D sketch. If equation (16) (i.e., §, of
equation (17)) is used for the weight W,,, the 3D shape
indicated in figure 11 is obtained. Figure 1la shows the
top view (orthographic production onto the YZ-plane)
while figure 11b shows the side view (orthographic pro-
jection onto the ZX-plane).

Example 3. Figure 12a is another real image of a
polyhedron. Suppose the line drawing of figure 12b is
obtained, and its vertexes and faces are labeled as in-
dicated in the figure2® Vertexes V5, W, Vi, Vs, Vg, W5,
Vi, Vo, have three visible edges. This time, the rec-
tangularity test cannot reject any of these vertexes as
definitely nonrectangular. The compatibility test tells
us that these vertexes are split into two compatible
groups {V4, ¥, Y, Vio}. {V5, Vi, Vs, Vi}. Thus, we ob-
tain two solutions if we separately assume that the

20The incidence structure is also nonsingular.

Vi FVZ
F3 7 VQ

(b)

Fig. 10. (a) A polyhedron image. (b) The labeling of its line drawing.
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(a)

(b)

Fig. 1. The 3D shape reconstructed from figure 10: (a) The top view (orthographic projection onto the YZ-plane). (b) The side view (ortho-

graphic projection onto the ZX-plane).

(@)

Fig. I2. (a) A polyhedron image. (b) The labeling of its line drawing.

corners of each group are rectangular. Applying the op-
timization technique, we can reconstruct the two 3D
shapes shown in figures 13 and 14. In both of them, (a)
shows the top view (orthographic projection onto the
YZ-plane) while (b) shows the side view (orthographic
projection onto the ZX-plane).

Remark 13. The objects shown in figures 10a and 12a
are actually the same but placed differently, and the re-

X

(b)

constructions of figures 11 and 13 are correct. From this
observation, we notice that false solutions can be re-
moved if two images of the same object are obtained from
different angles, since the true solutions must have an
identical shape. Alternatively, we can eliminate false sol-
utions if some global 3D characteristic, say the aspect
ratio (i.e., the maximum of the ratio of the “height”
measured in one direction over the “width’ measured
perpendicularly to it), is given or estimated beforehand.
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(@)

(b)

Fig. 13. One 3D shape reconstructed from figure 12: (a) The top view (orthographic projection onto the YZ-plane). (b) The side view (ortho-

graphic projection onto the ZX-plane).

(a)

(b)

Fig. 14, Another 3D shape reconstructed from figure 12: (a) The top view (orthographic projection onto the YZ-plane). (b) The side view

(orthographic projection onto the ZX-plane).
6 Optimization of Parallelism Heuristics

Now, let us study 3D shape recovery based on the
parallelism hypothesis coupled with the optimization
technique. If two lines in the image are interpreted to
be projections of parallel lines in the scene, they define
a vanishing point on the image plane, which, as is well
known, determines the 3D orientation of these lines.
Since foreshortening greatly helps humans perceive 3D
depth, this reasoning is also very natural for humans
(cf. Haralick [7] and Mulgaonkar et al. [25]).
Suppose a polyhedron image is observed. If we can
find a set of edges that are parallel in the scene, their
3D orientation is computed from their vanishing points
by the equations shown in appendix F. Hence, if a par-
allel edge-finding algorithm is available, we can obtain

a 21D sketch with estimated 3D edge orientations. The
3D edge orientations computed from vanishing points
may not be consistent with each other in the presence
of noise, but this inconsistency can be overcome by the
optimization technique of section 3.

Thus, it remains to construct an algorithm for find-
ing parallel edges. A naive heuristic is to group together
those edges that are nearly parallel on the image plane..
However, if two edges are far apart on the image plane,
they can be parallel in the scene even if they make a
large angle of the image plane. On the other hand, if
two edges meet at a corner of the object, they cannot
be parallel however small the angle between them is.
In general, two parallel edges in the scene can be pro-
jected onto lines making any angle, depending on the
surface gradient of the plane on which they lie.
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Fig. 15. Concurrency test: Three or more edges are judged as parallel
if they are concurrent on the image plane when extended. In the
presence of noise, however, they may not necessarily intersect at a
single vanishing point. How can we tolerate the error to judge
concurrency?

Again, we adopt the same heuristic strategy we used
for the rectangularity hypothesis. Namely, as many edge
sets are assumed to be parallel as possible unless in-
consistency results by assuming so. First, there exists
a strong constraint on parallelism: Projections of
parallel lines in the scene must be concurrent on the
image plane, defining a common vanishing point. In
view of this, we apply the concurrency test: If three
or more edges are concurrent on the image plane, they
are judged to be parallel in the scene. This assumption
is reasonable because it is very unlikely (though not
entirely impossible) that three or more nonparallel
edges happen to be concurrent when projected.

However, a serious problem arises. As we have
already pointed out many times, the edges we observe
on the image plane may not be accurate. As a result,
parallel edges, when extended, may not necessarily in-
tersect at a single point (figure 15). What criterion
should we use to accept them as concurrent or reject
them as nonconcurrent? One solution is to decide that
lines are concurrent if the maximum separation among
their mutual intersections is smaller than a threshold
value e.

The trouble is that the threshold value cannot be
fixed. For instance, if two lines intersect at a point far
apart from the image origin, slight displacements of
them will cause very large displacements of the inter-
section. Hence, the threshold value ¢ must be taken to
be very large, but then we cannot distinguish inter-

sections near the image origin. Thus, the threshold
value must depend on the distance of the intersection
point from the image origin.

Fig. 16 Only those edge pairs that share common faces are checked,
because it is highly unlikely that two edges belonging to different
faces are parallel, yet no other edges are parallel to them.

We must also confine the computation into the finite
domain so that computational overflow does not occur.
One way to do so is write all relationships of points
and lines in terms of unit vectors or normalized
homogeneous coordinates (appendix F). This is easily
done if we use, instead of the usual image plane, the
image sphere (or the Gaussian sphere) of radius f
centered at the viewpoint [23]. However, we must note
that the use of the image sphere is only for visualiza-
tion. All computation is done over the original image
data; we need not generate a new image over the im-
age sphere. One algorithm of the concurrency test is
given in appendix G.

After the concurrency test has detected sets of three
or more parallel edges, we sort out, from among the
remaining edges, those pairs that share common faces.
It is reasonable to check only these pairs, because it
is highly unlikely that two edges belonging to different
faces are parallel, yet no other edges are parallel to them
(figure 16). To these candidate pairs, we apply the
following two tests.

The first test is the parallelogram test: If two pairs
of parallel lines lying on the same plane are projected
onto half-lines starting from their respective vanishing
points, they must intersect with each other at exactly four
points on the image plane. This constraint comes from
the fact that two pairs of parallel lines on a plane must
define a parallelogram. For example, suppose edges ¢,,
e, are already judged to be parallel. In figure 17a,
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Fig. 17, Parallelogram test: Two pairs of parallel edges regarded as half-lines starting from their respective vanishing points must intersect
each other at exactly four intersection points. If edges e,, e, are parallel, edges e, e, cannot be parallel in (a) but can be parallel in (b).

edges e;, e, cannot be parallel in the scene because they
do not define a parallelogram with edges e,, e,, while
edges e;, e, of figure 17b pass this test.

The second test is the collinearity test: If three or
more sets of parallel lines belong to the same face, their
vanishing points must be collinear. Namely, a candidate
pair of edges cannot be parallel if their intersection is
not on the vanishing line already established from other
vanishing points (within some tolerance) (figure 18).
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Fig. 18. Collinearity test: The vanishing points of parallel edges
belonging to the same face must be collinear (within some tolerance).

Thus, those edge pairs that have passed these two tests
are assumed to be parallel in the scene. However, if
one edge appears in multiple pairs, we choose, by

invoking the vanishing point heuristic, the pair whose
intersection is located farthest away from the image
origin O (figure 19).

= -

Fig. 19. Vanishing point heuristic: Two edges are more likely to be
parallel in the scene if their intersection is farther away from the im-
age origin O.

Example 4. Figure 20a is a real image of a
polyhedron. Suppose the line drawing of figure 21Ib is
obtained. Its vertexes, edges, and faces are labeled as
indicated in this figure2! Applying the concurrency

21The condition (Cl) of appendix C is satisfied and hence this inci-
dence structure is nonsingular.
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() (b)

Fig. 20. (a) A polyhedron image. (b) The labeling of its line drawing.

(a) (b)

Fig. 21. The 3D shape reconstructed from figure 19: (a) The top view (orthographic projection onto the ¥Z-plane). (b) The side view (ortho-
graphic projection onto the ZX-plane).
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test, we detect the following set of parallel edges:
{e1, €2, €3, €4}, {es, €6, €7}. From among the remain-
ing edges, those pairs that share common faces but no
common vertexes are the next candidates for parallel
pairs: {es, €5}, {€10, €n}, {es, €12}, {en, ez} Allof
these pairs pass both the parallelogram test and the col-
linearity test. Edge e, belongs to two pairs {es, €5},
{es, 15} Invoking the vanishing point heuristic, we
choose the former, because its intersection is located
farther away than that of the latter. Similarly, edge ey,
belongs to two pairs {e,o, e;;} and {ey,, €2}, but we
choose the former. Thus, we conclude that the sets of
parallel edges are {e,, e;, €3, €4}, {€s, €, €1}, {€s, €5},
{e10, €11} Applying the optimization technique, we can
recover the 3D shape up to a single scale factor. If equa-
tion (32) (i.e., ¢, of equation (33), is used for the
weight W,, the 3D shape shown in figure 21 is
obtained. Figure 21a shows the top view (orthographic
projection onto the YZ-plane), while figure 21b shows
the side view (orthographic projection onto the
ZX-plane).

7 Concluding Remarks

In this paper, we have presented a scheme of optimiza-
tion for computing a consistent polyhedron shape from
inconsistent image data. Our formulation is based on
the algebraic expressions of the constraints on the
incidence structure of a polyhedron line drawing. This
ideas was first proposed and studied in detail by
Sugihara [35-38]. However, his formulation is based
on the assumption that the projection is orthographic,
although he pointed out that the same algebraic analysis
applies to perspective projection by changing variables.
Here, we have presented a fully unified approach.
Namely, we introduced the reduced depth and reduced
surface parameters which enable us to treat orthograph-
ic and perspective projections in a single framework.

Sugihara [37,38] also proposed an optimization
scheme to construct a consistent polyhedral shape that
fits observed image data on the average. His approach
is first to construct the solution space defined by the
constraints on the incidence structure (i.e., the subspace
whose dimensionality equals the degree of freedom of
the incidence structure) and then to perform an uncon-
strained nonlinear optimization over this solution space,
thus requiring an appropriate initial guess and an iterac-
tive search algorithm.

In our approach, we do not construct the solution
space. Instead, we perform a constrained quadratic op-
timization. By introducing Lagrangian multipliers cor-
responding to the constraints on the incidence struc-
ture, the optimal solution is immediately obtained by
solving a set of linear equations: no initial guesses or
iterations are necessary.

We first applied our technique to the shape-from-
motion problem and demonstrated how a consistent ob-
ject can be reconstructed from inaccurate data. Then,
we applied it to 3D shape recovery of polyhedra from
a single image. First, we adoped the rectangularity
hypothesis, assuming corners to be rectangular unless
inconsistency results. We have presented a heuristic
strategy for finding rectangular corners. Next, we
adopted the parallelism hypothesis, assuming edges to
be parallel unless inconsistency results. We also
presented a heuristic strategy for finding parallel edges.
For each problem, we showed examples based on real
images.

As we have shown in these examples, our optimiza-
tion scheme requires complete line drawings over which
2%D sketches are optimized. This may be a problem
if the line drawings are supposed to be edge images
of “real” polyhedra. However, this is not a problem
when smooth surfaces are approximated by polyhedra,
since surface tessellation is completely arbitrary: Our
optimization equally works whether the line drawings
are edge images or arbitrary tessellations.

We have also collected in appendixes various
mathematical facts and techniques relevant to 3D in-
terpretation of images in a concise form readily
available for actual computation.
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Appendix A: Integrability Condition
of a Smooth Surface

Let us briefly consider case (1)—the 2'2D sketch with
densely estimated surface gradient. Suppose the sur-
face gradient (p, q) is estimated as a smooth function
over a region of the image plane. Then, we are ques-
tioning the integrability condition: Does a smooth sur-
face that has the specified surface gradient—p(x, y),
q(x,y)—exist? Suppose the region corresponding to the
surface is simply connected (i.e., with no holes).
We are seeking a solution in the form of Z = Z(X, Y)
such that p(x, y) and g(x,y) are respectively equal to
the values of 3Z/3X and 8Z/3Y evaluated at the point
(X, Y, Z) corresponding to point (x, y). This means that
we are looking for a surface Z = Z(X, Y) such that

Y LLEp. AW
+Z f+Z) (A

dZ=p |——,——|dX+

P +Zf+J 1

The following integrability condition is well known in
the theory of differential equations: The necessary and
sufficient condition that there exists a surface along
which differentials dX, dY, dZ satisfy

AX, Y,2)dX + BX, Y, Z) dY
+ CX,Y,2)dZ =0 (A2)
is

), (Ui,
Y oz aZ dX

B o
+ | = — |Cc=0@43
x Y

(Frobenius’ theorem). From this theorem, we find that

the desired surface exists if and only if the following
condition is satisfied:

dg dp 1 dq ap
— - == P —q__|x

x 9y f ax ox
aq ap
+ ——-q— Ad
CERCE
If we take the orthographic limit f = oo, we obtain
a 9
Z-T=o0 (AS)
ax dy

which is a well known result. Thus, whether the projec-
tion is orthographic or perspective, the surface gradient
(p, q) cannot be assigned arbitrarily to the 2 %D sketch.

Violation of this integrability condition for real data
has been realized by many researchers to be one of the
major obstacles for reconstructing surface shapes from
densely estimated surface gradient cues, and various
attempts have been made to force the integrability con-
ditions (cf. Frankot and Chellapa [6] and Horn and
Brooks [8]). Such attempts can also be viewed as a kind
of regularization (cf. Aloimonos and Swain [1], Pog-
gio et al. [27,28], and Tikhonov and Arsenin [29]).
However, we do not go into this problem here.

Appendix B: Degree of Freedom
of a Polyhedron Line Drawing

The degree of freedom of a polyhedron image should be
at least four if the polyhedron is not coplanar (i.e., not
“flattened out”). This fact was first pointed out by Sugi-
hara [35]. Suppose there exists a solution polyhedron
that satisfies all the constraints for given data (x;, ),
i =1, ...,n. Then, we can freely translate and deform
the solution polyhedron into another while keeping the
projection equations and the incidence structure pre-
served (figure B1). Such a “deformation” involves four
parameters. Hence, there exist at least four degrees of
freedom.

X

—féog :

Fig. BI. Degree of freedom: The deformation of a non-flat polyhedron
which preserves the projection relationship and the incidence structure
involves at least four independent paramters. Hence, the degree of
freedom is at least four.

Here, we give a formal proof which is slightly dif-
ferent from that of Sugihara [38]. First, we can assume
thatn =422 Letz,i=1,...,n Py, @y, Ry, a =1,
..., m, be a solution satisfying the constraints (12). It

is easy to confirm that the following are also a solution:
Zi=Ax; + By, +Cz; + D i=1,...,n (B

22[f 5 < 3, we can only define a point, a line segment, or a triangular
plane.
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P, =CP, + A,
Q. = CQ, + B,
R,=CR,+D, a=1,....m (B2)

Here, A, B, C, D are arbitrary constants such that C
> 0. Our proof is complete if we can show that the
four constants A4, B, C, D are independent, that is, there
is no redundancy among them. Assume the contrary,
and suppose 4, B, C, D, and 4, B, C', D’ define the
same deformation. From equation (B), this means that

Ax; + By, + Cz; + D = Ax; + By; + C; + D',
i=1,...,n (B3)

or
A =AW + (B -BYy +(C-C)y
+@D-D)=0, i=1...,n (BY

Thus, we obtain n (= 4) homogeneous linear equa-
tionsind — A, B - B, C~— C, D — D' Among
them, there should be at least four independent equa-
tions, and henceA — 4'=0,B—B'=0,C - C' =0,
D-D'=00rd=AB=B,C=C,D=D'
In other words, any changes of these four parameters
will produce different deformations. This means that
the degree of freedom is at least four.

The fact that at least four of equations (B4) are inde-
pendent can be seen easily: If not, any four of them
are linearly dependent. Consequently, all minors of
degree four are zero:

X, Y,z 1

X, Yi, 4y 1 . .
=0, {ii,....,i,}C{l,...,n} (BS)

Xiy Yiy %,

X, Yi, %, 1

But this is exactly the condition that all the vertexes

are coplanar in the xyz-space (hence in the XYZ-space

as well, cf. Remark 1). This contradicts our assump-

tion that the polyhedron is not coplanar.

Appendix C: Singularity of the Incidence Structure

Consider the polyhedron image of figure Cla. The
number of vertexes is n = 6, the number of faces is
m = 4, and the incidence stucture consists of the
following 15 incidence pairs:

R = {(FR, V), (R, W), (R, Vi), (R, V)
(B, V), (B3, Vo), (B2, W5)

(B3, Vo), (B3, W), (F3, Vs)

(£, Vo), (Fa, i), (R V)

(5, V), (5, Vo))

We omit the numerical data, but it can be shown that
the 15 constraints are linearly independent. It follows
that the degree of freedomisr =6 + 3 X 4 = 15 =
3. According to appendix B, however, it must be at least
4 if the polyhedron is not to be coplanar. This means
that the polyhedron must necessarily be “flat”’; all the
six vertexes and the four faces are coplanar. This can
easily be understood: If any of the vertexes ¥}, W, V;
is out of the plane defined by the vertexes ¥, V;, ¥,
the faces F,, F;, F, cannot all be planar. This is because
edges ey, e,, e; are not concurrent, while they should
be if faces F,, F;, F, are all to be planar.

Consider figure CIb. This polyhedron has exactly the
same incidence structure as that of figure Cla. This
time, the image coordinates of vertexes V;, V;, V; are
such that edges e,, e,, e; are concurrent, and hence
a “nonflat” interpretation is possible. In analytical
terms, the 15 constraints happen to be linearly depen-
dent; only 14 of them are independent, and hence the
degree of freedomis 6 + 3 X 4 — 14 = 4,

In a real problem, however, this situation is highly
unlikely to occur, because only a small disturbance to
the image coordinates will make the 15 constraints lin-
early independent, thus reducing the degree of freedom
to 3. In other words, the situation of figure CIb is prac-
tically impossible.?* Hence, we must regard this poly-
hedron as having an inherently “bad” structure. To put
it differently, we must assume in general that the / con-
straints are always linearly independent; we cannot ex-
pect the very small possibility of degeneracy to occur.

In appendix B, we showed that the degree of freedom
of a polyhedron which has n vertexes, m faces, and [
incidence pairs is at least n +3m — I Hence, if n +
3m — 1 > 4, itis expected that a “nonflat” interpreta-
tion can exist. However, a part of it may have the “bad”
structure, allowing only the “flat” interpretation for that
part (except in the case of a very unlikely coincidence).
We say, according to Sugihara [35-38], that a poly-
hedron (or, to be precise, its incidence structure) is

#*We may say that the occurrence of this event is of measure 0 by
introducing an appropriate measure.
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e3 F3 Vz
(@)

%

Vs

(b)

Fig. CI. Singularity: (a) The only possible interpretation is a “flat™ polyhedron, all its faces lying on a plane. (b) A nonflat interpretation
is possible if and only if the vertex coordinates take special values, which is highly unlikely in real situations.

singular if some part of it has this *“bad” structure.
Requiring the above inequality for all “subpolyhedra,”
we can expect that a polyhedron is nonsingular if and
only if

V)| + 3 |F| - [RE)| = 4 (Ch

for any subset F* C F = {FR, ..., F,} such that
|F'| = 2. Here, V(F") is the set of the vertexes inci-
dent to at least one of the faces in subset F', and F(F")
is the set of the incidence pairs involving the faces in
subset F’. The vertical bars |+| denote the number of
elements.

Sugihara [36,38] proved that the above condition is
indeed the necessary and sufficient condition for an in-
cidence structure to be nonsingular. This result is very
important because the criterion of equation (Cl) is easy
to check: The process is combinatorial, and no
numerical computation is involved 24

If the incidence structure is singular, we can make
it nonsingular by partitioning some of its faces. For ex-
ample, the incidence structure of figure Cla becomes
nonsingular if face F; is partitioned into two faces F3,
F%. As a result, a “nonflat” interpretation becomes
possible (figure C2a). In general, the incidence struc-
ture always becomes nonsingular if all the faces are par-
titioned into triangular surfaces. In particular, if the

24If we are to exhaust all subpolyhedra, O(2™) steps of computa-
tion are required, where m is the number of faces. However, there
exists an efficient algorithm, due to Sugihara [38], which requires
only O(#?) steps, where [ is the number of incidence pairs.

21D sketch is obtained as a polyhedral approximation
of a smooth surface, we can always do this because the
partitioning is completely arbitrary.

On the other hand, if we want to preserve the original
partitioning, we can make its incidence structure non-
singular by removing some of the incidence pairs, as
pointed out by Sugihara [35-38]. Then, a “nonflat”
interpretation becomes possible, but some faces will
meet in different places. Hence, the vertex positions
must also be displaced in the 3D reconstruction. For
example, the incidence structure of figure Cla becomes
nonsingular if the incidence pair (F;, 1) is removed,
but vertex ¥; must be displaced to a new position V;
in the resulting nonflat interpretation (figure C2b).

As we noted in Remark 2, none of the above argu-
ment depends on whether the projection is perspective
or orthographic.

Appendix D: 3D Recovery of a
Planar Surface from Optical Flow

Consider a planar face with four corners moving in the
scene. If image velocities are observed at those four
corners, the surface gradient (p, ¢) and the rotation
velocity (w,, w,, w,) are computed by the following pro-
cedure (see Kanatani {12] for the proof).
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Vs
(@)

Step 1. If velocities (u;, v;) are observed at four points
(i), i = 1,...,4, compute the flow parameters u,,
vo, A, B, C, D, E, F by solving the following
simultaneous linear equations:

I iy XX (4o [ u,
1 xy, X3 Xy, Vo u,
1 x3 x§ X3)3 A L2 ]
1 xey Xi X4 B | _ | u

1 X1 Yt X }’f c B 14} (D))
1 X2 Y2 X2 V3 D 123
1 X3 Y3 X3)3 }’§ E Vs
! xeyxgs 2 | LF ] | v

It can be proved that the determinant of the above matrix
does not vanish unless three among the four points are
collinear. Hence, if no three points are collinear, the
flow parameters are uniquely determined from the
velocities at the four points.

Step 2. Compute the following invariants:

T=4d+D
R=cC-B,
S=@-D)+iB+0C), (D2)
L =

E-2+iF -2
FreTy

Vs
(b)

Fig. C2. A singular incidence structure can be made nonsingular by (a) partitioning some faces, or (b) removing some incidence pairs and
displacing some vertexes. These two figures show possible 3D interpretations of the line drawing of figure Cla after such modifications.

Here, i is the imaginary unit, so U, S, and L are com-
plex numbers in general 25

Step 3. Solve the following cubic equation:

X+ TX+ VAT — |82 - |L|»HX +

gRILSI - TILH =0 (D3

Here, || denotes the absolute value of a complex
number, and Re [*], Im [*] the real part and the imag-
inary part, respectively. It can be proved that equation
(D3) has three real roots (see Kanatani [12] for the
proof). Let « be the middle of the three real roots.

Step 4. The surface gradient (p,q) and the rotation
velocity (w,,w,,w;) are given as follows:

. 17— 4aS]
p = zaRe[Li\/L 4aS]

q = %Im[L + JIZ = 4as]

w =%1m[L3r\/m—3f°
@, = TRe[L ¥ VIF = das] + X
2 2 f

w3 = %R + Im [L* \/I? — 4aS]

25These quantities define irreducible representations of the 2D rota-
tion group SO(2) corresponding to rotations of the image coordinate
system, see Kanatani [13] for details.
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Here, * denotes complex conjugate, and one particular
branch is chosen for all the complex square rootsS
Equations (D4) show that there exist two sets of solu-
tions. However, since the rotation velocities w,, w,, w3
are common to all the faces, we can pick up the true
solutions if two or more faces are observed. Hence,
the surface gradient of each face is uniquely deter-
mined. See Kanatani [12] for numerical examples.

Appendix E: 3D Orientation of a
Rectangular Corner in Perspective

Suppose we observe a rectangular corner on the im-
age plane. Let (q, b) be the image coordinate of the
vertex. Let ¢,, ¢,, ¢ be the angles of the three edges
(call them 1-, 2-, and 3-edges) measured from the im-
age x-axis (figure El). We want to compute the three
unit vectors n,, n,, n, indicating the 3D orientations
of these edges in the scene. They are computed by the
following procedure (see Kanatani [15] for the proof).

Step 1. Compute
a
ll = ’
a2 + B+ f
b
h=—F—7F—0 (ED

Y
NcEa

3

_a213+b2
a2+’
_ab(, - 1)

E2
az + B (E2)

_bzl3+a2
a® + b

Step 2. Compute the canonical angles 6,, 32, J>3 by
3 = —tan™ (E + al)) tan ¢; — (fF + bl))
‘ (fF + aly) tan ¢; = (fG + bly)’
i=12,3 (E3)

26We assume that « is not zero. If it happens to be zero, another set
of formulas must be used. See Kanatani [12] for details.

X

Fig. El. The 3D orientation of a rectangular corner under perspec-
tive projection is computed anayltically in terms of the vertex posi-
tion (a, b) and the three angles ¢, ¢,, ¢ of the edge images measured
from the xaxis.

where from among the two values resulting from tan ™
the one closer to the observed ¢; is chosen.

Step 3. Compute three angles 6,, 0,, 53 by

i = | —cos (¢; — ¢
' ,\] — cos (@; — &) cos ($; —d)
itjE ki (E4)

where i,j, k € {1,2,3}.

Step 4. Compute three angles 6,, §,, 8; as follows.

Put A¢; = |¢; — ¢;| (mod 2x). There are two possi-

bilities.2” There exists two solutions for each case.

1.If /2 < A¢y < = forall (i,)) € {2,3), G, 1,
(1,2)},then §; = 6, fori = 1,2,30r 9, =7 — 6
fori =1,2,3.

2.1f0 < Ay < 7/2,0 < Agy < 7/2, w2 < Ady
< 3n/2 for some i,j, k € {1,2,3},i #j # k #
i_,then0,~_= 0,‘, Gj =7 Gj, Ok = 0kor0,- =7 —
0,', 0,- = 0_", Ok =T - Bk'

2'We are checking the configuration of the corner image defined by
the canonical angles $,, ¢,, $;: Case (1) corresponds to a “fork,”
and case (2) corresponds to an “‘arrow.” If some A¢; happen to be
exactly 0, /2, or = (i.e., for an L or T), the problem is degenerate,
and infinitely many solutions exist. In all other cases, the image cannot
be a perspective projection of a rectangular corner, which leads to
the rectangularity test introduced in section 5 (figure 9).
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Step 5. The 3D orientations of the three edges are
specified by unit vectors n;, n,, n, given by

E F | sind; cose;
n,=1| F Gl sinf sing; |,i = 1,2,3
_l] _12 13 COSG,- (ES)

where [}, 1, I, E, F, and G are given by equations (E1)
and (E2).

Thus, there exist two solutions; one configuration is
the mirror image of the other with respect to a mirror
perpendicularly to the line of sight passing through the
viewpoint and the corner vertex in the scene. See Kana-
tani [15] for numerical examples.

Appendix F: Computation of Vanishing Points

Projections of parallel lines in the scene must be con-
current on the image plane. Namely, they must intersect
a common point—called the vanishing point. In order
to prove this well-known fact, we only need to show
that the vanishing point of a line is determined by its
3D orientation alone, irrespective of its location in the
scene:

PRroposITION Fl.  The vanishing point of a line whose
3D orientation is m = (m,, my, my) is given by (fin,/m,,

Smaims).

Proof. A line passing through point (X,, ¥,, Z;) and
extending in the direction of vector m = (m,, m,, m,)
is given by

X=Xo+tm| Y=Y0+tm1 Z=Zo+M3 (Fl)
where ¢ is a real number. The perspective projection

of this line is given by

X = X _ Xo + tm,
Z +

f+ f+Zy + tmy )
fY ¥, +tm,

Yrvz vz m

The vanishing point (a, b) of this line is obtained by
taking the limit ¢ = + o0 : a = fm,/m;, b = fm,/m,.
This result holds irrespective of the position (X,, ¥,, Zy).

CoROLLARY. The 3D orientation of a line whose
vanishing point is (a, b) is given by the unit vector

_ a b f J
meE [«/a2+b2+f2’ Va2 + B+ Na + B+
(F3)

Thus, once we detect parallel edges, their vanishing
point determines their 3D orientation. There is, how-
ever, one issue to be solved. Since the edges observed
on the image plane are detected by image processing
techniques, they may not be accurate. As a result,
parallel lines may not necessarily meet at a single point
when projected onto the image plane (figure 15). How
can we estimate their common vanishing point?
Evidently, some kind of average must be taken. At the
same time, the computation must be done in the finite
domain, because the vanishing point can be infinitely
far apart from the image origin. This is done if we pre-
present points and lines on the image plane by unit vec-
tors or in terms of projective geometry the use of (nor-
malized) homogeneous coordinates.

Consider a point p : (a, b) on the image plane. The
unit vector m starting from the viewpoint and pointing
toward the point P on the image plane is given by

- a b f
"= [\/a2+b2+ﬁ’ N+ +f \/a2+b2+fJ
(F4)

(figure Fla). We call this m the unit vector associated
with point P. Consider a line!/: Ax + By + C =0
on the image plane. The unit surface normal to the plane
passing through the viewpoint and this line on the im-
age plane is given by

B y B cf
"= [\/Az+m+c2/fz VETBTCR NETBRTCOR ]
(F5)

(figure 15b). We call this n the unit vector associated
with the line I

Here are three algorithms to identify a common
intersection of ‘“almost” concurrent lines.

ALGORITHM 1. Let Ax + By + C; =0, i =
1, ...,n, be almost concurrent lines on the image
plane. Since these equations can be multiplied by an
arbitrary nonzero constant, we can assume that the
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(@)

Z

Ax+By+C=0
i "/{xv

~f

(b)

Fig. Fl. (a) The unit vector m starting from the viewpoint and pointing toward point (a, b) on the image plane Z = fis associated with that
point. (b) The unit vector n starting from the viewpoint and normal to the plane passing through the viewpoint and line Ax + By + C =0

on the image plane Z = f is associated with that line.

coefficients A;, B;, C; are so chosen that A? + B} =
1, i = 1, ..., m. Then, as shown in figure F2, the
distance of line Ax + B;y + C; = 0 from point (a, b)
is given by |4a + Bib + C|. Hence, we can deter-
mine the common vanishing point (a, &) by minimizing

N
Y, (4a + Bb + C)? (F6)

i=l

Ai X+Bi y'l-ci =0

(A;,Bi)

Fig. F2. The distance of line Ax + By + C, = 0 from point (a,b)
is given by |[4a + Bb + C| if the equation is normalized so that
A+ Br= 1.

The common intersection (a, b) is obtained by taking
derivatives with respect to a and b and setting the
respective results to be zero. The final result is as
follows. If we put

N N N N
mll = E AC; E B.g - E BC; E A;B;

i=1 i=] i=l i=1

N N N N
=Y A2Y, BC, — ¥ AB; X ACi(FT)

i=1 i=1 i=l i=l

&
|

2

I

N N N
mi=~f | LAY B - | L AB
i=1 =l i=1
the vector m’ = (m], mj, m3) indicates the 3D orienta-
tion of these parallel lines. Since no division is involved,
the computation can be confined within the finite
doman. The unit vector m associated with the common
intersection is obtained by normalizing m’ into m =
m'/||m']|.

Algorithm 1 may break down or result in poor accur-
acy if the original lines are obtained by computation
and are not necessarily located in the actual image; if
these lines are computed to be lying very far apart from
the image origin, the coefficients can be very large. This
difficulty is overcome if we use, instead of the equa-
tions of the lines, the unit vectors associated with them.
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VA

XY

(a,b,f)

n; m
‘w /

Fig. F3. The distance from point (a,b) on the image plane Z = fto
the plane passing through the viewpoint and line 4x + By + C,
= 0 on the image plane is given by In,(,,a + ngb + nf |2 where
n; = (), Ny, M) is the unit vector associated with that line.

ALGORITHM 2. Let n; = (n,-(l), ;o) n,~(3)) be the unit
vectors associated with lines Ax + By + C; = 0, i
=1, ..., N. As shown in figure F3, the distance from
point (a, b) on the image plane Z = fto the plane pass-
ing through the viewpoint and line Ax + By + C; =
0 on the image plane is given by [mya + mpb +
nisf |. It follows that we can determine the common
vanishing point (a, b) by minimizing

N
Y. Oy + nigyb + nigyf)? (F8)

i=1

The final result is as follows. If we put

N N N N
my = E Rigyi3) E nigy? — E ni)n;3) E RigyNi2)
i=1 i=| i=l i=]

N N N N
my = 3 ma?Y maynisy — X miaytiay Ly iayiy(F9)
i=1

i=l i=l i=l

N N N 2
my==f YD ng? - | X ot

i=1 i=1 i=1

the vector m’ = (my, m3, mj) indicates the 3D orienta-
tion of these parallel lines. Since no division is involved,
the computation is done within the finite domain. The
unit vector m is obtained by normalizing m’ into m =
m'/||m’]].

ALGORITHM 3.  Since the unit vector m associated with
the common intersection is supposed to be orthogonal
to all the unit vectors n;, i = 1, ..., N, associated
with the concurrent lines, we can estimate the vector
m by minimizing

N

Y (m,m) (FI0)

i=1

on the condition that m is a unit vector. It is easy to
see that expression (FlI0) can be rewritten as the
quadratic form

3
Y Npmm (F11)

jk=1

in m,, m,, m;, where N = WNw,Jj, k=1,2,3isa
symmetric matrix given by

N
Ni = Y mgms o k= 1,2, 3(FI2)

i=l
The minimum of the quadratic form (F11) for unit vec-
tor m is attained by choosing the eigenvector of the
matrix N corresponding to the minimum eigenvalue.
Algorithm 3 has the advantage that it is invariant to
camera rotation transformation (cf. Kanatani [14,16]).
However, since computation of eigenvalues and
eigenvectors is involved, this method is computationally
more costly than algorithms 1 and 2, by which the solu-
tions are given as explicit expressions.

Appendix G: Concurrency Test of Edges

We first consider the concurrency test. We must check
if three or more edges are concurrent on the image
plane. In order to find an appropriate threshold value
to make allowance for deviation of the intersection of
two lines, consider a right spherical triangle AOPQ
drawn on the image sphere (or the Gaussian sphere)
[23] of radius f centered at the viewpoint (figure Gl).
Here, corner O is right-angle and located at the intersec-
tion of the image sphere with the Z-axis (figure G2).
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(X.Y,2)

XY

Fig. Gl. Image sphere (Gaussian sphere): A point (X, ¥, Z) in the
scene is projected onto the intersection P of the sphere of radius f
centered at the viewpoint (0, 0, — f) with the ray connecting the point
(X, Y, Z) and the viewpoint.

P dg

g
S

0 L Q dL

Fig. G2. A right spherical triangle drawn on the “image sphere.”

Lets = p(0, P), L = p(0, @), and ¢ = 6(PO, PQ),
where p(*, ) and 6 (¢, *) are respectively the arc length
and the angle measured on the image sphere.

Lemma G.1.

£=f[ L L 1 —sinfj coszl—‘} G

do sin(s/f) in(s/f) f f

Proof. Invoking spherical trigonometry, we obtain
_ tan L)

¢ = sin (s/f) @2)

Keeping s fixed, and differentiating both sides, we
obtain

d¢ dL/ff
= (G3)
sin(s/fcos*(L/f)
Equation (G2) is obtained if ¢ is eliminated from this
by using equation (G3) and rearrange the result.
If s/f << 1, we obtain

& =~ £ [l — cos? ?] (G4)

cos2¢p

do s

We can interpret this as expressing the sensitivity of the
location of the intersection of two lines, separated by
distance s, to possible inaccuracy of edge orientation
¢. Motivated by this interpretation, we regard L as the
arc length measured on the image sphere of the intersec-
tion of two lines from the image origin O.

LeEMMA G.2. The unit vector m associated with the
intersection of two lines 1, l' is

nXn'
= 4+ —
lln x n'|l

where n and n' are the unit vectors with the two lines
L1

Proof. The unit vector m associated with the intersec-
tion must be orthogonal to both of the unit vectors n,
n' associated with these lines (figure G3). (See appen-
dix F for the definition of vectors associated with points
and lines.)

m (GS5)

PrOPOSITION G.3. The arc length L of the intersec-
tion of edges e, ¢’ from the image origin O is given by

L = fcos™'y,, (G6)
where?8
e | [ln x n'|| I

Here, n and n’ are the unit vectors associated with the
two lines, and k = (0, O, 1).

B|ghe| [= (@ X b, ¢) = (b X ¢, a) = (¢ X a, b)] is the scalar
triple product of three vectors a, b, and ¢, which is equal to the deter-
minant of the matrix whose columns are a, b, and c in this order.
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Fig. G3. The unit vector m associated with the intersection (a, b)
of two lines /, !’ must be orthogonal to both the unit vectors n, n’
associated with these lines.

Proof. The unit vector m associated with the intersec-
tion of the two lines /, I’ is given by equation (G6).
Since the angle of m from the Z-axis is L/for = — L/,
we see that

(nXn'k |nn'k|

|l xnl| - lln x n'l|

cos = = |(m, B | | @®
0s — = =
f »

For measuring the distance of the intersection from
the image origin O, the quantity 1,,, of equation (G7)
is more convenient than the arc length L of equation
(GB), since it is a nondimensional quantity whose value
is always in the range 0 < 7,,- < 1. The value 0 cor-
responds to an infinitely distant intersection, while the
value 1 corresponds to the image origin O. The com-
putation directly involves the unit vectors n, n’
associated with the two lines alone; the coordinates of
the intersection need not be computed.

Now, we adopt

A,
€ = LSQ“ A~ 7%) G9)
as the threshold value e,, associated with two edges
e, e', where s, is taken to be an appropriately defined
average separation of edges e, ¢, and A¢,, is the
probable error for edge orientation.
First, consider s,,... Let us proceed as follows. Let
(%o, yo) and (x,, y,) be the two endpoints of edge e, and
let (x5, yo) and (x;, y{) be those of edge e’ Put

e =X —Xo, )1 — Yo)» € = (x| —Xxg, ¥ —¥o) (GIO)

We define their average orientation I weighted by their
lengths as follows:
(e+edlle+el|l (ee)=0
l = (Gl1)
e—eYlle—ell (e)<0
The average separation s, of edges e, e’ is defined to
be the projection of the distance between their mid-

points onto the axis perpendicular to the average orien-
tation I = (I;, l;) (figure G4):

Xo+ X, Xxg+x{
Seer = T - 2 I

_ [)’o tn ye+ y.] L Gl
2 2

Note that s, becomes exactly zero if the two edges e,

e’ share a common endpoint.

Finally, the probable orientation error A¢,, must
be determined. Let |e| and |e’| be the lengths of edges
e, e’ respectively. Since it is reasonable to assume that
the orientation of an edge becomes less accurate as its
lengths becomes shorter, we put

Ad) _ const. (GB)
“" min (lel, [¢])
X
e ( 1:y1)
(Xo,YO)
-l —r—
(Xo.Yo) l
el
(X1'.Y1')

Fig. G4. The average separation s,,. of edges e, ¢’ is defined to be
the projection of the distance between their midpoints onto the axis
perpendicular to the average orientation I.
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Now, we obtain the following procedure for the con-
currency test. First, we choose two edges e, e’ which
do not meet at a corner of the object, and regard them
as candidate parallel edges. Let m” be the unit vector
associated with their intersection P” (when they are ex-
tended) computed by equation (G5). Let us adopt the
convention that the one with my = O is chosen
whenever we compute such a vector.

Consider the third edge e”, and let m and m' be the
unit vectors respectively associated with the intersections
P, P’ of edge e” with edges e, e’ (when these edges are
extended). We judge the three edges to be concurrent if

PP, P") < €pn + €ner
PP, P") < €cer + €pren (G1)
p(P, P") < € T+ €0
(figure G5). In terms of the vectors m, m', m", these
are rewritten as
ce” T Eoren

,mHl > 0s &
|, m")| cos 7

I(m’mu)l > coseee' t € (015)
€ T Eeme

f
Those edges that satisfy this condition are judged to
be parallel to the candidate pair e, €', and their

parallelism is established. However, if two edges that
share a common endpoint are judged to be parallel to

l

|(m',m™)| > cos

Cee+Ce'e

e and ¢, the one that passes this test for a lower
threshold is chosen (with respect to an appropriately
defined criterion). If no edge is judged to be parallel
to the candidate pair e, ', edges e, e’ are regarded as
nonparallel.

In the above process, the order of choosing candidate
edges can be arbitrary, but it is desirable to start from
edges that are most likely to be parallel. One reasonable
way is to start from the pair e, e’ which has the smallest
value of 7, defined by equation (G7). This is
equivalent to assuming that rwo edges are more likely
to be parallel in the scene if their intersection is located
farther away from the image origin O. Let us call this
assumption the vanishing point heuristic. At the same
time, it is reasonable to reject as nonparallel those edges
intersecting at points within an appropriately set
distance L, from the image origin O (i.e., 7, >
cos (Lo/f)). For example, if (x;,y), i = 1...,n, are
the image coordinates of the vertices, we can set L, =
max,.;», Vx? + y} assuming that the polyhedron is
drawn near the center of the image.

Appendix H: Parallelogram Test

Let us construct an algorithm for the parallelogram test.
This test is decomposed into repeated tests for intersec-
tion of two half-lines represented by their endpoints and
points on them. Let / and /' be two half-lines starting
respectively from points (@, b) and (a',b"), and let (x,y)
and (x’,y") be points lying respectively on half-lines /

Fig. G5. Concurrency of three lines is judged by the pairwise arc lengths of the three intersections measured on the image sphere.
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and /' (figure H1). We want to check whether or not
half-lines /, !’ intersect each other when (a,b), (x,y),
(x%y") and (a',b") are given as input data. The intersec-
tion (£, ¢) exists and is given by

_ a +t(x —a)
[ £ ] T lb +ty - b)
§ - [a' + t'(x’ — a’)]
b' + t'(y’ — b" (H1)
if and only if such positive ¢ and ¢’ exist. From this
relation, the constants £ and ¢’ are obtained in the form

t = %[(x' —a)b' = b) - (' - b)a' - a)

=4l - -5 -0 - be - a] )

A=(x-a)y' —b)—(y—b)(x' - a)

Hence, the test is performed by checking whether the
three expressions

' —a)®' —-b) - (y' - b)a' - a),
x—a)b'—b) - (y - b)a'—a), (H3)
x-a0'-b)— @ -bx'—a’)

have the same sign.

(a,b)

(a’.b’)

Fig. HI. Test for intersection of two half-lines starting from and passing
through given points.

However, if (a,b) and (a',b") are the vanishing points
of parallel lines, they may be located on the image plane
very far apart from the image origin. As pointed out
in appendix F, the computation can be done in the finite
domain if we introduce (not necessarily unit) vectors
n = (n,ny,n;)and n' = (n{,nj,n;) associated with
points (a,b) and (a',b"). Since n and —n represents the
same point, let us choose the one with n; = 0.
Similarly, we choose n’ with nj = 0. If we substitute

a=f2 b=f2 o= p=" qy
n, n3 n

'
ns 3

into expressions (H3) and multiply them by n, and n;
appropriately, we see that the test is reduced to check-
ing whether the following three expressions have the
same sign:

(n3x = fa)(nzny — nynj)

—(ny — fa)(niny — mn3),
(nx' — fa)(nzny — npnj)

—(ny" — fa)(nins — nyn3),
(n3x = fn)(ny' — fny)

—(ny — fa)(nsx' — fn)

Thus, all computations are done in the finite domain.



