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Synoyms

Optimal parameter estimation

Related Concepts

▶ Maximum Likelihood Estimation
▶ Ellipse Fitting, Fundamental Matrix
▶ Homography
▶ KCR Lower Bound
▶ Hyper-renormalization

Definition

Optimal estimation in the computer vision context
refers to estimating the parameters that describe the
underlying problem from noisy observation. The es-
timation is done according to a given criterion of op-
timality, for which maximum likelihood is widely ac-
cepted. If Gaussian noise is assumed, it reduces to
minimizing the Mahalanobis distance. If furthermore
the Gaussian noise has a homogeneous and isotropic
distribution, the procedure reduces to minimizing
what is called the reprojection error.

Background

One of the central tasks of computer vision is the ex-
traction of 2D/3D geometric information from noisy
image data. Here, the term image data refers to val-
ues extracted from images by image processing opera-
tions such as edge filters and interest point detectors.
Image data are said to be noisy in the sense that im-
age processing operations for detecting them entail
uncertainty to some extent.

For optimal estimation, a statistical model of ob-
servation needs to be introduced. Let x1, ..., xN

be the observed image data. The standard model is
to view each datum xα as perturbed from its true
value x̄α by ∆xα, which is assumed to be indepen-
dent Gaussian noise of mean 0 and covariance matrix
V [xα]. Then, maximum likelihood is equivalent to
the minimization of the Mahalanobis distance

I =

N∑
α=1

⟨x̄α − xα, V [xα]
−1(x̄α − xα)⟩, (1)

with respect to the true values x̄α subject to given
knowledge about them. Hereafter, ⟨a, b⟩ denotes the
inner product of vectors a and b.

If the noise is homogeneous and isotropic, in which
case V [xα] = cI for all α for some constant c and
the identity matrix I, the Mahalanobis distance I is
equivalent to the sum of the squares of the geometric
distances between the observations xα and their true
values x̄α. In this case, I is often referred to as the
reprojection error . That name originates from the
following intuition: In inferring the 3D structure of
the scene from its projected images, maximum like-
lihood under homogeneous and isotropic Gaussian
noise means reprojecting the inferred 3D structure
onto the images and minimizing the square distance
between the reprojection of the solution and the pro-
jection of the scene. Reprojection error minimization
is also referred to as geometric fitting .

Theory

The estimation procedure depends on the way the
knowledge about true values x̄α is represented. A
typical approach is to introduce some function g(t,θ)
to express x̄α in a parametric form

x̄α = g(tα,θ), (2)

where tα is a control variable that specifies the iden-
tity of the αth datum, and θ is an unknown parame-
ter that specifies the underlying structure. After (2)
is substituted, the Mahalanobis distance I becomes
a function of θ alone, which is then minimized with
respect to θ. This is the standard approach in the
traditional statistic estimation framework and also
known as regression.

This parametric approach, however, is quite lim-
ited in computer vision applications. Often, no such
knowledge as (2) is available about the true values x̄α

except that that they satisfy some implicit equations
of the form

F (k)(x,θ) = 0, k = 1, ..., L. (3)

The unknown parameter θ allows one to infer the
2D/3D shape and motion of the objects observed in
the images.

This type of estimation leads to some theoretical
problems. Usually, no restriction is imposed on the
true values x̄α except that they should satisfy (3).
This is called the functional model . One could alter-
natively introduce some statistical model according
to which the true values x̄α are “sampled.” This
model is called structural . The distinction is crucial
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when one considers limiting processes in the follow-
ing sense. Traditional statistical analysis mainly fo-
cuses on the asymptotic behavior as the number of
observations increases to ∞. This is based on the
reasoning that the mechanism underlying noisy ob-
servations would better reveal itself as the number
of observations increases (the law of large numbers)
while the number of available data is limited in prac-
tice. So, the estimation accuracy vs. the number of
data is a major concern. In this light, efforts have
been made to obtain a consistent estimator in the
sense that the solution approaches its true value in
the limit N → ∞ of the number N of the data.

In computer vision applications, in contrast, one
cannot repeat observations. One makes an inference
given a single set of images, and how many times one
applies image processing operations, the result is al-
ways the same, because standard image processing
algorithms are deterministic and no randomness is
involved. This is in a stark contrast to conventional
statistical problems where observations are viewed as
“samples” from potentially infinitely many possibili-
ties; we could obtain, by repeating observations, dif-
ferent values originating from unknown, uncontrol-
lable, or unmodeled causes, which is called noise as
a whole.

In vision problems, the accuracy of inference dete-
riorates as the uncertainty of image processing oper-
ations increases. Thus, the inference accuracy vs. the
uncertainty of image operations, which is called noise
for simplicity, is a major concern. Usually, the noise
is very small, often subpixel levels. In light of this
observation, it has been pointed out that in image
domains the consistency of estimators should more
appropriately be defined by the behavior in the limit
σ → 0 of the noise level σ [1, 2]. The functional model
suits this purpose. If the error behavior in the limit
of N → ∞ were to be analyzed, one needs to assume
some structural model that specifies how the statisti-
cal characteristics of the data depend onN . However,
it is difficult to predict the noise characteristics for
different N . Image processing filters usually output
a list of points or lines or their correspondences along
with their confidence values, from which only those
with high confidence are used. If a lot of data are
to be collected, those with low confidence need to be
included, but their statistical properties are hard to
estimate, since such data are possibly misdetections.
This is the most different aspect of image processing
from laboratory experiments, in which any number
of data can be collected by repeated trials.

Maximum Likelihood with Implicit Con-
straints

Maximum likelihood based on the functional model is
to minimize the Mahalanobis distance (1) subject to
implicit constraints in the form of (3). In statistics,
maximum likelihood is criticized for its lack of con-
sistency. In fact, estimation of the true values x̄α,
called nuisance parameters when viewed as param-
eters, is not consistent as N → ∞ in the maximum
likelihood framework [3]. However, the lack of consis-
tency has no realistic meaning in vision applications
as explained above. On the contrary, maximum like-
lihood has very desirable properties in the limit σ →
0 of the noise level σ: the solution is consistent in
the sense that it converges to the true value as σ →
0 and efficient in the sense that its covariance matrix
approaches a theoretical lower bound as σ → 0 [1, 2].

According to the experience of many vision re-
searchers, maximum likelihood is known to produce
highly accurate solutions. A major concern is its
computational burden, because maximum likelihood
usually requires complicated nonlinear optimization.
The standard approach is to express each of x̄α ex-
plicitly in terms of θ by introducing some auxiliary
parameters, or nuisance parameters. After all the
expressions are substituted back into (1), the Ma-
halanobis distance I becomes a function of θ and
the nuisance parameters. Then, this joint parame-
ter space, which usually has very high dimensions, is
searched for the minimum. This approach is called
bundle adjustment , a term originally used by pho-
togrammetrists. This is very time consuming, in par-
ticular if one seeks a globally optimal solution by
searching the entire parameter space exhaustively.

Linear Reparameterization
In many important vision applications, the prob-
lem can be reparameterized to make the functions
F (k)(x,θ) linear in θ (but generally nonlinear in x),
allowing one to write (3) as

⟨ξ(k)(x),θ⟩ = 0, k = 1, ..., L, (4)

where ξ(k)(x) represents a nonlinear mapping of x.
This formalism covers many fundamental problems of
computer vision including fitting a parametric curve
such as a line, an ellipse, and a polynomial curve to a
noisy 2D point sequence or a parametric surface such
as a plane, an ellipsoid, and a polynomial surface to a
noisy 3D point sets and computing the fundamental
matrix or the homography from noisy point corre-
spondences over two images [4, 5]. For this type of
problem, a popular alternative to bundle adjustment
is minimization of a function of θ alone, called the
Sampson error . Let us abbreviate ξ(k)(xα) to ξ(k)α .
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The first order variation of ξ(k)α by noise is

∆ξ(k)α = T (k)
α ∆xα, T (k)

α ≡ ∂ξ(k)(x)

∂x

∣∣∣∣∣
x=x̄α

. (5)

Define the covariance matrices of ξ(k)α , k = 1, ..., L,
by

V (kl)[ξα] = E[∆ξ(k)α ∆ξ(l)⊤α ]

= T (k)
α E[∆xα∆x⊤

α ]T
(l)⊤
α

= T (k)
α V [xα]T

(l)⊤
α , (6)

where E[ · ] denotes expectation. The Sampson error
that approximates the minimum of the Mahalanobis
distance I subject to the constraints in (4) has the
form

K =

N∑
α=1

L∑
k,l,=1

W (kl)
α ⟨ξ(k)α ,θ⟩⟨ξ(l)α ,θ⟩, (7)

where W
(kl)
α is the (kl) element of (V α)

−
r . Here, V α

is the matrix whose (kl) element is

V α =
(
⟨θ, V (kl)[ξα]θ⟩

)
, (8)

where the true data values x̄α in the definition of
V (kl)[ξα] are replaced by their observations xα. The
operation ( · )−r denotes the pseudoinverse of trun-
cated rank r, (i.e., with all eigenvalues except the
largest r replaced by 0 in the spectral decomposi-
tion), and r is the rank of V α, which is equal to the
number of independent equations of (4). The name
Sampson error stems from the classical ellipse fitting
scheme [6].
The Sampson error (7) can be minimized by various

means including the FNS (Fundamental Numerical
Scheme) [7] and the HEIV (Heteroscedastic Errors-
in-Variable) [8]. It can be shown that the exact max-
imum likelihood solution can be obtained by repeat-
ing Sampson error minimization, each time modifying
the Sampson error so that in the end the modified
Sampson error coincides with the Mahalanobis dis-
tance [9, 5]. It turns out that in many practical ap-
plications the solution that minimizes the Sampson
error coincides with the exact maximum likelihood
solution up to several significant digits; usually, two
or three rounds of Sampson error modification are
sufficient.
It can be shown that the covariance matrix V [θ̂]

of any unbiased estimator θ̂ of θ satisfies under some
general conditions the inequality

V [θ̂] ≻
( N∑

α=1

L∑
k,l=1

W̄ (kl)
α ξ̄

(k)
α ξ̄

(l)⊤
α

)−

r
, (9)

where ξ̄
(k)
α are the trues value of ξ(k)α , and W̄

(kl)
α is the

value of W
(kl)
α defined earlier evaluated for the true

values of ξ(k)α and θ. The symbol ≻ means that the
left-hand side minus the right-hand side is positive
semidefinite. The right-hand side of (9) is called the
KCR (Kanatani-Cramer-Rao) lower bound [1, 2, 5].
It can be shown that the covariance matrix of Samp-
son error minimization solution coincides with this
bound in the leading order in the noise level [1, 2].

Algebraic methods
Recently, there has been a remarkable progress in the
study of algebraic methods. By “algebraic methods,”
we mean we solve some “algebraic equations” (di-
rectly or iteratively), rather than minimizing some
cost function such as the reprojection error. Origi-
nally, algebraic methods were thought of as an auxil-
iary to maximum likelihood and used for initialization
of maximum likelihood iterations. In the last decade,
however, it has been found that some algebraic meth-
ods outperform maximum likelihood in accuracy [5].
Algebraic methods solve a nonlinear equation in

the form
Mθ = λNθ, (10)

with

M =

N∑
α=1

L∑
k=1

W (kl)
α ξ(k)α ξ(k)⊤α , (11)

where W
(kl)
α are some weights that depend on θ. Var-

ious methods with different names arise according to

the choice of the weights W
(kl)
α and the matrix N in

(10). This scheme was originally motivated to min-
imize ⟨θ,Mθ⟩, which is called the (weighted) alge-
braic distance, hence the name “algebraic method”,
subject to the constraint ⟨θ,Nθ⟩ = constant. The
solution of (10) is obtained by iteration: we first re-

gard W
(kl)
α and N as given and solve the generalized

eigenvalue problem (10), then update W
(kl)
α and N

using the resulting θ, and repeat this process.

If we choose W
(kl)
α = 1 and N = I (hence no it-

erations are necessary), this method is nothing but

the standard least squares. If we choose W
(kl)
α = 1

and N = V0[xα] (the covariance matrix of xα up
to scale), this reduces the method of Taubin [10],
which is known to produce a fairy accurate solution.
Efforts were made to improve the accuracy of the
Taubin method by choosing optimal N , resulting in
a scheme called HyperLS [11], which is non-iterative.
If we use the same N as in the Taubin method but
use the weights W

(kl)
α that appear in (7) and (8), we

obtain the iterative scheme of renormalization [12].
Like for HyperLS, we can optimize the matrix N of
renormalization to obtain hyper-renormalization [13],
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Figure 1: Left : The matrix M controls the covariance of θ. Right : The matrix N controls the bias of θ.
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Figure 2: Left : An edge image of a scene with a circular
object. An ellipse is fitted to the 160 edge points indi-
cated. Right : Fitted ellipses superimposed on the orig-
inal image. The occluded part is artificially composed
for visual ease. (1) Least squares, (2) iterative reweight,
(3) Taubin method, (4) renormalization, (5) HyperLS,
(6) hyper-renormalization, (7) ML, (8) ML followed by
hyperaccurate correction. (From [4])

which exhibits higher accuracy than maximum like-
lihood [5].
The superiority of hyper-renormalization is con-

firmed by statistical analysis. If we regard the input
xα as random variables, the computed solution θ of
(10) is also a random variable. It can be shown that
the matrices M and N of (10) controle, respectively,
the covariance and the bias of θ (Fig. 1) and that
the matrices M and N of hyper-renormalization are
such that the covariance of θ reaches the KCR lower
bound up to O(σ4) and the bias of θ is 0 up to O(σ4).

On the other hand, efforts have been made to im-
prove the accuracy of maximum likelihood by cor-
recting the solution a posteriori, called hyperaccu-
rate correction [14]. It can be shown that maximum
likelihood followed by hyperaccurate correction can
achieve equivalent accuracy to hyper-renormalization
[5] (Fig. 2). However, iterations for computing maxi-
mum likelihood solution sometimes fail to converge in
the presence of large noise, compared to which hyper-
renormalization iterations are rather robust.
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