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Synonyms

– Optimal parameter estimation

Related Concepts

– Algebraic fitting
– Bundle adjustment
– Geometric fitting
– Least squares
– Mahalanobis distance
– Maximum likelihood
– Reprojection error
– Sampson error

Definition

Optimal estimation in the computer vision context usually refers to estimat-
ing the parameters that describe the underlying problem from noisy observation.
The estimation is done according to a given criterion of optimality, for which
maximum likelihood is widely accepted. If Gaussian noise is assumed, it reduces
to minimizing the Mahalanobis distance. If furthermore the Gaussian noise has
a homogeneous and isotropic distribution, the procedure reduces to minimizing
what is called the reprojection error.

Background

One of the central tasks of computer vision is the extraction of 2-D/3-D
geometric information from noisy image data. Here, the term “image data” refers
to values extracted from images by image processing operations such as edge
filters and interest point detectors. Image data are said to be “noisy” in the
sense that image processing operations for detecting them entail uncertainty to
some extent.

For optimal estimation, a statistical model of observation needs to be intro-
duced. Let x1, ..., xN be the observed image data. The standard model is to
view each datum xα as perturbed from its true value x̄α by ∆xα, which is as-
sumed to be independent Gaussian noise of mean 0 and covariance matrix V [xα].
Then, maximum likelihood is equivalent to the minimization of the Mahalanobis
distance

I =
N∑

α=1

(x̄α − xα, V [xα]−1(x̄α − xα)), (1)



with respect to the true values x̄α subject to given knowledge about them.
Hereafter, (a, b) denotes the inner product of vectors a and b.

If the noise is homogeneous and isotropic, in which case V [xα] = cI for all
α for some constant c and the unit matrix I, the Mahalanobis distance I is
equivalent to the sum of the squares of the geometric distances between the
observations xα and their true values x̄α, often referred to as the reprojection
error . That name originates from the following intuition: In inferring the 3-D
structure of the scene from its projected images, maximum likelihood under
homogeneous and isotropic Gaussian noise means “reprojecting” the inferred
3-D structure onto the images and minimizing the square distance between the
“reprojection” of the solution and the projection of the scene. Reprojection error
minimization is also referred to as geometric fitting .

Theory

The estimation procedure depends on the way the knowledge about true
values x̄α is represented. A typical approach is to introduce some function g(t, θ)
to express x̄α in a parametric form

x̄α = g(tα, θ), (2)

where tα is a control variable that specifies the identity of the αth datum, and
θ is an unknown parameter that specifies the underlying structure. After (2) is
substituted, the Mahalanobis distance I becomes a function of θ alone, which is
then minimized with respect to θ. This is the standard approach in the tradi-
tional statistic estimation framework and also known as regression.

This parametric approach, however, is quite limited in computer vision ap-
plications. Often, no such knowledge as (2) is available about the true values x̄α

except that that they satisfy some implicit equations of the form

F (k)(x, θ) = 0, k = 1, ..., L. (3)

The unknown parameter θ allows one to infer the 2-D/3-D shape and motion of
the objects observed in the images.

This type of estimation leads to some theoretical problems. Usually, no re-
striction is imposed on the true values x̄α except that they should satisfy (3).
This is called the functional model . One could alternatively introduce some sta-
tistical model according to which the true values x̄α are sampled. Then, the
model is called structural . This distinction is crucial when one considers limiting
processes in the following sense. Traditional statistical analysis mainly focuses
on the asymptotic behavior as the number of observations increases to ∞. This
is based on the reasoning that the mechanism underlying noisy observations
would better reveal itself as the number of observations increases (the law of
large numbers) while the number of available data is limited in practice. So, the
estimation accuracy vs. the number of data is a major concern. In this light,
efforts have been made to obtain a consistent estimator in the sense that the
solution approaches its true value in the limit N → ∞ of the number N of the
data.



In computer vision applications, in contrast, one cannot “repeat” observa-
tions. One makes an inference given a single set of images, and how many times
one applies image processing operations, the result is always the same, because
standard image processing algorithms are deterministic and no randomness is
involved. This is in a stark contrast to conventional statistical problems where
observations are viewed as “samples” from potentially infinitely many possibil-
ities and could obtain, by repeating observations, different values originating
from unknown, uncontrollable, or unmodeled causes, which is called “noise” as
a whole.

In vision problems, the accuracy of inference deteriorates as the uncertainty
of image processing operations increases. Thus, the inference accuracy vs. the
uncertainty of image operations, which is called “noise” for simplicity, is a major
concern. Usually, the noise is very small, often subpixel levels. In light of this
observation, it has been pointed out that in image domains the “consistency” of
estimators should more appropriately be defined by the behavior in the limit σ
→ 0 of the noise level σ [1, 3]. The functional model suits this purpose. If the
error behavior in the limit of N → ∞ were to be analyzed, one needs to assume
some structural model that specifies how the statistical characteristics of the
data depend on N . However, it is difficult to predict the noise characteristics for
different N . Image processing filters usually output a list of points or lines or
their correspondences along with their confidence values, from which only those
with high confidence are used. If a lot of data are to be collected, those with
low confidence need to be included, but their statistical properties are hard to
estimate, since such data are possibly misdetections. This is the most different
aspect of image processing from laboratory experiments, in which any number
of data can be collected by repeated trials.

Maximum likelihood with implicit constraints

Maximum likelihood based on the functional model is to minimize (1) subject
to implicit constraints in the form of (3). In statistics, maximum likelihood is
criticized for its lack of consistency. In fact, estimation of the true values x̄α,
called nuisance parameters when viewed as parameters, is not consistent as N →
∞ in the maximum likelihood framework [6]. However, the lack of consistency has
no realistic meaning in vision applications as explained above. On the contrary,
maximum likelihood has very desirable properties in the limit σ → 0 of the noise
level σ: the solution is “consistent” in the sense that it converges to the true value
as σ → 0 and “efficient” in the sense that its covariance matrix approaches a
theoretical lower bound as σ → 0 [1, 3].

According to the experience of many vision researchers, maximum likelihood
is known to produce highly accurate solutions, and no necessity is felt for further
accuracy improvement. Rather, a major concern is its computational burden, be-
cause maximum likelihood usually requires complicated nonlinear optimization.
The standard approach is to introduce some auxiliary parameters to express
each of x̄α explicitly in terms of θ and the auxiliary parameters. After they
are substituted back into (1), the Mahalanobis distance I becomes a function
of θ and the auxiliary parameters. Then, this joint parameter space, which usu-



ally has very high dimensions, is searched for the minimum. This approach is
called bundle adjustment , a term originally used by photogrammetrists. This is
very time consuming, in particular if one seeks a globally optimal solution by
searching the entire parameter space exhaustively.

Linear reparameterization

In many important vision applications, the problem can be reparameterized
to make the functions F (k)(x, θ) linear in θ (but generally nonlinear in x),
allowing one to write (3) as

(ξ(k)(x),θ) = 0, k = 1, ..., L, (4)

where ξ(k)(x) represents a nonlinear mapping of x. This formalism covers many
fundamental problems of computer vision including fitting a parametric curve
such as a line, an ellipse, and a polynomial curve to a noisy 2-D point sequence or
a parametric surface such as a plane, an ellipsoid, and a polynomial surface to a
noisy 3-D point sets and computing the fundamental matrix or the homography
from noisy point correspondences over two images. For this type of problem,
a popular alternative to bundle adjustment is minimization of a function of θ
alone, called the Sampson error . Let us abbreviate ξ(k)(xα) to ξ(k)

α . The first
order variation of ξ(k)

α by noise is

∆ξ(k)
α = T (k)

α ∆xα, T (k)
α ≡ ∂ξ(k)(x)

∂x

∣∣∣∣∣
x=x̄α

. (5)

Define the covariance matrices of ξ(k)
α , k = 1, ..., L, by

V (kl)[ξα] = E[∆ξ(k)
α ∆ξ(l)>

α ] = T (k)
α E[∆xα∆x>

α ]T (l)>
α = T (k)

α V [xα]T (l)>
α , (6)

where E[ · ] denotes expectation. The Sampson error that approximates the min-
imum of the Mahalanobis distance I subject to the constraints in (4) has the
form

K =
N∑

α=1

L∑
k,l,=1

W (kl)
α (ξ(k)

α , θ)(ξ(l)
α ,θ), (7)

where W
(kl)
α is the (kl) element of (V α)−r . Here, V α is the matrix whose (kl)

element is
V α =

(
(θ, V (kl)[ξα]θ)

)
, (8)

where the true data values x̄α in the definition of V (kl)[ξα] are replaced by their
observations xα. The operation ( · )−r denotes the pseudoinverse of truncated rank
r, (i.e., with all eigenvalues except the largest r replaced by 0 in the spectral
decomposition), and r is the rank (the number of independent equations) of (4).
The name Sampson error stems from the classical ellipse fitting scheme [8].

The Sampson error (7) can be minimized by various means including the
FNS (Fundamental Numerical Scheme) [2], the HEIV (Heteroscedastic Errors-
in-Variable) [5]. It can be shown that the exact maximum likelihood solution can



be obtained by repeating Sampson error minimization, each time modifying the
Sampson error so that in the end the modified Sampson error coincides with the
Mahalanobis distance [4]. It turns out that in many practical applications the
solution that minimizes the Sampson error coincides with the exact maximum
likelihood solution up to several significant digits; usually, two or three rounds
of Sampson error modification are sufficient.

It can be shown that the covariance matrix V [θ̂] of any unbiased estimator
θ̂ of θ satisfies under some general conditions the inequality

V [θ̂] Â
( N∑

α=1

L∑
k,l=1

W̄ (kl)
α ξ̄

(k)
α ξ̄

(l)>
α

)−

r
, (9)

where ξ̄
(k)
α are the trues value of ξ(k)

α , and W̄
(kl)
α is the value of W

(kl)
α defined

earlier evaluated for the true values of ξ(k)
α and θ. The symbol Â means that the

left-hand side minus the right-hand side is positive semidefinite. The right-hand
side of (9) is called the KCR (Kanatani-Cramer-Rao) lower bound [1, 3]. It can
be shown that the covariance matrix of Sampson error minimization solution
coincides with this bound in the leading order in the noise level [1, 3].

Algebraic methods

Sampson error minimization schemes such as FNS and HEIV rely on local
search, and the iterations do not always converge unless started from a value
sufficiently close to the solution. For accurate initialization of the iterations,
various types of algebraic method have been studied. Algebraic methods refer to
minimizing the algebraic distance

J =
N∑

α=1

L∑
k=1

(ξ(k)
α , θ)2 =

N∑
α=1

L∑
k=1

θ>ξ(k)
α ξ(k)>

α θ = (θ, Mθ), (10)

where the matrix M is defined by

M =
N∑

α=1

L∑
k=1

ξ(k)
α ξ(k)>

α . (11)

Note that if W
(kl)
α in (7) is replaced by the Kronecker delta δkl, the Sampson

error K coincides with the algebraic distance J . Algebraic distance minimization
is also referred to as algebraic fitting or simply least squares.

The algebraic distance J is trivially minimized by θ = 0 unless some scale
normalization is imposed on θ. The standard normalization is ‖θ‖ = 1. A more
general class of normalization is the form of (θ, Nθ) = 1, where N is some
positive definite or semidefinite symmetric matrix. It is easily seen that the
solution is given by solving the generalized eigenvalue problem

Mθ = λNθ, (12)



for the smallest generalized eigenvalue λ. The choice of N = I corresponds to the
standard normalization. However, the solution depends on N , and it has been
reported by many researchers that the choice N = I leads to large statistical
bias. For example, the ellipse thus fitted to a point sequence is almost alway
smaller than the true one.

One naturally asks: What N will maximize the accuracy of the solution? It
is widely recognized that the scheme due to Taubin [9] produces a fairly accurate
estimate. Recently, it has been found that if N is allowed to be nondefinite, i.e.,
neither positive or negative (semi)definite, the statistical bias can be eliminated
up to second order noise terms, resulting in a method called HyperLS with
slightly better performance than the Taubin method [7].

Recommended Readings

[1] Chernov, N., Lesort, C. (2004). Statistical efficiency of curve fitting algo-
rithms. Comput. Stat. Data Anal., 47(4), 713–728.

[2] Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D. (2000). On
the fitting of surfaces to data with covariances. IEEE Trans. Patt. Anal.
Mach. Intell., 22(11), 1294–1303.

[3] Kanatani, K. (2008). Statistical optimization for geometric fitting: Theoret-
ical accuracy analysis and high order error analysis. Int. J. Comput. Vis.,
80(2), 167–188.

[4] Kanatani, K., Sugaya, Y. (2010). Unified computation of strict maximum
likelihood for geometric fitting. J. Math. Imaging Vis., 38(1), 1–13.

[5] Leedan, Y., Meer, P. (2000). Heteroscedastic regression in computer vision:
Problems with bilinear constraint. Int. J. Comput. Vis., 37(2), 127–150.

[6] Neyman, J., Scott, E.L. (1948). Consistent estimates based on partially
consistent observations. Econometrica, 16(1), 1–32.

[7] P. Rangarajan, K. Kanatani, H. Niitsuma, Y. Sugaya (2010). Hyper least
squares and its applications. Proc. 20th Int. Conf. Pattern Recognition,
August 2010, Istanbul, Turkey.

[8] Sampson, P.D. (1982). Fitting conic sections to “very scattered” data: An
iterative refinement of the Bookstein algorithm. Comput. Graphics Image
Process., 18(1), 97–108.

[9] Taubin, G. (1991). Estimation of planar curves, surfaces, and non-planar
space curves defined by implicit equations with applications to edge and
range image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 13(11),
1115–1138.


