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Abstract—An optimal grid pattern is designed so that the reliability of the camera focal length calibration
using it is theoretically maximized. The analysis is based on a statistical error model of line fitting in
digital images. The reliability of the focal length is quantitatively computed from the reliability of the
vanishing points and the reliability of the vanishing points is quantitatively computed from the reliability of
the edges to which lines are fitted. A realistic device is designed by adding many technical improvements
and a prototype model is shown.

1. INTRODUCTION

Visual sensing plays a central role in controlling robots that recognize environments
and computing three-dimensional (3D) structures from images requires the imaging
geometry of the camera. Hence, the camera model must be adjusted so that it agrees
with the actual camera. This process is called camera calibration and is now one
of the most important problems in robotics applications [1-10]. From among many
parameters, this paper specifically deals with the focal length. This is because the
focal length plays the most fundamental role in bridging 3D and 2D geometries.
However, other parameters are also important.

For example, straight lines may not be projected to straight lines due to optical
distortion of the lens (aberration), so an appropriate mapping (geometric correction)
must be applied for removing it. Another important parameter is the aspect ratio —
the ratio of the horizontal scale to the vertical scale. The image origin must also
be located accurately. In the past, many researchers have tried to estimate all the
parameters in one stage. A typical procedure is follows:

(1) Set, in the scene, multiple reference markers (points, lines, squares, circles, etc.)
whose 3D locations and shapes are known.

(2) Construct a parameterized camera model that incorporates all factors, and describe
the predicted 2D locations and shapes of the reference markers in terms of the
model parameters.
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(3) Adjust the model parameters by minimizing the discrepancy between the pre-
dicted description and the actually obtained description of the reference mark-
ers.

However, many problems arise in this approach. For example, the function to be
minimized is usually highly non-linear in the model parameters, so numerical itera-
tions are necessary, but global convergence is not guaranteed in general: the search
may be trapped into a local minimum. If lens and image distortions are neglected,
the equations can be ‘linearized’ by introducing auxiliary variables (‘homogeneous
coordinates’), and in appearance the optimization reduces to solving simultaneous
linear equations. However, what is actually minimized is not clear if such artificial
linearization is involved.

Even if the parameter values that attain the minimum are found, this does not
necessarily ‘mean that each value is reliable, because one parameter may be greatly
perturbed to compensate for errors in other parameters. This typically occurs when
parameters of different geometric origins are mixed. For example, in order to estimate
the local length accurately, the effect of foreshortening must be strong: assuming dif-
ferent focal lengths does not affect the resulting 3D interpretation very much unless
foreshortening is apparent. Hence, if a planar pattern is used, it must be placed so
that it makes a large angle with the image plane, whereas if the 3D camera position
is to be computed by using the same pattern, a reliable estimate is obtained when
it is placed nearly paralle]l to the image plane. In other words, the mechanism of
estimation is different from parameter to parameter, each requiring a different and
sometimes conflicting condition for high accuracy.

Thus, the calibration procedure should be decomposed into separate modules corre-
sponding to individual parameters. Then, each module should be designed so that its
reliability is maximized and the reliability of the resulting estimate must be evaluated
in quantitative terms. With this motivation, Kanatani [11] presented a rigorous math-
ematical theory for quantitatively evaluating the reliability of focal length calibration
by using a rectangular grid pattern and computed the configuration that has maximum
reliability.

In this paper, we attain higher reliability than the theoretical bound presented in [11].
This is made possible by using a non-rectangular grid pattern. Applying the theory
presented in [11], we design the grid pattern so that the theoretically predicted relia-
bility is maximized. Following [11], we also compute the confidence interval for the
computed focal length. Finally, a prototype model is designed by incorporating many
realistic improvements.

2. PERSPECTIVE PROJECTION AND N-VECTORS

We assume the camera model shown in Fig. 1 [12-14]; we call the origin O the view-
point and the constant f the focal length. A point on the image plane is represented
by a unit vector m, which indicates the orientation of the ray that starts from the
viewpoint O and passes through that point; a line on the image plane is represented
by the unit surface normal n to the plane that passes through the viewpoint O and
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Figure 2. (a) Vanishing point. (b) The N-vector of the vanishing point of a space line.

intersects the image plane along that line (Fig. 1). We call m and n the N-vectors
of the point and the line [13, 14].

The N-vector of a point in the scene is defined to be the N-vector of its projection
on the image plane and the N-vector of a line in the scene is defined to be the N-vector
of its projection on the image plane. In the following, we call a point in the scene
a space point and a point on the image plane an image point. Similarly, a line
in the scene is called a space line; a line on the image plane is called an image
line.

As is well known, projections of parallel space lines meet at a common vanishing
point on the image plane (Fig. 2a). From Fig. 2(b), we observe that a space line that
extends along unit vector m has, when projected, a vanishing point of N-vector +m
[12-14].
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3. STATISTICAL MODEL OF LINE FITTING

In conventional image processing, edges are detected by the Hough transform or an
edge operator, and a set of edge pixels is obtained by applying thresholding and
thinning processes. Then, lines are fitted to the edge pixels by least squares. Since
vanishing points are estimated as intersections of fitted lines, the reliability of the
vanishing points depends on the reliability of the edges. Thus, we need a statistical
model for the error behavior of line fitting to edge pixels.

Let 7 be the N-vector of an image line fitted to edge pixels in the absence of
noise. In the presence of noise, each edge pixel is displaced. Let n = n + An be
the N-vector of the image line fitted to the displaced edge pixels. Since the noise
behavior is random, the error An is regarded as a random variable. We define the
covariance matrix of n by

VIn] = E[AnAnT], 1

where E[-] means expectation and T denotes transpose.

The theoretical expression for this covariance matrix was derived from a statistical
model of image noise in [14, 15]. Since the derivation requires a lengthy analysis,
we omit the details and show the final form:

K

T
7 fzmemG‘ )

6
VInl ~ —uu” +
w

Here, w is the length (measured in pixels) of the edge segment; u is its orientation;
mg is the N-vector of the center point G of the edge segment (Fig. 3). If m, and m,
are the N-vectors of the end points of the edge segment, the orientation u is formally
defined by u = *N[m, — m;]. The constant « is called the image resolution and
defined by

2
k=2 3)
)

where ¢ is the image accuracy defined as the root mean square of the displacement
of each edge pixel, while p is the edge density defined as the number of edge pixels

Figure 3. Line fitting to an edge segment.
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per unit pixel length. It has been experimentally confirmed that (2) is a very good
approximation [14, 15].

4. OPTIMAL ESTIMATION OF VANISHING POINTS

If image lines {l,}, @ = 1, ..., N, are projections of parallel space lines, they are con-
current on the image plane, meeting at their vanishing point. Let {ny}, ¢ =1,..., N,
be the N-vectors of concurrent image lines. We see from Fig. 4a that (m, n,) = 0,
a = 1,..., N (in this paper, we use (-, ‘) to denote the inner product of vectors).
Hence, the N-vector m of the common intersection is robustly computed by the
following least-squares optimization in the presence of noise:

N
Y Wa(m, ng)? — min. )

a=l1

The weights W, should be determined so that reliable data are given large weights
while unreliable data are given small weights. It can be shown that the optimal
weights are given as follows [14, 15]:

1
Wy = —7—r.
7 (m, Vingm) ®)
Since
N N
> Walm, no)? = (m, () Wanan; Jm), ©)
a=l1 a=l1
the solution of the optimization (4) is given by the unit eigenvector of the moment
matrix
N
N = Z Wananl @)
a=1

@) (b)

Figure 4. (a) The common intersection of concurrent lines. (b) The center line I of concurrent lines.
Point Pc is conjugate to the vanishing point P on line /g.
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for the smallest eigenvalue. Note that the optimal weights contain the N-vector m we
want to compute. Also, it can be shown that the estimate given by (4) has statistical
bias [15]. These difficulties can be resolved by a method called renormalization [15]
(see Appendix).

By applying the perturbation theorem, the covariance matrix V[m] of the computed
N-vector m of the vanishing point is evaluated in the following form [14, 15]:

uuT 'U‘UT

I + —A'-v—. (8)

Vim] =

Here, A, and A, are the largest and intermediate eigenvalues of the moment matrix N
defined by (7), and u and v are the corresponding unit eigenvectors.

Let ng be the unit eigenvector of IV for the largest eigenvalue. Vector ng can be
regarded as the N-vector of a hypothetical center line I of the N lines (Fig. 4b).
Since the three eigenvectors form an orthonormal system, the unit eigenvector m¢ for
the second largest eigenvalue equals +m x ng. Vector mc is orthogonal to both ng
and m and hence can be identified with the N-vector of the point P¢c ‘conjugate’[13]
to the vanishing point P on the center line Ig.

Let ¢, be the angle between ng and ny; we call it the deviation angle (from the
hypothetical center line). Let 6, be the angle between mg, and m; we call it the
disparity (of the vanishing point from the center point of the ath edge segment). Let
wy be the length of the ath edge segment. If the covariant matrix V[n,] of the image
line fitted to each edge segment is given in the form of (2), it can be proved that the
covariance matrix V[m] given by (8) has the following approximation [11]:

T
6kmcem

Vm] =~ .
¥ wd sin® ¢y / sin? 6,

€))

5. DETERMINATION OF THE FOCAL LENGTH

When we analyze images in terms of N-vectors, we are modeling the camera imaging
geometry as perspective projection (Fig. 1). This model can be hypothetical: it need
not correspond to the actual camera as long as no 3D interpretation is involved. For
example, when we compute vanishing points as intersections of concurrent image
lines, the camera model can be arbitrarily assumed. However, if we want to infer 3D
relationships such as 3D orientations of space lines and surfaces and their orthogo-
nality in the scene, the resulting 3D interpretations are valid only when the camera
model exactly agrees with the imaging geometry.

From the definition of the N-vector, it is easily shown that if m = (m;, m,, m3)7
is the N-vector of an image point defined with respect to focal length f and if
m = (M), ma, M) is the N-vectors of the same image point defined with respect to
a different focal length f, they should satisfy the following relation [11] (Fig. 5a):

mi
ﬁ=:I:N[< _my )]. (10)
(f/fIms
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Figure 5. (a) N-vectors of image points and image lines are altered if the focal length f is altered.
(b) Vanishing points of two sets of parallel space lines making a known angle in the scene.

Here, the symbol N[-] denotes normalization into a unit vector.

Let m = (m;, mz, m3)7 and m’ = (m}, my, m})7 be the N-vectors, defined with
respect to a tentative focal length f, of the vanishing points of space lines that make
a known angle o (Flg 5b). Since the expressions for m and m’ with respect to the
true focal length f are given in the form of (10), we obtain the following equality:

A

2
mym}| + mam}, + (%) m3my

~ »
=‘/m%+m§+ (-;-) m3 ‘/m, +my? + (?) m}? cos a. (11)

Dividing this by m3m; and squaring this on both sides, we obtain

P () i)
(f) sin” «a + 7 2 mamg

2 2 '2 12
mi+m m°“+m
-+ =2+ —1—52)cosa
mj mj

’ 1\ 2 2 2 12 12
mym, +mym m;+m5 m\* 4+ m)
+ '—,—2) -1 2. L2 cofa=0. (12)
m3my m3 ¢

3

This equation gives two values for ( f / )?%; the one for which both sides of (11) have
the same sign is chosen.
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6. RELIABILITY OF FOCAL LENGTH

If the N-vectors m and m' are computed from a real image, they may contain errors.
Suppose the tentative focal length f coincides with the exact value. Letting m —
m+Am,m' - m'+ Am/, and f - f 4+ Af in (11), we obtain to a first
approximation

f(Am,m') + (m, Am"))

’
2ma3m}y — (m§ + m'32) cos a

Af = (13)

where we have used the relationships |m| = 1, |m/|| = 1, (m, Am) = 0 and
(m’, Am’) = 0. If errors in m and m’ are independent, its variance V[ f] = E[(Af)?]
is given by

f 2(m’TE [AmAMTIm' + mT E[Am/Am/Tim)
(2mamly — (m3 + m}?) cos a)?

_ fA@, Vim}m) + (m, Vim'Im))

@2mymly — (m3 + m}?) cos a)?

Vifl=

(14)

where V[m] and V[m'] are the covariance matrices of N-vectors m and m/, respec-
tively.

Suppose the two vanishing points are detected as intersections of N and N’ con-
current image lines fitted to edge segments. Substitution of (9) into (14) yields the
approximation

2 n2
V[f] ~ 6Kf ( (mC’ m)

(2mym’, — (m? + m’,2) cos )2 \3"V_, w3 sin? ¢/ sin’ O,
3 3 3 a=1 “a
(mg, m)? )

’

! . .
YN w3 sin® ¢,/ sin® 6,

+ (15)

where mc¢ and my; are the N-vectors of the points ‘conjugate’ [13] to the vanishing
points on the ‘center lines’ of the two sets of image lines (Fig. 4b); w, and w), are
the lengths of the edge segments; @, and ¢/, are their ‘deviation angles’; 6, and 6,
are the ‘disparities’ of the vanishing points from the center points of the individual
edge segments.

Let @ and @’ be the disparities of the two vanishing points from the image origin o.
We have the following relationship:

(2m3m}y — (m} + m}?) cos )’

= (2cos 8 cos @' — (cos?6 + cos?8") cos oz)z. (16)
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Suppose the center lines of the two sets of image lines meet at the image origin o.
Then,

PROPOSITION 1.
~ €088 —cosfcos a
(mC, m ) = . !
sin 6
an
(i, m) = cos 8 — cos 8’ cos «
¢ sin 9’
Proof. In spherical coordinates, vectors 7n and ' have components
sin 6 cos ¢ sin 8’ cos ¢’
m=| sinfsing |, m' = | sin@sing’ |. (18)
cos 6 cos 6’
Since m and m' make angle «, we have
(m, m') = sin 6 sin 8’(cos ¢ cos @’ + sin ¢ sin ¢’) + cos 9 cos &’
= sin 6 sin 6’ cos(¢ — ¢') + cos 8 cos 8’ = cos «, (19)
or
cos o — cos 8 cos 6’
os(¢p — ¢') =
cos(® — ¢) sin 6 sin 6’ (20)
The N-vectors m¢ and my are expressed in spherical coordinates in the form
—cos @ cos ¢ —cos &’ cos ¢
mc=| —cosfsing |, me=| —cos@'sing’ |. 1))
sin 6 sin 6’
Hence,
(m, mg) = —sin 6 cos 8’(cos ¢ cos ¢’ + sin ¢ sin ¢') + cos 0 sin 6’
= —sin 8 cos 6’ cos(¢ — ¢) + cos @ sin 6’
cos 6 — cos &' cos «
- sin 6’ (22
The first of (17) is obtained similarly. O

If the center points of the edge segments are close to the image origin o as compared
with f, the disparities 6, and 6, are all approximated by @ and 6’, respectively.
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Substituting (17) and (16) into (15), we obtain

6k f?
(2 cos @ cos 6’ — (cos? 8 + cos? 6) cos a)2

VIfl~

((cos 6’ — cos 6 cos a)2 (cos 8 — cos 6’ cos a)2
). (23)

N ) N -
S w3 sin? gy Yo w3sin? ¢,

7. OPTIMAL GRID CONFIGURATION

Consider a grid pattern placed in the scene (Fig. 6). Let r be the distance from the
viewpoint O to the center of the grid pattern. Suppose the pattern consists of two sets
of N (= an odd number) lines. Let ! be the size of the pattern, and d the size of the
individual grid line segments. If //r is small, we have the following approximations:

l 1
Wy ~ f; sin 6, w, ~ f; sin 6'. (24)

Let ¢ and ¢ be the deviation angles between neighboring grid lines in the two
directions, respectively. If Nd/r is small, we have the approximations

N (N-1)/2 2
N(N% -1
E sin? ¢ & 2 E k2 sin® ¢ = NV -1 sin? g,
a=I1 k=1 12
N (N=1)/2 2
N(N2 -1
D sin? g ~2 Y Ksin® ¢ = % sin? ¢, (25)
a=1 k=1

Let k = (0,0, 1)T. We assume that m and mn’ are oriented so that |[m, m’, k| > 0.

- ——— - —
I~ ————
- ———
l——————

- ——

T 3=
. Y dHEE
m f
r. _____Cl]
]
e’
(%]
0 m

Figure 6. The 3D configuration of the grid pattern.
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PROPOSITION 2.

,m, d\?
sin¢0=£——lm_f? k|+0(<—) ),
r sin“@ r

. d lm,m, k| d\?
Sm¢6=;w+0((;) .

Proof. The N-vector of the central grid line that extends in the direction of m is

(26)

mxk _mxk

Mo = Nlm x k1= %l = o 27
If d/r « 1, the N-vector of the neighboring grid line is
’ d 4
n.=N[mx(rk+dm)]=c(mxk+7mxm), (28)
where
1 1 d
= = ol -
T imxkt@nmxml Tmxkl (r)
1 d
o + 0(;) (29)

From the definition of the deviation angle ¢, we have sin ¢y = ||ng x n||. Equations
(27) and (28) imply

cd (m xm') x (m x k) _cd lm,m’, klm
r sin 6 T or sin 9

ny X ng = (30)

From (29), we obtain the first of (26). The second equation is obtained similarly. O

Substituting (26) into (25) and substituting the result into (15) together with (24),
we obtain
Vif]

72kr>(sin 6(cos 6’ — cos 6 cos az)2 + sin ’(cos @ — cos ' cos a)z)
N(N2 —1) fd?I*(2cos 6 cos 6’ — (cos?8 + cos?8') cos a)zlm. m, k2

31)
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PROPOSITION 3.

. 2
lm, m’, k|* = sin* & — (cos 6 — cos 6’ cos a)
sin® o

— (cos 6’ — cos @ cos at)2
—2(cos 6 — cos 6’ cos &) (cos 6’ — cos 8 cos a) cos a). (32)
Proof. Three vectors m, m’ and m x m' are linearly independent. Hence, vector
k can be expressed in the form
k=Am+Bm' +cm xm'. (33)

Since vector m makes angle 8 with k, we have (m, k) = cos 8. Using (m, m) =1,
(m, m’) =cos « and (m, m x m’) =0, we obtain

A+ Bcos a =cos 6. (34)
Similarly, we obtain from (m’, k) = cos 6’
Acosa+ B =cos @' (35)

From these two equations, we obtain

14 ’ —
A=cos€ 'cc;se cosa, B=cos€ .c;)secosa (36)
sin‘ « sin® «
Since k is a unit vector, we have
Ikl = A%|m|? + B|m/[* + C*|lm x m/|]?
+2AB(m, m') +2AC(m, m x m') + 2BC(m/, m x m)
=A24+B*+C*siffa+2ABcosa = 1. 37
Hence, \ ,
C2=1-A —B' ;ZABcosa. (38)
sin® «
Noting that
lm, m/, k| = (m x m/, k) = C|lm x m/||*> = C sin® a, (39)
we obtain (32). O

The angles & and @’ that minimize V[f] for a given « are given as follows:
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THEOREM 1. The variance V[ f] is minimized when

2 © 4 < 2
0 =0 = sin~! J1+sm (@/2) + +/sin* (@/2) + 14 sin? (@/2) + 1

6 , (40)
for which the projections of the grid lines meet at angle
2sin? (@/2) — sin’ 6
y=m — cos! sin® (& /2) — sin @1

sin® @

Proof. 1t is easy to confirm that the left-hand side of (31) takes its minimum when
0 =0'. Letting & = 6’ in (31), we obtain

36kr3 sin 0
Vifl= . 4
/] N(N2 =1 fd?Bim,m/, k|? “2)
From (32), we obtain
4 2 2
-2 o(1 — 1
m, ', k| = sin” « cos (. - cos a)“(1 + cos oe)' @3)
sin® o
If we note that sina@ = 2sin(a/2)cos(e/2), 1 + cosa = 2cos®(a/2) and
1 — cos a = 2sin? (/2), (43) is rewritten in the following form:
lm, m/, k| = 4sin® %(cos2 % — cos? 9). (44)
Hence
S .
VIf] ~ 9%r sin @ @5)

N(N2 —1)fd?B? sin® (a/2) cos* 8( cos? (@/2) — cos? 6)

Since cos? @ = 1—sin? 8 and cos? (a/2) —cos? 6 = sin® § —sin’ a/2, the right-hand
side is written as

9%r> L,
N2 = 1) fd2 F(sm E,sm 9), (46)
where N
F(a,x) = z 47

(1-x2)(x2—a)’

Differentiating this function with respect to x, we see that for /Ja < x < 1 it is
minimized when

(48)

\/1+a+\/a2+14a+1
x = g .
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Hence, the optimal values 6 and 6’ are given by (40). For these angles, (20) implies
that the angle y made by the two sets of grid lines is given by

cos? 6 —cos & 2sin? (a/2) — sin®
cos y = — = - , 49
4 sin® @ sin? 0 “9)
from which (41) is obtained. O
COROLLARY 1. In the optimal configuration, the grid pattern makes angle
8 = cos™! 1 — 5sin? (@/2) + v/sin* (@/2) + 14 sin® (@2/2) + 1 50)
6 cos? (a/2)
Jfrom the image plane.
Proof. The unit surface normal to the grid pattern is
’
n=N[mxm]}=22X" 1)
sin o
If B is the angle between n and k, we obtain
i
’ ’ k
cos p = (n, k) = ™Kl (52)
sin &
Using (44), we see that
2 2
2 sin® 6 — sin“ (a/2)
0! = 53
cos” B cos? (a/2) (53)
Substituting (40), we obtain (50). O

In intuitive terms, the pattern needs to be inclined to make a large angle from
the image plane so that the effect of foreshortening is strong. However, too much
inclination compresses the resulting image of the grid pattern, decreasing the lengths of
the edge segments and the separations between them, thereby decreasing the accuracy
of the detected vanishing points. The optimal balance is attained at the values of (40),
(41) and (50).

8. OPTIMAL GRID SHAPE
We now optimize the angle .

THEOREM 2. The angle « that minimizes V| f] in the optimal configuration of the
pattern is

o = 2sin™! ‘/1—3;) = 66.42182152...°. (54)
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The corresponding optimal configuration is given by

6 =6’ =sin™! \/g = 50.76847951.. °. (55)

If the pattern is in the optimal configuration, the two grid lines meet orthogonally on
the image plane.

Proof. All we need to do is minimize (47) with respect to . We have

dF ©OoF dFdx OF
a—a-ﬁaa—&-, (56)

because 9 F/9x = 0 for the optimal value of x. Since
dF x 2a — x?

%2 1—-x2 a?(x? — a)z’ 57
we obtain a = x2/2. Hence, (48) implies
1 vat+14a +1
2= +a++a‘+ + ’ (58)

12

from which we obtain @ = 3/10. By definition a = sin® (¢/2), so we obtain (54).
From a = x2/2, we have x = ./(Za). By definition x = sin 8, so we obtain
sin @ = 4/3/5 and hence (55). For these values of @ and 6, (49) implies cos y =0
ory =m/2. O

COROLLARY 2. In the optimal configuration, the optimal grid pattern makes angle

B =cos™! \/g = 49.1066053...° (59)

Jfrom the image plane.

Figure 7. Optimal grid pattern.
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V(e) 90°

Figure 8. (a) The graph of V(«) in the scale for which V(7/2) = 1. (b) The contours of 1/V (8, 8', @)
for the optimal value of «.

Figure 7 shows the optimal grid pattern for N = 5. Put the right-hand side of (31)
to be V(6,60', ) and let V(a) = ming g V (8, 6', o). Figure 8(a) shows the graph of
V(e) for 0 < @ < 7, where we use the scale for which V(;r/2) = 1. Its minimum
is 0.78196029. ... This means that the error in f computed from the optimal grid
pattern is about 88% of the error for the square grid pattern. Figure 8(b) shows
the contours of the graph of 1/V (6, 8’, «) for the optimal value «. The domain of
V(6,0 a)is |8 +8'| <o and |0 — 0’| < «.

9. DESIGN OF THE PATTERN

Although the theoretical analysis based on an idealized mathematical model has been
completed, many realistic considerations are necessary in actually designing the pat-
tern for practical use.

9.1. Orientation of the tilt

Theoretically, the pattern can be inclined in any orientation; the tilt orientation is
arbitrary. In real environments, light sources are usually fixed on the ceiling, so it is
the most convenient to choose the tilt orientation to be horizontal and keep the camera
optical axis (approximately) horizontal. If the pattern is drawn on a semi-transparent
plate, a light source can be placed right under it.

9.2. Shape of the grid region

Suppose the tilt is horizontal and the camera is located so that the entire pattern
appears in the image. If the grid is drawn in a rectangular region and the image frame
is square, the background appears near the upper right and upper left corners due to

0201 = L-0L HV - dSA =9 13A



Optimal grid pattern 97

(a)

Figure 9. (a) The half angle of view 2. (b) The optimal trapezoidal region.

F0-e P
/Q/lq
0

OPcosf)

Figure 10. The geometry of the pattern placed in the scene.

foreshortening. This is avoided by drawing the grid in an ‘upside-down trapezoid’
region so that its projection becomes a square.

Let  be the half angle of view: if the image frame has M x M pixels and the focal
length is f pixels (Fig. 9a), we have Q = tan~! (M/2). Consider the trapezoidal
region shown in Fig. 9(b). Figure 10(a) shows the geometry in the scene when this
trapezoid is slanted by angle B. Applying the sine rule to triangles AOPQ and
AOP'Q, we obtain

_ sinQ __cospB
Po= cos(Q2 — B)’ OF = cos(Q — B) 0g. (60)
PO sin , cos B 00. 61

= —, 0 = —
cos(2 + B) cos(2 + B)
From Fig. 10(b), we see that

__sin Qcos B __sin Qcos B

@B T ws@tp) 62)



98 K. Kanatani and T. Maruyama

The height of the trapezoid is I = PQ + PQ’, so

. 1 1
}=sin & (cos(SZ +B8) + cos(2 — ﬂ))OQ' 63)

Thus, the shape of the trapezoid is determined by the ratio
a:b:l=cos fcos(Q+ B):cos Bcos(R2 — B) : cos( + B) + cos(Q — B). (64)

This shape depends on the angle €2, which depends on the focal length f to be
calibrated. In real environments, it is easy to estimate an approximate value of the
focal length for a real camera. Otherwise, we can prepare several fixed prototype
patterns, say for wide-angle lenses, standard lenses and telephoto lenses.

9.3. Thickness of the grid lines

If the grid lines do not have sufficient thickness, their projections become very thin
in the upper region due to foreshortening, so accurate detection of the grid lines in
the image becomes difficult. However, if the grid lines are drawn very thick, their
projections become too thick in the lower region, reducing the accuracy of line fitting.

This problem can be resolved by varying the thickness so that the projected lines
have constant thickness. Namely, the thickness is made proportional to the distance
from the camera. If the distance variation along the tilt orientation is ignored, we see
from Fig. 10(a) that the ratio of the thickness at the nearest end to that at the remotest
and should be O P: O P’. From (60) and (61), this ratio equals cos($2+ 8): cos(2— B).

9.4. Separation between grid lines

The accuracy of calibration increases as the number of grid lines increases. However,
if the number of grid lines is extremely large, the projected grid becomes too dense in
the upper region, causing difficulties in edge detection and line fitting. This problem
can be resolved by preparing a grid of varying coarseness in such a way that its
projection has an approximately uniform coarseness over the image.

Consider the intersections (P =) Py, Py, ..., Py (= P’) of the center line PP’ with
the grid lines in Fig. 9(b). If points {P;} are to be projected in equidistance on the
image plane, they should be chosen so that

_ lcos(R+ B) (1 __ sin(2 — 292k/N) cos( — ﬂ)) 65
" cos(2 + B) + cos(R — B) sin Qcos(Q2 — B —2Qk/N) )’

PP,

9.5. Estimating the image accuracy

In order to evaluate the confidence interval of the computed focal length f, we need to
evaluate the variance V[ f] given by (14), which requires the values of the covariance
matrices V[m'] and V[m] given in the form of (8). Hence, we must compute the
moment matrix IN given by (7) and consequently the optimal weights W, given by (5).
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Thus, we need to compute the covariance matrix V[n,] given by (2) for each edge
segment, but this requires the value of the image resolution « defined by (3).

A safe estimate of the image accuracy &, which describes the perturbation of
each edge pixel, is the ‘average half-width’ of the lines in the image. In the bi-
nary image obtained by thresholding, we compute the ‘total area’ (i.e. the number
of pixels) of the lines in it. After thinning them, we compute their ‘total length’
and regard the total area divided by the total length as the ‘average width’. The
edge density p is estimated by dividing the number of total edge pixels by the total
length.

9.6. Final design

Figure 11 shows the pattern designed with these considerations. Figure 12(a) is a
real image of this pattern, and Fig. 12(b) shows fitted lines. The focal length is
estimated to be f = 694.38 (pixels). The average width of the lines is 7.22 pixels,
so £ = 3.62 (pixels). The edge density is p =~ 0.81 (1/pixels). Hence, the image
resolution is ¥ = 16.21. The standard deviation of f is estimated to be /V[f] =
0.91 (pixels). This means that the 95% confidence interval is [693.47, 695.27]. If the
positions of the pattern and the camera are slightly disturbed, the computed estimate
of f fluctuates slightly, but it has been experimentally confirmed that the fluctuations
are roughly within the computed confidence interval.

In doing the above experiment, we placed the optimal grid pattern on a transparent
box with an optimally inclined top face (Fig. 13a). A light source was installed inside
the box. If this box is placed so that its front face is (approximately) parallel to the
image plane and the camera is placed so that its optical axis is (approximately) hori-
zontal, the calibration attains (approximately) the theoretically optimal performance.
We used a grid pattern consisting of lines, but a checker board pattern can also be
used (Fig. 13b). In this case, the necessary image processing stages are different.
Each pattern has its advantages and disadvantages, and it is difficult to decide which
is advantageous over the other.

Figure 11. The optimal grid with varying thickness and varying separations.
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(a) (b)

Figure 12. (a) A real image of the pattern of Fig. 11. (b) Fitted lines.

(a) (b)

Figure 13. (a) The optimal grid pattern is optimally fixed. (b) The optimal checkerboard pattern.

In our experiment, we ignored lens aberration and assumed that the aspect ratio
was 1. We also assumed that the image origin was at the frame center. In order to
improve the accuracy of the focal length further, these factors should also be calibrated
accurately, but we do not go into the detail here.
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10. CONCLUDING REMARKS

We have obtained a theoretically optimal grid pattern for focal length calibration that
maximizes the reliability of the computed value. Although the improvement is not
very large as compared with the use of a square grid pattern, this is a good example of
the fact that maximum reliability can be attained by carefully analyzing the geometry
of the problem and the statistical behavior of noise. The computation involved is
essentially the same for any grid pattern, so there is no reason to use a square grid
pattern, which has been favored by many people in the past. We have designed a
convenient device after incorporating realistic considerations — the orientation of the
tilt, the shape of the grid region, the thickness of the grid lines and the separation
between grid lines. Our device is expected to be used widely as a standard tool in
robotics research.
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APPENDIX: SUMMARY OF COMPUTATION

The procedure for computing the focal length and its confidence interval is summarized as follows:

(1) Take an image of a grid pattern, detect grid lines by thresholding and thinning, and compute the
length of each edge segment, the average width, and the edge density. Then, fit lines to them by
least squares. Let {I,}, @ =1,..., N, and {I.}, @ =1,..., N’ be the two sets of the fitted lines in
the two directions, where N and N’ are the numbers of the detected lines in the two directions. Let
the image resolution be x = d?/4p, where d is the average width of the lines and p is the edge

density.

(2) Assuming a tentative focal length f, compute the N-vectors n, and n/, of the lines I, and [, « =
1,...,N.

(3) Compute the covariance matrices V[n,] and V[n] of N-vectors n, and n/, ¢ =1,..., N, by
).

(4) Compute the N-vector m of the vanishing point of lines {/} and its covariance matrix V[m] by
the following procedure called renormalization [7):
@.1) Letc=0and Wy =1, a=1,...,N.
(4.2) Compute the unit eigenvector m of the unbiased moment matrix

N
N= z Wa(non! — cVin,)) (A1)

a=l

for the smallest eigenvalue A,.
(4.3) Update ¢ and W, as follows:

Am

N We(m, Vingm)'

1
. Vingm)'

c<—c+

Wa (A2)

(4.4) If the update has not converged, go back to Step (4.2). Otherwise, compute the largest
and intermediate eigenvalues A, and A, of N and the corresponding unit eigenvectors u
and v.

(4.5) Compute the covariance matrix V[m] by (8).

(4.6) Return the N-vector m and its covariance matrix V[m].

(5) Similarly, compute the N-vector m’' of the vanishing point of lines {/} and its covariance matrix
Vim').
(6) Compute the true focal length f by solving (12) and compute its variance V[f} by (14).

(7) The standard deviation is ‘/ \4 f ] and the (100 — @)% confidence interval is

[f -2/ VIAL f+ Aa\/V[f]]. (A3)

where A, is the a% point of the standard normal distribution (i.e. A5 = 1.96).
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