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Optimal Structure-from-Motion Algorithm for

Optical Flow

SUMMARY  This paper presents a new method for solving the
structure-from-motion problem for optical flow. The fact that the
structure-from-motion problem can be simplified by using the lin-
earization technique is well known. However, it has been pointed
out that the linearization technique reduces the accuracy of the
computation. In this paper, we overcome this disadvantage by
correcting the linearized solution in a statistically optimal way.
Computer simulation experiments show that our method yields
an unbiased estimator of the motion parameters which almost
attains the theoretical bound on accuracy. Our method also en-
ables us to evaluate the reliability of the reconstructed structure
in the form of the covariance matrix. Real-image experiments are
conducted to demonstrate the effectiveness of our method.

key words:  optical flow, motion parameter, depth map, maxi-
mum likelihood estimation, renormalization

1. Introduction

The structure-from-motion problem for computing 3-D
from optical flow has been intensively investigated by
many researchers ever since Ullman [11] addressed this
theme. If the object has a parameterized surface, such
as a polynomial or planar patch, we only need to deter-
mine the coefficients, and the solution can be analyti-
cally obtained. For a surface of general shape, however,
it is difficult to obtain an analytical solution. Zhuang
et al. [13] applied the linearization technique, which was
first developed for the finite motion analysis[12], to op-
tical flow. However, this technique sacrifices the accu-
racy for the computational ease. Some researchers for-
mulated the problem in the form of the least-squares
minimization and solved it by a numerical search al-
gorithm. However, it has been pointed out that the re-
sulting solution has a systematic bias[2]. An unbiased
solution can be obtained by computing the maximum
likelihood solution, but the computational burden is
heavy [1],[3],[9]. In order to avoid this difficulty, sev-
eral researchers have devised simplified methods for ob-
taining an unbiased estimator[5],[10]. In this report,
we modify our previously proposed method which used
the renormalization scheme|[5]. Our new method uses
the linarization technique by regarding the flow matrix
as a new variable and corrects the linearized solution
in a statistically optimal way. The estimator of our
method is shown to be not only unbiased but also very
accurate to the extent that the theoretical bound is al-
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most attained. Original notations and definitions about
vectors, matrices and tensors are listed in Appendix[7].

2. The Problem and Definitions

We fix an XY Z Cartesian coordinate system to the cam-
era. The optical axis of the camera coincides with the
Z-axis, and the focal length is set to 1 without losing
generality, so the image plane is Z = 1. The camera is
assumed to be moving in a stationary environment with
translation velocity v and rotation velocity w; we call
{v,w} the motion parameters. The points in the image
at which optical flow is observed are indexed by sub-
script @ = 1,2,...,n. The image coordinates (zo,yqs)
of the ath point are represented by a three-dimensional
vector €, = (2o Yo 1)', and the optical flow (&4, Ja)
defined there is represented by &, = (24 Uo 0)

Let 2, be the optical flow that should be observed
in the absence of noise. It is easy to show that the fol-
lowing epipolar constraint is satisfied [5]:

|o, T + U+ w X T, v| =0. (N

Here, | -, -, - | denotes the scalar triple product of vec-
tors. Since the absolute magnitude of the translation
velocity v is indeterminate, we adopt the normalization

[oll =1, @

assuming that v & 0 (it is easy to test if v + 0; if v = 0,
no 3-D information is available). In the presence of
noise, an observed flow &, does not necessarily satisfy
Eq.(1). We model the noise as an.additive Gaussian
random variable A&, = (Ai, Ag, 0)7 and write

Fo = Bo + Ay (3)

The mean and the covariance matrix of the noise Ak,
are assumed to be 0 and V, respectively. Since the
third component of &, is 0, the covariance matrix V
is singular; the third low and the third column consist
of 0. The noise Az, is assumed to be independent for
different c.

Given an optical flow &,, a = 1,2,...,n, the
parameters to be estimated are v, w and #,, a =
1,2,...,n, which are constrained by Egs.(1) and (2).
In this paper, we adopt the maximum likelihood crite-
rion: we minimize the log-likelihood
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Ji =Y (& = &as (Va); (@ —a)), 4)

a=1

where (-, -) denotes the inner product of vectors and
(-); denotes the rank-constrained generalized inverse
(see Appendix). The value &, that minimizes J; un-
der the constraints (1) and (2) is easily obtained (we
will discuss this in Sect.6). Substituting the value z,
thus computed into Eg. (4), we obtain another objective
function

%)

Ty = i |€q, Bo +v+w X ma,v\z‘
— (v X @o, V(v X x4))

Minimization of Jz is constrained by Eq. (2) alone.

Function J; or Jy can be minimized by a numer-
ical -algorithm [3],[9]. However, computation is often
unstable because J; and Jy are complicated nonlinear
functions. In order to avoid this difficulty, we apply the
linearization technique. Define the observation matrix
X, and the flow matrix F by

Xy =xox] 4 Aoz, (6)

F=(v,w)I+Sww | +vxI, (7

where I denotes the unit matrix and S[-] and A[-] are
the symmetrization and anti-symmetrization operators,
respectively (see Appendix). The observation matrix
X, is determined by the observed optical flow alone,
while the flow matrix F' is determined by the motion pa-
rameters alone. Using these definitions, we can rewrite
the epipolar constraint (1) in the form

(Xo; F) =0, (8)

where ( -; -) denotes the matrix inner product (see Ap-
pendix). In the above equation, X, denotes the true
observation matrix obtained by replacing & by  in
Eq.(6). We now have a new problem: given X, esti-
mate F and X . Since Eq. (6) is linear in &, the noise
in X, is also a Gaussian random variable of mean 0.
Let V, be its covariance tensor: its (i7kl) element is the
covariance between the (ij) and (k) elements of X,
and given by

Va'éjkl = Z(Vaikxajxal - Vo LTojLak

~VajkTaiTal + Vajl Tai Tak)- )
Then, minimizing Eq. (5) is equivalent to minimizing
= (Xao; F)2
Jg = —_—. 10
"= 2 PP 1o

a=1

The constraint (2) is equivalently rewritten in the
form

|ALF]| = V2. (11)
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In addition, another constraint arises. The flow matrix
F is determined by v and w, which have three elements
each. Since F has nine elements, there remain three
extra degrees of freedom, which originate from the fact
that not all matrices can be decomposed into v and w
in the form of Eq.(7). The condition for F' to have
the form of Eq.(7), which we call the decomposability
condition, is expressed by the following equation|[5]:

K — —;—(trK)(I —wv')—25[Kvv']|=0. (12)
Here,

K = S[F], v=(A[F)s2 A[F|13 A[Fla1)", (13)
where A[F];; denotes the (ij) element of A[F].

Proof: If Eq.(7) holds, Eq.(12) can be confirmed by
substituting Eq. (7) into Eq. (13). Conversely, if Eq. (12)
holds, we have (v, Kv) = 0. Equation (7) can be con-
firmed by substituting the following vector w into the
right-hand side of Eq. (7):

1
w= §(trK)v —2Kw. (14)
3. Minimization by Renormalization

The function J; should be minimized under the con-
straint (11) and the decomposability condition (12). In
the following, we temporarily ignore the decomposabil-
ity condition and compute the flow matrix F by a nu-
merical scheme called renormalization. The computed
flow matrix F' is then corrected so as to satisfy Eq. (12)
in a statistically optimal way.

If we use renormalization, we need not know the
absolute magnitude of the covariance matrix V,; we
only need an appropriately scaled value Vg, which we
call the normalized covariance matrix. The relative ra-
tio of the two, which we denote by €2, is estimated a
posteriori after the renormalization process. We call ¢
the noise level The normalized covariance tensor V, 1s
also defined in the same way:

Voa=€V0 V,=¢eV0. (15)

The renormalization procedure is described as fol-
lows:

Step 1: Read optical flow z, and the normalized co-
variance matrices Vg, a = 1,2,...,n. Convert them

into X, and V2 by Egs.(6) and (9). Set W, =1 and
c=0.

Step 2: Compute tensors M = (M) and N =
(Nijki) by

1 n
Mijir = =3 WaXoi Xak, (16)
a=1
1< 0
N_E;Wava. (17)
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Then, compute the unbiased moment tensor
M=M-=—CcN. (18)

Step 3: Compute the smallebt eigenvalue \g of tensor
M and its elgenmatrlx F (see Appendix). Then, nor-

malize F into ||A[F Il = V2. If Ag = 0, return M,
and c, and stop.

Step 4: Update W, and c by the following equations,
and go back to the Step 2:

o NlE .
¢ +(FN’F) We (FVOF) (19

The returned matrix ¥ is an optimal estimate of
the flow matrix. The normalized covariance tensor of
F, which we denote by VY, is computed as follows.

Define a projection tensor P = (P;;;;) by
1 . .
Pijri = birbji — iA[F]ijA[F]kl; (20)

where &;; is the Kronecker delta. Define a tensor M/ =
(M§_7k1> by

3
M;ﬁjkl = Z 7Dij"mfrzlpklpq-/\;177177,1313 . (21)

m,n,p,g=1

This is a projection of the tensor M onto the linear
subspace compatible with the constraint (11). The nor-
malized covariance tensor Vi is the following equation:
i . :
Vi = ~(M);5 . (22)
4. Correction of the Flow Matrix and Decomp051-
tion into the Motion Parameters

We have now obtained an estimate F' of the flow ma-
trix and its normalized covariance tensor V. What we
need to do next is correct F' so as to satisfy the decom-
posability condition (12) in a statistically optimal way.
Since the decomposability condition is nonlinear, it is
difficult to compute an analytical solution. Here, we
linearize the constraint in the neighborhood of £ and
obtain an analytical solution. We iterate this process
until the constraint holds sufficiently.

Let D be the left-hand side of Eq. (12). If we write
F = F + AF, the constraint (12) is linearized as fol-
lows:

CAF =D, (23)

l\.’)[r—t

3
Cijkl = Z klm ijm T Bzykla (24)

Aije = St K) (6ipv; + 6530;) — Kyvj — K v,

BN | =
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3 3
— ik ZKil'vl — ik ZKjl'Ul ) (25)
=1 =1

1
Bijr = 5(5%53'1 + 6:105% — 65081
+ dpviv; —

— 05]VEV; — 6ﬂkauj — 5jkfvwi) . (26)

bk Vv — 8050,

Here, €51 1s the Eddington epsilon.

We compute the statistically most likely value of
AF by minimizing (AF;(V%)g AF) under the con-
straint (23) together with Eq.(11), which is also lin-
earized. The solution AF' has the following form:

3
AFy; = Z WinnpaConki Ve i3 Dpg s (27)

k,lymn,p,q=1

W=V, (28)

3
Vijrl = Z CijmnChipgV mnpq - (29)

m,n,p,q=1

However, F'— AF may not satisfy Eq. (11) exactly, since
we have used a linear approximation. Here, we correct
F' in the form
b VAP - AF)
IA[F ~ AF|
so that Eq.(11) is exactly satisfied. Furthermore, ten-
sor Vi must also be corrected so that its null space is
compatible with the constraint (11). This is done in

the following form, where P = (Pijr1) is the projection
tensor defined by Eq. (20):

(30)

3
Z Pijmnpklpq V?:' mnpq * (3 1 )

m,n,p,qg=1

0
VFijkl —

Figure 1 schematically shows the above process.
The thick curve represents the constraint D = O, and
the dotted curves represent the contours D = constant.
The matrix F is at point ¢ before the correction. At
point a, the gradient of the matrix D is given by the ten-
sor C given by Eq.(24). Line [ indicates the linearized

Fig. 1  Correction of the flow matrix.
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constraint. The first order solution is sought on line I.
The ellipse represents the contour of a constant Maha-
ranobis distance (AF; (V%)g AF)Y/? from point a. The
solution b is the point where the ellipse is in contact
with line [. The next iteration begins at point b.

The procedure for the flow matrix correction is
summarized as follows:

Step 1: Compute AF by Eq.(27), and update F and
V9 by Egs. (30) and (31), respectively.

Step 2: Compute D (= the left-hand side of Eq. (12)).
If | D|| ~ 0, then stop. Otherwise, go back to Step I:.

The corrected flow matrix F' is decomposed into @ and
@ by using Egs. (13) and (14):

b = (A[F]3 AlF]13 A[Fla1) ", (32)
& = 4 (i S[F)o —25(Fo. (33)

5. Covariances of the Motion Parameters

The covariance matrices V,,, V,, and V,, of the com-
puted motion parameters {0,w} are given as follows
(we omit the derivation[6]):

v, V..\ (A, AL\
( Voo Vo > = ( A, Al > - G4
Here,
~ (Pvaa)(Pv&a)T
A, = , 35
;(vxmmva(vxzna)) (35)
n = T
b,b
A, = 2o , 36
;(vxma,Va(vxma)) (36)
= bo(Po,as)"
wy — ’ 37
A ;(Uxma,Va(vxma)) (37)
Ay — Ty X ﬂTZa + ||$CXH2W - (wouw)a:a ) (38)
Ba = Hma“zv - (a:a,v)ma ) (39)
P, =I-vv' . (40)

Equation (34) is equivalent to what is known as the
Cramer-Rao lower bound in statistics and gives a the-
oretical bound on the accuracy of estimation. It can
also be shown that maximum likelihood estimation at-
tains this bound in the first order. In actual com-
putation, the motion parameters {v,w} and the op-
tical flow @, in the above equations are replaced by
their estimated values (the optical flow is estimated by
Eq.(43)). Since Egs.(35)—(37) involve the covariance
matrix V, = eQV?x, we need to estimate the square
noise level €2, for which we use the following estimator:
70
2o 2 (41)
n—>5
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Here, jg is the value of J, obtained by replacing v,
w and V, by ¢, @ and Vg, respectively, in Eq. (15).
Equation (41) is obtained from the fact that J9/e% is a
x2 random variable with n — 5 degrees of freedom [7].
It follows that the expectation and the variance of €% are

2¢t
n—>5"

E@=¢, V[E]= (42)

6. Depth and Its Variance

The next step is reconstruction of the depth map.
Firstly, we estimate the true optical flow . In Sect.2,
we eliminated @, to obtain function J, from function
Jy. The true optical flow is estimated by computing the
eliminated parameter &,. Since © and & have already
been determined, minimizing J; under the epipolar con-
straint (1) reduces to minimization of a quadric form.
The solution &, is given as follows:

. . e VO (D x x4)
Ty = o — 72 P ,
(0 X To, Vo (D X )

o = [Ty Bo + D+ QX 2o, D] (44)

(43)

The Z coordinate at the ath point, which we denote by
7., is computed from @, in the form
Z - (67 Qg(vi);Qaﬁ) (45)
(6,Q0(V2); Qu(@a+@ X o))

where Q, = I —xz,k' and k= (001)".

We now estimate the variance of Za. Since Za 1s
computed from &, which is computed from the ob-
served optical flow @, it appears that the variance of
Z,, could be computed by propagating the error in &n
through the computation steps for Z,. However, o
also depends upon the motion parameters {9, @}, which
are estimated from the same data @,. If errors in the
motion parameters and errors in the optical flow are
considered at the same time, the analysis becomes too
complicated. As a compromise, we evaluate the effect
of errors in {#,&} and that of errors in &, separately
and then superimpose the two effects.

In order to evaluate the effect of errors in the flow,
we temporarily assume that {#,&} are the true parame-
ters. Then, the covariance matrix of the estimated flow
#.,, which we denote by V:(-C’z, is given by
(Vo(® X 2u))(Vald X 24))

(¥ X ®a, Va( X o))

.
vl —v, - . (46)

The variance of Z,,, which we denote by Véj;), is given
by

(1) _ ZAEVED)
Zoo T (9,8,0)
S, =z, x diag(1,1,0) X x4, (48)

(47)
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(a) object shape and generated (b) reconstructed shape (c) reconstructed shape
optical flow. (present method). (previous method).
Fig. 2 Generated optical flow and reconstructed shapes.
where diag(1, 1,0) is a diagonal matrix whose diagonal Ve = Vz(i) + VZ(ZL) . (58)

elements are I, 1 and O in that order (see Appendix for
the product rule for vectors and matrices).

We next evaluate the effect of errors in the motion
parameters. This time, the estimated flow &, is regarded
as true. First, compute the following covariance matri-
ces (see Eq. (34)):

V;fa = (da)V’Ua’a) + (i)av Vwba)

+ 2(ba, Vi) ; (49)
Viea = Vil + V], ba, (50)
Viea = Vil + Vb, . (51)
Here, we have defined
Qo = To X To + |Eal?® — (20, @), , (52)
b, = |Zal?D — (2o, D)2y . (53)
Next, compute the following covariance matrices:
v _ Yea(Val® X 20))(Va(d x 2a)) T (54)

(DX @a, Val(d X 24y))2

o Viea(Va( ><:1:O¢))T
Visa = (U X @, Val(d x xy))’ (53)

C Vieea(Va(® x 24)) T
Veta = G o Valo x 2] (36)

The variance of Z,, which we denote by VZ(ZZ), is given
by

74
(m) _ Za V(m) S (V’LH Sa)
VZa (f)ﬂsaﬁ) (( To ! a) + ‘—Z»\g[
Z(V'U:ba; Soc)

+ (o XV X ®y;84) + -

B 2(xq % VW;SQ)>

—2(xa X Vi Sa) Z
(03

(57)

where S, is defined by Eq. (48). The total variance V,

of Z, is given as the sum of V) and V{™:

7. Experiments

We conducted experiments using computer generated
data. Figure 2(a) shows the object shape and the
generated optical flow. The focal length is 600 pix-
els, and the image size is 512 x 512 pixels. The dis-
tance between the object and the camera is approx-
imately 6 x 10° pixels. The motion parameters are
v = (0,-1.15,1.15)T x 10° pixels/frame and w =
(-0.21,0,0) " rad/frame. Random Gaussian noise of
mean O and variance 1 pixel was added to the z-
and y-components of the flow independently. Fig-
ure 2 (b) shows the reconstructed object shape (the true
shape is superimposed in dotted lines). For compari-
son, the coresponding result obtained by our previous
method [5] is shown in Fig.2(c). It is observed that
the optimal correction of the flow matrix has improved
the accuracy. This simulation was repeated 100 times
with different series of random numbers. The estimated
motion parameters are plotted in three dimensions in
Fig.3. The cubic frames, which are shown merely as a
reference, have the same absolute size and are centered
at the true values. Figures 3(a) and 3(c) are for the
present method; Figures 3 (b) and 3(d) are for the pre-
vious method. The ellipses in the figures indicate the
theoretical lower bound on the standerd diviation[6].
The distribution of the motion parameters computed
by the present method is more concentrated around the
true value than for the previos method and is compara-
ble with the theoretical lower bound.

Figure 4 shows experiments using real images. Fig-
ure 4 (a) shows the image we used and the optical flow
detected by the method described in [8]. Figure 4 (b)
shows the reconstructed depth map (those points whose
reliability is smaller than a threshold are not displayed).
Here, the intensity corresponds to the depth: bright
points have large depths. Since no smoothing opera-
tion is applied, this depth map is inhomogenious, but a
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(a) translation velocity (present method).

(c) rotation velocity (present method).
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(b) translation velocity (previous method).

(d) rotation velocity (previous method).

Fig. 3 Distribution of the motion parameters.

(a) detected optical flow.

(b) depth map.

Fig. 4 Real image experiment.

global shape of the objects can be obtained. The motion
parameters are estimated to be # = (0.12,0.63,0.76)
and @ = (7.1,-0.22,-1.4)" x 107®, which seem rea-
sonably good.

8. Conclusions

We have proposed a new structure-from-motion algo-
rithm. The significance of our method is summarized
as follows:

‘e The accuracy almost attains the theoretical bound
if the linearization technique, the renormalization

scheme and the optimal correction of the flow ma-
trix are combined.

e Along with optimal estimates of the motion param-
eters and the depths, their reliability is also com-
puted in quantitative terms.

With these advantages, our method is expected to play
an important

Acknowledgments

The authors thank Mr. Hiroyuki Morishita of Gunma



OHTA and KANATANI: OPTIMAL STRUCTURE-FROM-MOTION ALGORITHM FOR OPTICAL FLOW

University for conducting the experiments together.
This work was in part supported by the Ministry of Ed-
ucation, Science, Sports and Culture, Japan and under
a Grant in Aid for Scientific Research B (No. 07458067)
and the Okawa Institute of Information and Telecom-
munication.

References

[1] G. Adiv, “Determining three-dimensional motion and
structure from optical flow generated by several moving ob-
Jects,” IEEE Trans. Patt. Anal. Mach. Intell., vol.7, pp.384—
401, 1985.

[2] K. Daniilidis and H.H. Nagel, “Analytical results on error
sensitivity of motion estimation from two views,” Image
Vis. Comput., vol.8, pp.287-303, 1990.

[3] D.J. Heeger and A.D. Jepson, “Subspace methods for re-
covering rigid motion I: algorithm and interpretation,” In-
tern. J. Comput. Vis., vol.7, pp.95—117, 1992.

[4] K. Kanatani, “Geometric Computation for Machine Vi-
sion,” Oxford University Press, Oxford, 1993.

[5] K. Kanatani, “3-D interpretation of optical flow by renor-
malization,” Intern. J. Comput. Vis., vol.11, no.3, pp.267—
282, 1993.

[6] K. Kanatani, “Accuracy bound of parametric fitting,”
IPSJ Technical Report, vol.94-CV-91-3, pp.15-22, 1994 (in
Japanese).

[7]1 K. Kanatani, “Statistical Optimization for Geometric
Computation: Theory and Practice,” Elsevier Science,
Amsterdam, 1996.

[8] N. Ohta, “Image movement detection with reliability in-
dices,” IEICE Trans., vol.E74, no.l10, pp-3379-3388, Oct.
1991.

[9] N. Ohta, “Structure from motion with confidence mea-
sure and its application for moving object detection,”
[EICE Trans., vol.J76-D-I1, no.8, pp.1562—1571, 1993 (in
Japanese).

[10] N. Tagawa, T. Toriu, and T. Endoh, “Un-biased linear al-
gorithm for recovering three-dimensional motion from op-
tical flow,” TEICE Trans. Infor. Syst., vol.E76-D, pp.1263—
1275, 1993.

[11] 8. Ullman, “The Interpretation of Visual Motion,” MIT
Press, Cambridge MA, 1979.

[12] J. Weng, T.S. Huang, and N. Ahuja, “Motion and structure
from two perspective views: algorithms, error analysis and
error estimation,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol.11, pp.451—467, 1989.

[13] X. Zhuang, T.S. Huang, N. Ahuja, and R.M. Haralick, “A
simplified linear optical flow-motion algorithm,” Comput.
Vis. Graph. Image Process., vol.42, pp.334—344, 1988.

Appendix: Notations and Definitions

Operations

The following lists notations of operations on tensors,
matrices and vectors used in this paper.

o The product of a tensor T =(T;;;) and a matrix
A= (A”) .

3

(TA);; = Z Tkl Akt -
k=1
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Here, (7A);; denotes the (i) element of matrix
TA.

e The exterior product of a vector v and a matrix
A=(aj aya3) (a; is the i-th column of A):

vxA=(vxa vXa vXxaz),

Axv:('uxAT)T.

e The inner product of matrices A = (A;;) and
B = (By;) and the norm of matrix A = (A;;):

3
(A;B) = Z AijBij,

4,j=1

[All = v(A; A) =

3
DAz

1,5=1

e The symmetrization operator S[-] and the anti-
symmetrization operator A[-] on matrix A:

ﬂm:%m+AU,MM:%m_AU

o The scalar triplet product of vectors u, v and w:

lu,v,w| = (u x v,w) = (v x w,u)

= (w X u,v).
Eigenvalues and Eigenmatrices

A three-dimensional tensor A = (Aypeq) is rearranged
into a nine-dimensional matrix A = (4;;) by the rule
described below, where div and mod denote integer
division and integer remainder, respectively:

a=(i—1)div3+1, (A- 1)
b= (i—1)mod3+1, (A-2)
c=(j—1div3+1, (A-3)
d=(j—1)mod3+1. (A-4)

Let A and (™ be the nth eigenvalue and the corre-
sponding eigenvector of A, respectively. The nth eigen-
value of tensor A is also A(™), The corresponding eigen-
matrix U™ = (UT)) is obtained from u(® = (u{™)
by rearranging their elements according to Egs.(A- 1)
and (A-2).

Rank-Constrained Generalized Inverse

Let A be a positive semi-definite matrix of rank r. Let
A and u(™) be the nth eigenvalue and the correspond-
ing eigenvector of A, respectively. The eigenvalues are
indexed in descending order. For r' < r, the rank-
constrained generalized inverse of A is defined as fol-
lows:
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!
T

- 1 [ n
Ay =Y Wm (M (A-5)
n=1

If » = 7/, the rank-constrained generalized inverse (A)_
coincides with the generalized inverse A~ .

The rank-constrained generalized inverse of a three-
dimensional tensor A can also be defined. Namely, ten-
sor A can be converted into a nine-dimensional matrix
A as stated in Appendix. If A is positive semi-definite,
the rank-constrained generalized inverse (A)_ can be
computed by Eq.(A-5). The rank-constrained general-
ized inverse (A)_, of tensor A is obtained from (A)_
by applying the conversion rule of Egs. (A- 1), (A-2),
(A-3) and (A-4).
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