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The 3D structure and motion of an object are determined from its optical flow under
orthographic projection. The image domain is divided into planar or almost planar regions by
checking the flow. For each region, parameters specifying the flow are estimated, and the 3D
structure and motion are determined in explicit analytical forms in terms of these parameters.
The solution is not unique, containing an indeterminate scale factor and consisting of true and
spurious solutions. The spurious solution disappears if two or more regions of the same object
are observed. Geometrical invariance properties are emphasized throughout this paper. © 1986
Academic Press. Inc.

1. INTRODUCTION

Determination of the 3D structure and motion of an object from its projected 2D
images is one of the most important tasks of computer vision. Most existing studies
adopt perspective projection, or a pin hole camera model [1-3]. However, the effect
of perspective projection decreases when the object size is small compared with the
distance from the camera. As a result, many clues are lost. For example, the motion
along the camera axis is indiscernible. In this case, the projection must be regarded
as orthographic.

Although 3D recovery from images orthographically viewed from finitely many
different orientations was studied in [4, 5], only a few attempts have been made at
3D recovery from optical flow under orthographic projection [6, 7]. (For perspective
projection, see [8].) The reason seems to be that we cannot obtain sufficient clues for
3D recovery. However, since the effect of perspective projection sometimes becomes
negligible, it is an important problem to examine to what extent the 3D information
can be recovered. In other words, since 3D recovery from orthographic projection
necessarily involves indeterminacy, we need to know what kind of indeterminacy it
is or what the geometrical meaning of the indeterminacy is.

This attempt was partly made by Hoffman [6] from a human perception view-
point. From a computer vision viewpoint, Sugihara and Sugie [7] presented a
general reconstruction algorithm, pointing out that a scale factor is necessarily
involved. However, their proof is incomplete. In fact, they did not prove that no
other indeterminacy is involved. A purpose of this paper is to present a different
approach to the same problem. The approach here is similar to that of Hoffman [6]
but is fundamentally different from that of Sugihara and Sugie [7] in the following
three aspects.

First, the computation of Sugihara and Sugie [7] is based on the coordinates of
point-to-point correspondences, while the present method first extracts global char-
acteristics of the flow field and subsequent computation is based on these quantities,
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which we call the “flow parameters” of the optical flow. In the “correspondence-
based” approach of Sugihara and Sugie [7], the velocity measurement must be
accurate, while in our “flow-based” approach the flow parameters are less sensitive
to noise, since they are global quantities obtained through averaging a set of
observed data. This is of great practical significance. At the same time, our method
is more general than theirs in the sense that our flow-based approach also includes
the correspondence-based approach of Sugihara and Sugie [7] as a special case, as is
shown later.

Second, the algorithm of Sugihara and Sugie [7] only gives numerical results,
while our method gives the 3D solution expressed explicitly in analytical terms.
Hence, it provides a complete description of the involved indeterminacy, which the
approach of Sugihara and Sugie (7] is unable to show. The solution is not unique if
the object is a plane. However, since the solution has an analytically closed form,
the geometrical meaning of the spurious solution can be given in general terms.

Third, since the algorithm of Sugihara and Sugie [7] is based on a necessary
condition of rigid motion, their numerical solution also includes physically impossi-
ble solutions, while our method yields and exhausts all physically possible solutions.

2. IDENTIFICATION OF OPTICAL FLOW

Suppose a plane is moving in the scene and we are looking at its image
orthographically projected onto the xy plane, which is identified with the image
plane, along the z axis (Fig. 1). Let z = px + gy + r be the equation of the plane.
Let (0,0, r), the intersection between the surface and the z axis, be a reference
point. The instantaneous rigid motion is specified by the translation velocity
(a, b, c) at the reference point and the rotation velocity (w;, w,, w;) around it (i.e.,
with rotation axis (w,, w,, @) and angular velocity yw? + w3 + &} (rad/s ) around
it).

Thus, the instantaneous position and motion of the plane is described by nine
parameters p, g, r, a, b, ¢, v, w,, vy, which we call the structure and motion parame-
ters. Our objective here is to recover them by observing the image motion on the
image plane. Obviously, two of them cannot be recovered due to the orthography of
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F1G. 1. A plane having equation z = px + gy + r is moving with translation velocity (a, b, c) at
(0.0, ) and rotation velocity (w;, w;, w;) around it. An optical flow is induced on the xy plane by
orthographic projection along the z axis.
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projection, namely ¢, the velocity in the z direction, and r, the distance from the
origin along the z axis, which we call the absolute depth of the plane.

It is easy to see that the motion of the plane described above induces an optical
flow on the image plane of the form

u(x, y) =a+ poyx + (qu, — wy)y,  v(x, ) =b— (pw, — wy)x — qu,y.
- (2.1)

In other words, the optical flow is described by linear equations in the form
u(x,y)=a+Ax+ By, v(x,y)=b+ Cx+ Dy, (2.2)
where
A=pw,, B=gqu,—w;, C= —pw, + w;, D= —qu,. (2.3)

Suppose the optical flow is already obtained on the image plane by some available
means [9-12). Then, coefficients a, b, 4, B, C, D, which we call the flow parameters,
can be estimated by fitting equations of the form (2.2), say by the least square
method, minimizing

M = Z[(a + Ax; + By, — u(x;, }’i))z + (b + Cx; + Dy, — v(x;, )’i))zl, (2.4)

where summation is taken over all feature points where the velocity is observed.
By computing the residual of Eq. (2.4), we obtain a planarity criterion; if the
resulting M is not less than a prescribed threshold value, the object cannot be
regarded as a plane. This also suggests the following procedure: Starting from three
or more feature points where the residual M is very small, add feature points from
their vicinity one by one, each time recomputing the flow parameters and checking
the residual M, until it reaches a prescribed threshold value. Then, we end up with a
region which is regarded as an image of a planar or almost planar part of the object
surface. We call such a region a planar patch. If this procedure is repeated, the
image domain is decomposed into planar patches. (Exact boundaries of these planar
patches are not necessary. They are reconstructed by the procedure described later.)

3. INVARIANCE PROPERTIES OF OPTICAL FLOW

Once the flow parameters a, b, 4, B, C, D are computed from a given optical
flow, the structure and motion parameters p, g, r, a, b, ¢, w,, w,, w; are given as a
solution of Egs. (2.3). They are the only restrictions constraining the solution, for
motions seem identical to the viewer if the flow parameters are the same. Here, the
translation velocities a, b need not be considered because they are already observed,
while ¢ and r are indeterminate because they are not contained in Egs. (2.3).

Equations (2.3) provide four equations for five unknowns p, ¢, w,, w,, w,, and
hence one degree of freedom remains indeterminate. It seems, at first sight, that we
can solve Egs. (2.3) by choosing one unknown, say p, and expressing the rest of
unknowns in terms of it. Hoffman [6] actually did this. In this way, however, we
cannot understand the geometrical implication of the indeterminacy. This is a defect
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inherent to “algorithmic solutions” in general, because the “invariance properties”
are destroyed. It seems, however, that very few people in computer vision realize
this fact. To illustrate this aspect of invariance is one of the main purposes of this
paper.

The key fact is that an optical flow is described in the form of Egs. (2.2) with
respect to a xy-coordinate system on the image plane and that the choice of the
coordinate system is completely arbitrary. Suppose we use an x’y’-coordinate
system obtained by rotating the xy-coordinate system around the origin by angle 8
counterclockwise. Since we are observing the rigid motion of a plane, the optical
flow must have the same form

W=a+Ax"+By, v=b+Cx+Dy, (3.1)

i.e., the form of the optical flow is form invariant.
The old coordinates x, y and the new coordinates x’, y’ are related by

[2]-[ e s (3] 62)

Since the velocity components are transformed as a vector, the old components u, v
and the new components ’, v’ are related by

[u:] _ [ cos § sinﬂ] [g] (3.3)

v —sinf cosé@

If Eqgs. (3.2) and (3.3) are substituted in Egs. (3.1) and compared with Eqgs. (2.2), we
find that a, b are transformed as a vector and A4, B, C, D are transformed as a
tensor, i.e.,

a|l_| cos@ sind|[a

[b'] h [—sinﬂ cos()] [b]’ (3.4)
A Br] _ [ cos® siné [A B] [cos0 —siné (3.5)
¢ D —sin@ cos@||lC D] |lsiné cosf ] :

Equations (3.4) and (3.5) describe a linear mapping from a, b, A, B, C, D onto
a',b', A, B’,C’, D', and this mapping is a representation, or a homomorphism, of
the 2D rotation group SO(2). As is well known in group representation theory, any’
representation of SO(2) is reduced to 1-dimensional irreducible representations due
to Schur’s lemma, since SO(2) is a compact Abelian group [13, 14]. In fact, if we
define quantities

U=a+i, T=A+D, R=C-B, S=(A-D)+i(B+C),
(3.6)

where i is the imaginary unit, the transformation rule becomes

U'=e,, T =T, R =R, §=e%§ (3.7
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(Appendix A). In other words, T and R are (absolute) invariants (of weight 0), U, is
a (relative) invariant of weight —1, and § is a (relative) invariant of weight —2.

Since these quantities are irreducible representations, each of them has a distinc-
tive geometrical meaning [15]. In fact, U, represents translation, T divergence, R
rotation, and S shearing of the optical flow. In particular, the magnitude |S| is the
shear strength, and the principal axes defined by

0, =e'*S2 0 = jeias(S)2 (3.8)

indicate the orientations of the maximum extension and maximum compression,
respectively (Appendix B). The quantities are also derived by decomposing the flow
according to tensor symmetry properties as shown in Appendix B. This is not a
coincidence; according to the general theorem of Weyl, all irreducible representa-
tions of any tensor representation of SO(n) are obtained by this process [15].

Similarly, the gradient components p, g and the rotation velocities w,, w, are
transformed as vectors with respect to the coordinate rotation, while w, is a scalar.
Namely,

P [ cos § sinﬂ] [P] @' _ [ cos 8 sinﬂ] [‘*’1] (3.9)
q’ —sinf cos@) el W, —sinf cos@) @2’ 7
and w;" = w;. Hence, if we combine them into complex parameters

P=p+ig, W= +iw,, (3.10)

they are (relative) invariants of weight —1:
P'=eP, W =e"W. (3.11)

4. ANALYTICAL SOLUTION OF STRUCTURE AND MOTION
From Egs. (2.3), the invariants introduced in the previous section become as
follows:
T=pw,—qw;, R=20;-pw —qu,, S=pw,+qu +i(qu,~pw).
(4.1)

The first two real equations are combined into one complex equation
R+iT =20, — pw, — qu, + i( pw, — qu,). (4.2)
In terms of the complex notation (3.10), the last of Eqs. (4.1) and Eq. (4.2) become
PW* =2w,— (R+iT), PW=iS, (4.3)

respectively. Thus, four real equations (2.3) for five unknowns p, g, w,, w,, w; are
converted into two complex equations (4.3) for three unknowns P, W, w,. Note that
P and W are invariants of weight —1, and hence W *, the complex conjugate of W,
is of weight 1. Hence, both sides of the first of Eqs. (4.3) are of weight 0 (scalars),
while both sides of the second are of weight —2.
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Since |PW*| = |PW|, the right-hand sides of Eqs. (4.3) have the same modulus,
ie.,

(2w0; — (R +iT))(2wy — (R — iT)) = SS*, (4.4)
from which w; is given by
wy;=1(R £ VSS* - T?). (4.5)

Here, we obtain the following rigidity criterion:

PROPOSITION 1.  The magnitude of divergence should not be greater than the shear
strength:

IT| < |S]. (4.6)

Namely, if inequality (4.6) is not satisfied, the flow cannot be regarded as caused
by rigid planar motion.

Another thing to note is that Eq. (4.5) gives two solutions for w. If Egs. (3.6) and
(2.3) are substituted, it can be checked that one solution is indeed the true w, and
the other is w; — ( pw; + qw,). However, we cannot tell which of the two solutions
of Eq. (4.4) is the true solution and which is the spurious one. The spurious solution
does not appear if and only if pw, + gw, = 0. In the following, complex numbers
are also identified with 2D vectors on the complex plane. Then,

PROPOSITION 2. The spurious solution does not appear if and only if the orienta-
tions of P and W are orthogonal.

For each of the two solutions of w;, Eqgs. (4.3) determine P and W. However, it is
immediately observed that the magnitude of W is indeterminate, since W multiplied
by a real number together with P divided by that number also satisfy Eqs. (4.3).
Thus, the magnitude k = |W| can be taken as an indeterminate scale factor, which
is a scalar and hence is invariant with respect to the coordinate rotation. This means
that k describes a certain geometrical property. In fact, it will be shown that k is a
measure of elongation (or compression) of the object along the z axis. If an
indeterminate parameter were arbitrarily introduced, it would not necessarily have a
geometrical meaning like that. This is one of the key points of the present
formulation.

Elimination of P from Eqgs. (4.3) by taking the ratio yields

. R (47)
W*  2w,— (R+iT)

Taking the argument of both sides yields
™
2arg(W) = >+ arg(S) — arg(2w; — (R + iT)) (mod 27), (4.8)
and hence

arg(W) = % + %arg(S) - %arg(Zw_., = (R +iT)) (mod 7). (4.9
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However, the mod 7 can be ignored by allowing the scale factor k to be negative.
Then, W is obtained in the form of ke'¥®") and, from the second of Egs. (4.3), P
is given by P = iS/W. In summary,

THEOREM 1.

w, = L(R £ VS§* - T?), (4.5)

W= kexpi(% + %arg(S) - %arg(mw3 -(R+ iT))), (4.10)
= %expi(-} - %arg(S) + %arg(Zw3 -(R+ iT))). (4.11)

From Eqgs. (4.10) and (4.11), we find that

%(arg(P) + arg(W)) = %arg(S) + %, (4.12)

where + corresponds to the sign of the scale factor k. As shown in Appendix B,
arg(S)/2 is the orientation of maximum extension. Hence, the orientation of the
right-hand side is the orientation bisecting the orientations of maximum extension
and maximum compression, known in fluid mechanics as the orientation of maxi-
mum shearing, since viscosity becomes maximum along this orientation. Thus, we
conclude

COROLLARY 1. The orientations of P and W are always symmetric with respect to
the orientation of maximum shearing.

So far, we have assumed that w, is the true solution. If that is replaced by

w; — ( pw; + qw,) in the previous derivation, we also find the following (Appendix
O):

COROLLARY 2. The orientations of true P and spurious W are always mutually
orthogonal, and so are the orientations of true W and spurious P. Hence, the
orientations of true and spurious W are always symmetric with respect to the principal
axes, and so are the orientations of true and spurious P.

These general properties result from our analytical solution; they cannot be
obtained by numerical algorithms. The next example illustrates these observations.

ExaMPLE 1. Consider the flow of Fig. 2. The flow parameters are a = 0.1,
b=0.1, 4 =0.087 B= —0227, C = 0.087, D = 0.0524, and hence the invariants
are T = 0.140, R = 0.314, S = 0.035 — 0.140i. Thus, the rigidity criterion |T| < |S|
(= 0.144) is satisfied. Equation (4.5) yields w; = 10,8 (deg/s), and Egs. (4.11) and
(4.12) yield two solutions W, = (0.706 + 0.708/)k (rad/s), P, = (0.123 — 0.074i)/k
and W, = (0.516 + 0.857i)k (rad/s), P, = (0.102 — 0.102i)/k, where k is an inde-
terminate scale factor. Figure 3 shows the case of k = 0.5 on the complex plane,
where the orientations of maximum extension, maximum compression and maxi-
mum shearing are also indicated. The statements in Corollaries 1 and 2 are easily
confirmed.
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FI1G. 2. An example of optical flow.

5. ADJACENCY OF OPTICAL FLOWS

So far, only one planar patch has been considered on the image plane. Here, let us
consider the relationship among them when the planar patches are images of one
and the same rigid object. Let a, b, 4, B, C, D are the observed flow parameters for
one patch and a’, b, A’, B’,C’, D’ those for another. If these two patches corre-
spond to two planar surface of the same object, the induced optical flows must be
continuous over the intersection line (or, to be precise, the image of the intersection

F1G. 3. The result of analysis of the flow of Fig. 2. Two solutions exist, one being true and the other
spurious. The principal axes and the orientations of maximum shearing are also indicated.
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line of the two planes). In other words, at any point (x, y) on the intersection line,
which may or may not appear on the image plane, we have the relations

([u] =)la] + [4]x + [B]y =0,  ([v] =)[b] + [C]x + [D]y =0, (5.1)

where [ ] designates the difference, e.g., [a] = @’ — a. Since Egs. (5.1) hold at any
point on the intersection line, they must be the actual equation of the intersection
line. The necessary and sufficient condition that Eqs. (5.1) represent one and the
same line is that the ratios between the corresponding coefficients are equal. Hence,
we obtain the following adjacency criterion:

PROPOSITION 3. If two planar patches belong to the same object,

[a]:[b] = [4]:[C] = [B]:[D] (52)
must be satisfied. The equation of the intersection line is given by either of Egs. (5.1).

In other words, if Eq. (5.2) is not satisfied, the two patches are images of two
different independently moving objects, while if it is satisfied, the intersection line is
immediately obtained even if it does not appear on the image plane. Thus, once
portions of planar patches are detected on the image plane, the exact boundaries
between them are completely determined as long as all the patches belong to the
same object; there is no need for edge detection.

Once the image is partitioned into adjacent planar patches by the above proce-
dure, the previous analysis is done for each planar patch, recovering P, W, w; up to
a scale factor k. If z=px + qv + r and z’ = p’x + gy’ + r’ are two planes in the
scene, the image of the intersection line has the form

[plx+[qly +[r] =0. (5.3)

If we regard the complex number P as a 2D vector on the image plane, which is
identified with the complex plane, we obtain the well known fact (often described in
terms of the gradient space):

PROPOSITION 4. [P] is perpendicular to the intersection line.

As was shown in the previous section, two sets of solutions for P, W, w, exist for
each planar patch. However, if the motion is rigid, W and w; must be common to
all, and hence we can pick up the true solution for each patch. (If both the true and
spurious W and «; happen to be common, we have pw, + qw, = p’w, + q’w,, or
[plw, + [g]w, = 0. This means that W is perpendicular to [P], and hence parallel
to the intersection line by Proposition 4. Thus, the true W can be detected.)
Moreover, since the indeterminate scale factor k is defined as the magnitude of W,
it can be chosen so that it is common over the entire object image.

Let y = mx + n be the equation of the intersection line between two patches,
which is immediately obtained as described before. Comparison of this with Eq.
(5.3) yields [ p]:[q]:[r] = m: —1: n. Hence,

PROPOSITION 5. If the intersection line is y = mx + n and the equations of the
planes for the adjacent planar patches are px + qp + r =0 and p'x + q'y + r’ = 0,



190 KEN-ICHI KANATANI

y

\\\\\

NGO
\\\\\\\
—_
IRENE RN
AN \

el

>

\\\\\\\*—""/
NSNS

-1 - \\\0 / 1
l“/tbfg}é

~— VNI,
T Q\/ /

F1G6. 4. This fiow cannot be regarded as a single flow of a planar patch. There exist two planar
patches, and the dashed line is the intersection line computed from the fiow.

the relative depth is given by

[r] = —[5] = =nlq]. (54)

This means that if the absolute depth is assumed for one patch, the depths for all
other patches are uniquely determined. In conclusion, we have

THEOREM 2. The structure and motion of an object are determined from its optical
flow under orthographic projection only up to a single indeterminate absolute depth r
and a single indeterminate scale factor k.

The recovery is done in analytical terms in closed form. This theorem covers both
objects with smooth surfaces, which are approximated by planar patches, and
polyhedra, for which each face corresponds to a planar patch.

ExaMPLE 2. Consider the flow of Fig. 4. The flow as a whole does not satisfy the
planarity criterion discussed in Section 2, and hence it cannot be regarded as a
single flow. For the upper right part, the flow parameters are estimated to be
a=-01, b=02, A =0209, B= -0.105 C =0.070, D = —0.035, and for the
lower left part ¢’ = —0.149, b’ = 0224, A’ = —0.140, B’ = —0.349, C’ = 0.244,
D’ = 0.087. Equation (5.2) is satisfied within rounding error, and the intersection
line is estimated to be y = —1.429x — (.2, which is indicated by a broken line in
the figure. For the upper right part, we obtain w; = 10,0 (deg/s), and for the lower
left part w, = 24,10 (deg/s). Hence, the true solution is w; = 10 (deg/s) and

= (0.447 + 0.894i)k. The gradients are P = (0.234 + 0.078i)/k and P’ =
(—0.1561 — 0.195{)/k, respectively. The case of k = 0.5 is indicated in Fig. 5. As
expected, [P] is perpendicular to the intersection line. The equations of the two
planes are z = (0.234x + 0.078y)/k + r, z = (—0.156x — 0.195y)/k + (r —
0.055/k), respectively.
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F1G. 5. The result of the analysis of the flow of Fig. 4. No spurious solution exists.

6. REDUCTION TO THE CORRESPONDENCE-BASED APPROACH

Our flow-based approach reduces to the correspondence-based approach in the
extreme case where each planar patch is a triangle containing only three feature
points at the three vertices. Let (x;, y;), i = 1,2, 3, be the coordinates of these three
vertices, and let (u;, v;), i = 1,2,3, be the velocities observed there. According to
Egs. (2.2), the flow parameters are determined by solving the simultaneous equa-

tions
X1 N |[a U L 3 »n|[p v,
1 x; » A]= u |, 1 x, »nl|C|=]|%] (6.1)
1 x; »lB “3 1 x3 y[LD U3
The solution is unique unless the determinant
I x5 »n
1 x; »n (6.2)
I x3 »

vanishes, which is a condition for collinearity of the three points. Hence, if velocities
are measured at three non-collinear points, the flow parameters are uniquely
determined.

EXaMPLE 3. Suppose velocities are measured at three points (0.6, 0.2),
(—0.2, —0.4), (—04,0.8), resulting in (—0.042,0.105), (—0.098, 0.177),
(0.077,0.159), respectively (Fig. 6). Egs. (6.1) give a = —0.049, b= 0.152, 4 =
—0.035, B =10.140, C = —0.070, D = —0.026. The corresponding hypothetical
flow is drawn in Fig. 7. The procedure shown previously yields two sets of solutions;
wy = —5 (deg/s), W = (0.448 + 0.894i)k (rad/s), P = (—0.039 + 0.059i)/k, and
wy = —7 (deg/s), W = (0.832 + 0.555i)k (rad/s), P = (—0.063 + 0.032i)/k.
Hence, there are two possibilities for the equation of the plane. One is z =
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LA
52
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F1G6. 6. The velocity is observed at three points of a rigid object.

—0.039x/k + 0.059y/k + r, and the z coordinates at the above three vertices are
2z, = —=0012/k + r, z, = —0.016/k + r, z; = 0.062/k + r, respectively. The other
is z= —0.063x/k + 0.032y/k + r, and the z coordinates at the vertices are
z; = —0.031/k + r, z, =r, z; = 0.050/k + r, respectively. The spurious solution
disappears if two or more planar patches are observed.

By now, the role of the scale factor k is clear. The relative depth, i.e., the
difference between the z coordinates, of points is inversely proportional to k, so that
k is a measure of elongation (or contraction) of the object along the z axis. This
interpretation was already pointed out by Sugihara and Sugie [7].

On the other hand, the correspondence-based approach of Sugihara and Sugie [7]
is based on the rigidity condition (x; — x,)* + (y; — y;)* + (z; — z;)* = const., or
on differentiation

(x; — xj)(jci - ’.Cj) +( _)f,)(}’; - }’,) +(z- Zj)(zi - z.j) =0, (63)
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F1G. 7. The hypothetical optical flow computed from the velocities at the three points in Fig. 6.
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for all i, j pairs. They regarded these constraints as equations for unknowns z, and
%,, analyzed the existence and indeterminacy and presented an algorithm for
numerical computation. However, Eq. (6.3) provides only a necessary condition for
rigid motion. This is also satisfied by non-rigid (i.e., self-deforming) motion when
four or more points become coplanar. Indeed, such a non-rigid solution is actually
found in the numerical solution of their algorithm, although they did not mention
this in their paper. Our analytical formulation does not yield such an infeasible
solution because it is based on the rigidity of planar surfaces.

7. CONCLUDING REMARKS

We have presented a complete analysis of optical flow under orthographic
projection and expressed the solution in analytical closed form including the
spurious solution. The underlying principle is the invariance with respect to coordi-
nate changes on the image plane, and equations are written in terms of invariants,
which are in general complex numbers, resulting from group representation theory.
The analysis is based on the optical flow of plane motion but it can be reduced to
the correspondence-based approach as a special case. There are two more things to
be mentioned.

In our analysis, all the computations are done on the flow parameters extracted
from the optical flow. Therefore, the optical flow is not necessary if the flow
parameters can be estimated. This idea leads to detection of structure and motion
without correspondence and is fully studied by Kanatani [16, 17], who computed
what he called “features” to estimate the flow parameters.

On the other hand, the goal of the analysis shown so far is to detect 3D structure
and motion from a given optical flow at one instant. There are several indetermina-
cies; the velocity along the z axis and the distance from the viewer are inde-
terminate, and one additional indeterminate scale factor is involved. Moreover, if
the object is a plane, there exist two sets of solutions. However, these indetermina-
cies can be removed if multiple optical flows are available. For example, if two
optical flows of the same object are detected at different times or from different
viewpoints, the solution becomes unique, as was pointed out by Sugihara and Sugie
[N

The same principle applies if a time sequence of optical flows taken at a small
time interval is available because the structure and motion parameters cannot evolve
arbitrarily. If the values of p, g, r, g, b, ¢, w;, w;, w; are given at one instant, the
translation velocities a, b, ¢ and the rotation velocities w,, w,, w; change the posi-
tion of the plane is such a way that

P=P‘1"’1-(P2+1)“’2_‘I"-’3» q=(qz+1)w1_qu2 + pws,
#=c— pa-— gb. (7.1)

Hence, the values of p, g, r after short time 8¢ are predicted to be p + pdt, g +
48t, r + #dt, respectively (or a higher order approximation scheme can be applied).
For example, if the values of p, g, r, a, b, ¢, w,, w,, w; are known initially, Egs. (7.1)
provides a constraint sufficient to determine the subsequent values of these parame-
ters uniquely. This principle, combined with the method of feature detection, is used
by Kanatani [18-20] to trace the motion of a plane from a known initial condition.
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APPENDIX A

Equations (3.4) and (3.5) describe a linear mapping from g, b, 4, B, C, D onto
a’,b', A, B’, C’, D’ and is rearranged into the following form:

4

a
bl
AI
B'
C'
DI
[ cos8 sind i a
—sinf cosé b
_ cos2d cos @ sin @ cos @ sin 8 sin®0 A
—cos @ sin @ cos?24 —sin?4 cos@sind || B |
—cos @ sind —sin%0 cos?8 cosfsind | | €
| sin%4 —cosf@sin@ —cos@sind cos?0 | D

(A1)

This linear transformation is a representation, or a homomorphism, of the 2D
rotation group SO(2), but it is reducible. The matrix is diagonalized if the flow
parameters are rearranged as follows:

[ a + b’ ] -e'io 1
a —ib ei®
A+ D 1
BI — Cl = 1
(4 =-D)+i(B +C) o= 20
_(A’—D')—i(B'+C’)_ | 20 |
[ a+ib ]
a-—ib
A+ D
X B-C . (A2)
(A-D)+i(B+C)
| (4-D)-i(B+C)|

Thus, the representation of Eq. (A.1) is reduced to the direct sum of 1-dimensional
irreducible representations. This is possible due to Schur’s lemma, because SO(2) is
a compact Abelian group [13, 14].

APPENDIX B
The optical flow of Egs. (2.2) is written in matrix notation as

=G+ & 2161 ®1)
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y

s A
i A
i A
A
A
e Pad = X
P
AN
AN
A
e A

FiG. Bl. Translational flow.

The geometrical meaning of a, b is clear. If the other flow parameters are zero,
the flow takes the form of

4-[2] ®2

which describes translational flow (Fig. B1).

The matrix in Eq. (B.1) is decomposed into its symmetric part and antisymmetric
(or skewsymmetric) part:

[A B]_ A (B+C)2 +[ 0 —(C—B)/Z]
C D] |[(B+C) D (C-B),2 0 '
(B.3)

This decomposition is invariant, i.e., the two matrices on the right-hand side are
transformed independently as tensors. The geometrical meaning of parameter

R = C — B is seen if the rest of the flow parameters are set to zero. The flow takes
the form of

F =§[(1) _o]’ (B.4)

which describes rotational flow (Fig. B2), R being the rotation or vorticity.

The symmetric part is further decomposed into its scalar part and deviator (or
traceless) part:

[ A (B+C)/2]HA+D[1 0]+ (4-D)2 (B+C)2
(B+C)/2 D o2 lo o1 (B+C)/2 —(A4-D)/2|
(B.5)
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Fi1G6. B2. Rotational flow.

Again, this decomposition is invariant, and the two parts are transformed indepen-
dently. The geometrical meaning of parameter T = 4 + D is seen if the rest of the
flow parameters are set to zero. The flow takes the form of

HEEI (86)

which describes divergent flow (Fig. B3), T being the divergence.

Since § = (4 — D) + i(B + C) is transformed as an invariant of weight —2, O,
and Q, defined by Eqs. (3.8) are transformed as invariants of weight —1. Hence,
they correspond to vectors, and their orientations have an invariant meaning, if
these two complex numbers are identified as vectors on the image plane, which is

Yy
N\\\\N\V\ |1/ /77
NN N A 7 7 /7
NN N N ! /7 /S
SN ON N Y A AV A
_._—/// ,0]_\ \\\\K
~ 7 7 7 VNN NS
AP AV AVaN VNN NN
777 7] VNN N
77711 VNV NN\

FiG. B3. Divergent flow.



STRUCTURE AND MOTION FROM OPTICAL FLOW 197

y

/770 1 TV NVNNN
S0/ VNN NN
s o7 7 1 VNN NN
s s VNN NN

0 X
SN NN Y A A
NN\ s
N\N\\\\\ |V /7
N\\\\ |1/ 7/7//

F1G. B4. Shear flow.

regarded as the complex plane. In fact, they correspond to the principal axes of the
matrix of the deviator part, indicating the orientations of the maximum extension
and maximum compression, respectively. To see this, take a new xy-coordinate
system in such a way that Q, and @, coincide with the x and y axes, respectively. If
the other flow parameters are set to zero, the matrix is diagonalized and the flow
takes the form

R P! ®7)

which describes shear flow (Fig. B4), |S| being the shear strength.

The invariant nature of the above decomposition of a flow is well known in fluid
mechanics and is used for fluid motion analysis. This fact is also used for analysis of
human visual perception resulting from optical flow induced on retina (cf. [21]).

APPENDIX C

If we replace w; by w; — (pw; + qu,) in Egs. (4.3) and applying pw, + qu, =
2w; — R (from the second of Egs. (4.1)), we obtain a set of equations to determine
spurious P and W. In order to distinguish them from the true ones, let us write
P, W. They are the solution of

PW*= —2w,+(R-iT), PW=is. (c1)
Taking the ratio, we see
w iS

W* " 2w,- (R—iT) €2

If we take the complex conjugate of the first of Eqgs. (4.3) and take the ratio, we
obtain

P is
P*  2w,—(R-iT)’ (€3)
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From Egs. (C.2) and (C.3), we see that 2 arg(W) = 2 arg(P) + = (mod 2w), or
- x
arg(W) = arg(P) + 3 (mod 7). (C4)

Similarly, if we take the complex conjugate of the first of Eqs. (C.1) and take the
ratio, we obtain

P iS (©3)
P* 2w, - (R+iT)’ ‘
Comparing this with Eq. (4.7), we obtain
~ T
arg(P) = arg(W) + 3 (mod ). (C.6)
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