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The Constraints on Images of Rectangular Polyhedra

KEN-ICHI KANATANI

Abstract—This paper discusses how polyhedron interpretation tech-
niques are simplified if the objects are rectangular trihedral polyhedra.
This restriction enables one to compute the spatial orientation of a given
corner and its motion from its image in terms of polar coordinates,
Eulerian angles, and quaternions. One can also interpret the shape and
the face adjacency from local information only. The necessary con-
straints are listed, and some examples are given to compare the pre-
sented scheme to existing ones. The possible nonuniqueness of the
interpretation is also discussed.

Index Terms—Computer vision, constraint, Eulerian angle, machine
intelligence, quaternion, rectangular polyhedron, shape analysis, spa-
tial orientation.

I. INTRODUCTION

ETERMINATION of the shape, position, and ori-
entation of an object from its projected image is one
of the most fundamental problems of computer vision and
machine intelligence. In general, reconstruction from only
one projection is impossible unless some sort of prior
knowledge or assumptions are given about the true shape
of the object. Recognition becomes easier as the prior in-
formation increases. However, these assumptions, or
“‘constraints,’’ should preferably be such that they in-
clude many objects encountered in various practical ap-
plications. One frequent assumption is that the objects are
polyhedra. This assumption, called the ‘‘blocks world
model,”’ was initiated by Guzman [1], Huffman [2], and
Clowes, [3] and further developed by Waltz [4], Mack-
worth [5], Sugihara [6], Kanade [7], and others using var-
ious types of additional information such as shading and
shadows, hidden lines, or paper-folding properties. An-
other approach is to confine our attention to a portion of
the object which is regarded as a plane surface. In other
words, the object under consideration is idealized as a
plane surface equipped with various kinds of additional
information such as light reflectance (Horn [8], Ikeuchi
and Horn [9], etc.), texture (Witkin [10], Stevens [11],
Kanatani [12], etc.), bounding curves (Kanatani [13],
[14]), and so on.
In this paper, the objects are assumed to be rectangular
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trihedral polyhedra, i.e., polyhedra whose corners consist
of three mutually perpendicular edges. Shape interpreta-
tion of such objects can be done, say, by Huffman’s
scheme [2], which is applicable to general polyhedra.
However, the rectangularity constraint simplifies the
interpretation process to a large extent, as first pointed out
by Mackworth [15] and later demonstrated by Kanade
[16]. Here, we describe this rectangularity constraint in
rigorous but concise mathematical terms. This problem
well deserves special attention and careful study, because
rectangular polyhedra are the most frequently encoun-
tered manmade objects—buildings, furniture, machine
parts, and so on. Our conclusions are as follows. First, as
an obvious consequence, ‘‘quantitative’’ information is
extracted as to the three-dimensional orientation and mo-
tion of the object from its two-dimensional image alone.
All relevant mathematical relationships are listed in terms
of polar coordinates, Eulerian angles, and quaternions.
As for shape interpretation, the rectangularity constraint
makes it possible to give ‘‘local interpretations’’ of the
portions under consideration. This is in contrast to Huff-
man’s scheme, which makes use of the ‘‘global consis-
tency’’ of a polyhedron as a whole. Thus, the present
study is also applicable to objects that are not polyhedra
but ‘‘partly rectangular’’ objects (cf. Section V and Fig.
12). All the necessary constraints are listed and the inter-
pretation procedure based on them is described. Some ex-
amples are given to illustrate of our scheme and compare
it to existing ones. Some discussion about the possible
nonuniqueness of the interpretation is also presented.

II. DETERMINATION OF SPATIAL ORIENTATION OF A
CORNER

Let us fix a Cartesian xy-coordinate system on the im-
age plane and take the z-axis perpendicular to it so that
the xyz-axes form a right-hand system. An object is pro-
jected orthographically onto the xy-plane along the z-axis.
Given an image of a corner, we want to know its spatial
orientation. If the true length of an edge is known, its
spatial orientation is immediately given. Suppose the true
size of the polyhedron is not known. Yet, the spatial ori-
entation can be determined from the image alone if the
comner is rectangular and in general position, and this is a
well-known fact. For example, Kanade [16] made use of
‘‘gradient space.’’ The relevant principles are found in
classical 3-D geometry and are well known to mathema-
ticians. However, they are usually scattered in books on
mathematics intermingled with highly sophisticated math-
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Fig. 1. An xyz-coordinate system is placed in such a way that the xy-plane
is the image plane. An object is projected along the z-axis. The spatial
orientations of the three edges at a comer are described by unit vectors
emanating from the vertex along them or their spherical coordinates.

ematical concepts—the representation of a Lie group and
its Lie algebra, manifolds, topology, homotopy, spinors,
etc. Hence, we summarize those facts that are relevant in
the present context for the convenience of those who are
not familiar with these kinds of mathematics. In the fol-
lowing, the term ‘‘comer’’ means both the corner of a 3-D
polyhedron and its 2-D image consisting of a vertex and
three edges emanating from it. We do not make a great
distinction between a 3-D object and its 2-D image be-
cause we consider the case where the image faithfully rep-
resents the object.

Number the edges at the corner in question 1, 2, and 3
arbitrarily. Since the location of the corner is irrelevant
for computation of orientation, the vertex is assumed to
be at the origin. Let n; be the unit vector emanating from
the vertex along the i-edge (Fig. 1), and let 6; and ¢, be
its spherical coordinates, i.e.,

n; = (sin 6; cos ¢;, sin 8; sin ¢;, cos 6;). )]
The condition that n; is perpendicular to #; is
sin 6; sin 6; (cos ¢; cos ¢; + sin ¢; sin ¢))
+ cos 6; cos 6; = 0, )
or
tan 6; tan 6; = —1/cos (¢; — ¢)). 3)

This holds for (i, j) = (1, 2), (2, 3), (3, 1). Solving the
three equations for tan 4,, tan 8,, tan 8;, we can express
0., 6,, 05 in terms of ¢,, ¢,, ¢;. If all the edges go ‘‘up-
ward,”’ i.e.,0 < 8; < w/2,i =1, 2, 3, we have

6,
= tan™' V'—cos (¢, — ¢3)/cos (¢1 — @) cos (b3 — @),

)
= tan~' V' —cos (¢35 — ¢1)/cos (b, — ¢3) cos (&) — ¢2),

03
= tan~' V'—cos (¢; — ¢2)/cos (¢3 — &) cos (¢, — ¢3).
4
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Fig. 3. Definition of the Eulerian angles 6, ¢. . Angles 8 and ¢ are the
spherical coordinates of the 3-edge. Let / be the intersection of the xy-
plane and the 12-plane. Then, ¢ is the angle of the 2-edge from I mea-
sured screwwise about the 3-edge.

If the i-edge goes ‘‘downward,’” i.e., 7/2 < 6; < =, then
0; calculated above is replaced by = — 6;, i.e., by the
““mirror image’” with respect to the xy-plane. In deciding
which one goes upward or downward, we must distin-
guish two configurations. One is the “‘fork’ (or “‘Y"’)
where |¢; — ¢;| is larger than #/2 for all (i, j) pairs, i #
Jj le.g., Fig. 2(a)]. In this case, the three edges go either
all upward or all downward, being the mirror images of
each other. The other configuration is the *‘arrow’’ where
|¢; — ¢;| is larger than 7/2 for one (i, j) pair and less than
w/2 for the other two pairs [e.g., Fig. 2(b)]. Then, either
the side edges go downward and the central edge upward
or the side edges go upward and the central edge down-
ward, being the mirror images of each other. (Here, we
do not consider the degenerate case where two edges are
projected on the same line (*‘L’’ or “‘T"’"), i.e., we as-
sume that the object is in ‘‘general position.’”)

Now, suppose the 1-, 2-, 3-edges form a right-hand
system in that order. Consider the Eulerian angles 6, ¢,
¥ of the rotation that transforms the x-, y-, z-axes to the
1-, 2-, 3-edges (Fig. 3). The unit vectors n,, n,, n; of (1)
are expressed in terms of the Eulerian angles 6, ¢, y by

n, = (cos 6 cos ¢ cos Yy — sin ¢ sin Y,
— sin 0 cos ),
cos 8 sin ¢ cos ¥ + cos ¢ sin ¢,

n, = (— cos 8 cos ¢ sin Yy — sin ¢ cos ¥,
— cos § sin ¢ sin ¥ + cos ¢ cos ¢,

sin @ sin ¢),
n3 = (sin 8 cos ¢, sin @ sin ¢, cos 6).

4
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Fig. 4. Determination of Eulerian angles from the image configuration.

If ¢,, ¢, ¢3 are the polar coordinates of the images of the
1-, 2-, 3-edges, respectively, as before, we get ¢ = ¢,
by definition. Comparing (1) and (5), we obtain

cos @ sin ¢ cos ¥ + cos ¢ sin ¢

cos 6 cos ¢ cos Y — sin ¢ sin ¥’

tan ¢, =

cos @ sin ¢ sin y — cos ¢ cos ¥
cos 0 cos ¢ sin Y + sin ¢ sin

tan ¢, = (6)

Hence, 6 and y are given as follows':

0 =6, or m— 8,

v =90 —¥o, ™ — Yo Or T+ ¥, )]
where

B = cos™' Vot (¢3 — ¢,) cot (¢, — ¢3),

Yo = tan”' Vitan (63 — é)/tan (¢; — 63).  (8)

The choice of the value in (7) is made according to the
configuration of the corner image as shown in Fig. 4.
Since the unit vectors n), n,, n; of (1) are given in terms
of 6, ¢, ¥ by (5), the validity of Fig. 4 is seen by checking
the sign of the z-component.

As is well known, a three-dimensional rotation is rep-
resented by a ‘‘quaternion’’ of the form g = ¢y + ¢,i +
@i + ask, (90" + (@) + ()" + (@) = 1 If two
rotations represented by the quaternions g, ¢’ are com-
posed in that order, the resulting rotation is represented
by the quaternion

q" = qq', )]

where multiplication of quaternions is the same as for real
numbers except for the following rules:

i = -1,
b= -1,
kk = -1,

'Since 6 = 8; by definition, the first equation of (8) is actually equivalent
to the last equation of (4).
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i = —ji = k,
jk= k=i
ki = —ik =j. (10)

If g = q0 + qii + qoj + g3k represents a rotation, its
inverse rotation is represented by its ‘‘conjugate’’ g* =
9o — qii — q>j — g:k. Also, given a quaternion, the ro-
tation axis and rotation angle which realize that rotation
are easily obtained. The quaternion of the rotation about
unit vector n = (n,, n,, n3) by rotation angle Q (screw-
wise) is given by

Q
= cos 7 + msin ,
1 2 2
where n is identified with quaternion nyi + nyj + ns;k. In
other words, the ‘‘scalar part’’ gives the rotation angle,
and the ‘‘vector part’’ gives the orientation of the rotation
axis, i.e.,

11)

- . 9
Q=2cos g, n=1(qq g)sins. (12)

2
Thus, the use of quaternions makes it very easy to obtain
compositions, inverses, rotation axes, and rotation an-
gles, giving them in terms of explicit analytical expres-
sions.

Now, the rotation that has Eulerian angles 6, ¢, ¢ is
represented by

+ k sin

—cos2 v+ o
q= 5 \cos —

+sing(isin¢—¢+jcos¢;¢>. (13)

¢+ﬁ
2

2 2

Hence, we can describe the corner orientation by a qua-
ternion which represents the rotation transforming the ref-
erence xyz-axes to the 1-, 2-, 3-edges of the comer. If its
quaternion is ¢ = go + q)i + g,j + g3k, the unit vectors
of the edges are given by

n = () + @) — (@) — (@)%,
2(9093 + 9192), 2(— 90,92 + q143)),
= (2(—qo9s + 9192, (30 — @) + (92)°
- (@)%, 2(q0q1 + %:03)),
ny = (2(qoq2 + 9193), 2(—qoq1 + 9:93),

(90 — @)* — (@) + (@)). (14)

If two comner images have quaternions ¢ and ¢', the rel-
ative rotation is given by

9" =4q'q*. (15)

Hence, by (12) we can immediately determine the axis
and angle of the rotation which transforms one corner to
another. This fact can be used most effectively when we
are tracing the motion of an object from its projected im-
age alone.
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Example 1: Consider the images in Fig. 2. For Fig.
2(a), which is a ‘‘fork,’’ we have ¢, = 254°, ¢, = 143°,
¢3 = 47°. Assume that all the edges go downward. From
(4), we obtain 8, = 150.2°, 6, = 101.6°, 6; = 117.0°.
Hence, the unit vectors along the edges are given from (1)
by

n; = (—0.1369, —0.4774, —0.8680),
n, = (—0.7824, 0.5896, —0.2009),

ny = (0.6076, 0.6516, —0.4542). (16)

Similarly, we have ¢, = 355°, ¢, = 113°, ¢3 = 36° for
Fig. 2(b), which is an ‘‘arrow.’’ Assuming that the 3-
edge goes upward and the others downward, we obtain 6,
= 141.5°, 6, = 110.5°, 6; = 59.0°, so that

n, = (0.6208, —0.0543, —0.7821),
n, = (—0.3660, 0.8622, —0.3504),

ny = (0.6933, 0.5037, 0.5153). a7

The Eulerian angles are given by (7) and (8), and we ob-
tain @ = 117.0°, ¢ = 47.0°, y = —13.0° for Fig. 2(a)
and 0 = 59.0°, ¢ = 36.0°, y = —24.1° for Fig. 2(b).
Substitution of these values in (5) yields (16) and (17)
again. From (13), the quaternions associated with Fig.
2(a) and (b) are given by

q = 0.4996 — 0.4265i + 0.7383j + 0.1526k,

q' = 0.8658 — 0.2466i + 0.4260j + 0.0900k, (18)

respectively. Substitution of these in (14) again yields (16)
and (17). From (15), the relative rotation is expressed by

q" = 0.8660 + 0.2475i — 0.4256j — 0.0868k, (19)
which represents, according to (11), a rotation having axis
n = (0.4950, —0.8514, —0.1736) (20)

and angle Q = 60.0° screwwise. In other words, the cor-
ner of Fig. 2(b) is obtained by rotating the corner of Fig.
2(a) around this vector by this angle.

III. CHARACTERIZATION OF A RECTANGULAR
POLYHEDRON

Now, we consider shape interpretation, exploiting the
fact that the object is a rectangular polyhedron. In contrast
to a general polyhedron, a rectangular trihedral polyhed-
ron has the following distinctive characteristics.

Fact 1: There are only three different edge orientations
if they are regarded as undirected lines. This holds both
for the scene and for the image. (As before, we do not
consider the degenerate case where two of them coincide
by projection.)

Fact 2: Given any two corners, either their configura-
tions are identical or one is obtained from the other by
reversing one or more edges. This again holds both for
the scene and for the image.

Fact 3: There are only three face orientations in the 3-D
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space if the distinction between inside and outside is dis-
regarded.

Fact 4: The angle made by two edges defining a face at
a comer is either w/2 or 3#/2 in the scene.

Fact 1 enables us to fix reference edge orientations and
describe the configuration of a corner in reference to these
orientations on the image plane. Number the three possi-
ble orientations arbitrarily as 1, 2, and 3, and give them
directions arbitrarily. These three directed orientations
play the role of a ‘‘coordinate system,’’ and we refer to
each directed orientation as the 1-, 2-, 3-axis accordingly.
At this stage, we do not consider the ‘‘visibility’’ and no
distinction is made between ‘‘visible’’ lines and ‘‘hid-
den’’ lines, since we are not considering any face or
‘“‘substance’’ inside the polyhedron. Consider a corner
image and regard its edges as directed vectors emanating
from the vertex pont. We call the edge parallel to the i-
axis the i-edge of the comer. The ‘‘type’’ of a corner is
defined by a triplet ¢ = (¢, ¢3, ¢3), where ¢; = O if the i-
edge has the same direction as the i-axis and ¢; = 1 if it
has the opposite direction.

Fact 2 implies a transformation group T generated by
the identity and the reversals of each edge direction. There
are eight elements in 7. An element of T is expressed by
a triplet t = (4, 1, #3), where ¢; = 0 if it preserves the
direction of the i-edge and r; = 1 if it reverses it. The
identity is given by 0 = (0, 0, 0). The group operation,
i.e., the rule of composition, is given by ¢ @ ¢', where
@® denotes componentwise addition modulo 2 (‘‘exclu-
sive or’’). It is immediately seen that T forms a group,
because each component follows the group operation of
addition modulo 2 (i.e., of Z,, the cyclic group of order
2). Then, T is isomorphic to their direct product?:

T=12Z X2 X 2, Q1)

Hence, T is Abelian, and each element is the inverse (or
negative) of itself:

PP =tDW D"
P =t DLtDet=0. 22)

Proposition 1: If transformation ¢ transforms a corner
of type ¢ to a corner of type ¢’, then

¢ =c®Dt or t=cDc.

23)

The above statement is a characterization of the pro-
jected image. Next, consider the spatial configuration of
a corner and define its ‘‘orientation’’ by a triplet p = (p,,
P2, P3), where p; = 0 if its i-edge goes upward, i.e., 0 <
0; < w/2, 0; being its polar angle, and p; = 1 if its i-edge
goes downward, i.e., #/2 < 6; < =. In the previous sec-
tion, we showed that for a given corner image, two spatial
configurations are possible, one being the mirror image of
the other. We repeat this fact as follows.

Proposition 2: Two orientations can be assigned to a

The three groups are generated by different generators, but they are all
isomorphic, and consequently T can be represented as a direct product of
the same group Z, as in (21).
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corner image, one being the complement of the other (i.e.,
0 and 1 are interchanged).
The assignment cannot be done independently for each
corner. As is easily seen, we have the following.
Proposition 3: If transformation ¢ transforms a corner
of orientation p to a corner of orientation p’, then

p=pDt or t=pDp'. (24)
Combining this with Proposition 1, we obtain the follow-
ing. ' .

Corollary: If one corner is of type ¢ and orientation p
and another is of type ¢’ and orientation p’, then

pP=pDcdc. 25)

From this we can see that, once we assign an orientation
to an arbitrary corner, the orientations of all the other cor-
ners are uniquely determined by (25). Combining this with
Proposition 2, we obtain the following.

Proposition 4: Two spatial configurations are possible
for the skeleton (note that we are considering edges only)
corresponding to a given image, one being the mirror im-
age of the other. The p’s of one are obtained from those
of the other by taking complements.

This is a well known familiar fact sometimes referred
to as the ‘‘Necker cube phenomenon.”’

Up to now, we have considered only skeletons. Now,
consider face adjacency. As we pointed out as Fact 3,
there are three types of faces. Call the face defined by the
i- and j-edges the ij-face. Fact 4 enables us to characterize
the face adjacency at a corner by defining the ‘‘state’’ of
the comer as a triplet s = (sy, 53, 53), where s = 0 if
the ij-face is at angle 7/2 and sy;; = 0 if it is at angle 3x/
2. Here, we adopt a notational convention that [12] =
[21] = 3, [23] = [32] = 1 and [31] = [13] = 2. (Note
that at this stage we are not considering on which side the
‘‘substance’’ exists.) It is easily seen that there are two
constraints concerning the state. First, no two faces at a
corner can be at angle 37/2. Next, consider two adjacent
comers linked by an i-edge. The ij-face has the same an-
gle at the two corners if and only if the two j-edges have
the same orientation, and it has different angles other-
wise. Our observation is summarized as follows.

Proposition 5: No two components of any state s are
1, so that

515y +- 85583 + 8535 = 0, (26)

Proposition 6: If two corners of state s and s’ are linked
by an i-edge, and ¢ is the transformation associated with
the two corners, then

Sy = Sigy D 4,7 # 1. 27)

Corollary: If two adjacent corners linked by an i-edge

have types ¢ and ¢’ and states s and s’, respectively, then

sin = St @ ¢ ® ¢f,j # i (28)

IV. VisiBiLITY CONDITIONS AND HIDDEN LINE
DETECTION

Up to now, we have treated the faces of a polyhedron
as ‘‘membranes.”” Now, we consider *‘visibility condi-
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Fig. 5. The type, the orientation, and the state of a visible comner are those
shown here and those obtained from them by permutation of 1, 2, and 3
components. Dashed lines indicate hidden edges, and * denotes an in-
determinate bit.

tions,”’ viewing the object as a polyhedron filled with an
opaque ‘‘substance.’’ If a comner image has three visible
edges, they form either a “‘fork’’ or an “‘arrow.’’ If a
corner image has only two visible edges, they make either
an obtuse angle or an acute angle and for each case there
are two possibilities for the direction of the remaining
missing edge. Hence, we must first get algebraic expres-
sions telling whether a corner is a *‘fork’’ or an ‘‘arrow’’
and whether two edges make an obtuse angle or an acute
angle. This can be done by using a special ‘‘coordinate
system.”’ So far, we have arbitrarily numbered the three
reference orientations and assigned directions to them ar-
bitrarily. Now, assign directions to them in such a way
that these three directed lines form a *‘fork’’ on the image
plane emanating from their intersection and call such a set
of three directed axes a ‘‘fork coordinate system."’ Then,
we obtain the following.

Observation 1: The i- and j-edges of a corner of type
¢ make an obtuse angle if ¢; ® ¢; = 0 and an acute angle
if C; @ C:, = 1.

Observation 2: A comer is a *‘fork’’ if its type is (0,
0,0)or (1, 1, 1) and is an ‘‘arrow’’ otherwise.

Now, we consider the visibility conditions by checking
possible corner configurations exhaustively. Here, the
following obvious facts play a fundamental role.

Observation 3: If a corner is a ‘‘fork,’’ its orientation
is either (0, 0, 0) or (1, 1, 1). If it is an “‘arrow,’ the i-
edge being the central edge and the j- and k-edges being
the side edges, then either p; = 0, pi=pc=1lorp;, =1,
pi=p=0.

Observation 4: For a corner with two visible edges, the
missing edge always goes downward.

Observation 4 is obtained by exhaustively considering
all the cases in which an edge is hidden by the face de-
fined by the other two edges. Then, we obtain the follow-
ing.

Proposition 7 (visibility conditions): For a corner of a
given type c, the orientation p and the state s must satisfy
the constraints in Fig. 5 and those obtained from them by
permutations of the 1, 2, 3 components.

An actual procedure goes as follows. First, we choose
a ‘“‘fork coordinate system’’ and define types for all visi-
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Fig. 6. (a) A given image. (b) A ‘‘fork coordinate system. ' (c) An as-
signment of orientations and states which yields inconsistency. (d) A
uniquely determined consistent interpretation.

ble comers. For a corner having two visible edges, only
those corresponding components of ¢ are determined.
Then, according to Observation 1, we can freely talk of
obtuse angles, acute angles, ‘‘forks,”’ and ‘‘arrows.’
Next, find a corner with a missing edge and check the two
possibilities for the direction of the missing edge. Once
one of them is assumed, the orientation of that corner is
determined due to Observations 3 and 4, which means
that the spatial orientations of all the visible comers are
uniquely determined due to Proposition 4. Next, consider
a neighboring corner and test the validity of the assump-
tion by checking if the visibility conditions and Proposi-
tions 5 and 6 are violated or not. If not, go to another
incomplete corner and repeat the same process. If we pro-
ceed in this way and obtain an assignment of types, ori-
entations, and states without any inconsistency over a
portion of the image under consideration (not necessarily
the entire image), we say that an ‘‘interpretation’’ of that
portion has been obtained. The interpretation may not be
unique. .

Example 2: Consider the image of Fig. 6(a). We use
the ‘‘coordinate system’’ of Fig. 6(b), and hence corner
Ais of type (1, 1, 1) and corner B is of type (0, 0, *) with
the 3-edge missing. If we assume its types to be (0, 0, 1)
as shown in Fig. 6(c), its orientation and state must be
0, 0, 1) and (*, *, 0), respectively, from the visibility
conditions. Then, according to Proposition 3, the orien-
tation of A4 is (1, 1, 1), which implies from the visibility
conditions that its state is (0, 0, 0). However, this contra-
dicts Proposition 6, because s;2; = 0 at B would imply
sz = 1 at A. Hence, the hidden line is drawn as in Fig.
6(d) and corner B must be of type (0, 0, 0). Its orientation
and state are (1, 1, 1) and (0, O, 1), respectively, from
the visibility conditions. Then, corner A has orientation
(0, 0, 0) from Proposition 3. Its state is (0, 1, 0) from
Propositions 5 and 6.

Example 3: Consider the image of Fig. 7(a). We use
the ‘‘coordinate system’’ of Fig. 7(b), and hence corner
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Fig. 7. (a) A given image. (b) A ‘‘fork coordinate system."’ (c) The states
are not uniquely determined—part of an isolated box, part of a box stick-
mg out of a vertical wall, or part of a box on a horizontal plane. (d) An
assignment of orientations and states which yields inconsistency.

A is of type (0, 1, 0) and comner B is of type (*, 1, 1) with
the 1-edge missing. If we assume its type to be (1, 1, 1)
as shown in Fig. 7(d), its orientation and state must be
(1, 1, 1) and (1, O, 0), respectively, from the visibility
conditions. Then, according to Proposition 3, the orien-
tation of 4 is (0, 1, 0), which implies from the visibility
conditions that its state is (0, 1, 0). However, this contra-
dicts Proposition 6, because sj»;; = 1 at B would imply
sp23; = 1 at A. Hence, the hidden line is drawn as in Fig.
7(c) and corner B must of of type (0, 1, 1). Its orientation
is (1, 0, 0) from the visibility conditions. Then, corer 4
has orientation (1, 0, 1) from Proposition 3. However, the
states of A and B are not uniquely determined. Possible
states of A and B are s(4) = s(B) = (0, 0, 0) (part of an
isolated box), s(4) = s(B) = (0, 1, 0) (part of a box
sticking out of a vertical wall) or s(4) = (0, 0, 0) and
s(B) = (0, 0, 1) (part of a box on a horizontal plane).

V. DiscussioN AND CONCLUDING REMARKS

We have studied the consequences of the fact that the
object is a rectangular polyhedron. They are suminarized
as follows. First, we can make quantitative deductions of
the spatial edge orientations and their relative motions in
terms of polar angles, Eulerian angles, and quaternions.
Second, we can obtain an interpretation of a “‘specified
portion’’ of a given image. This is also possible by exist-
ing schemes, but they are less powerful because they are
essentially based on the global consistency of a polyhed-
ron as a whole. For example, if we apply Huffman’s
scheme [2] of labeling edges to the image of Fig. 6(a),
we end up with the seven different interpretations shown
in Fig. 8. However, the knowledge of rectangularity re-
duces them to only one, namely Fig. 8(e), as we have
shown. A third point is that the characterization of a
polyhedron can be constructed *‘hierarchically.’’ We first
regard the image as a two-dimensional *‘graph’’ and char-
acterize its corners by assigning types to them. The spatial
configuration as a ‘‘skeleton’’ is then described by as-
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Fig. 8. Seven possible interpretations of Fig. 6(a) according to Huffman's
labeling scheme. Here, + and — designate convex and concave edges,
respectively, and an arrow designates a boundary edge to which a face
is adjacent on the right side. If the object is known to be rectangular,
only (e) is possible.

Fig. 9. A false interpretation can arise that both edge a and edge b are
adjacent to an outside **wall.”

signing orientations to the corners. Next, the face adja-
cency is specified by assigning states to the corners, re-
garding the faces as ‘‘membranes.’” Finally, we regard
the object as a polyhedron filled with an opaque *‘‘sub-
stance,’’ obtaining the visibility conditions. Each time we
ascend the hierarchy, we obtain new constraints.

Now, let us consider the possible nonuniqueness of the
interpretation. An important question is whether all the
resulting interpretations are physically admissible or not.
First, assume that the object is a ‘“‘real’” rectangular
polyhedron. Then, interpretations which are physically
impossible arise only from what can be termed *‘wall ad-
Jacency.”” Usually, the outermost edges encircling a do-
main are assumed to be the outer boundary of the poly-
hedron, while here no such assumptions are made. (Of
course, we could assume so, if we wished.) Hence, we
have two interpretations for such an edge—one as an outer
boundary and the other as the adjacency to an outside
“‘wall,”” as we have seen in Example 3. Note that no met-
ric properties like the xy-coordinates of the corner vertices
on the image plane are incorporated in our scheme of
interpretation. Hence, we do not know the distance be-
tween faces. Thus, according to our scheme, the possible
interpretations of Fig. 9 include one telling us that both
edge a and edge b are adjacent to an outside wall. The
“‘misinterpretations’’ of our scheme are only of this type
and are unavoidable unless metric properties based on the
xy-coordinates of vertices are incorporated. They cannot
be removed by Huffman’s scheme, either.

On the other hand, suppose we have a false drawing
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Fig. 10. The drawing of (a) is impossible as a rectangular polyhedron but
possible if the real edges and surfaces are curved, all the corners being
rectangular. For example, it may look like (b) from a slightly different

viewpoint.

Ay

Fig. 11. An impossible rectangular polyhedron rejected by the present
process of interpretation.

purporting to be a projection of a real rectangular poly-
hedron like those in Fig. 10. These impossible drawings
can be classified into two categories. One consists of those
which can be projections of real objects if curved edges
and surfaces are allowed, yet satisfying Facts 1-4 of Sec-
tion III near corners, like the one in Fig. 10(a), which
might look like Fig. 10(b) from a slightly different view-
point. Namely, an edge has the same orientation at cor-
ners but can be curved elsewhere, a surface has the same
orientation at corners but can be curved elsewhere, and
they make right angles at corners with only three distinct
edge and surface orientations. The other category consists
of those which cannot be interpreted that way like the one
in Fig. 11. No interpretation results for the latter type and
our scheme rejects those drawings as impossible. In other
words, only drawings of the former type cannot be re-
Jected by our scheme. (Huffman’s scheme is unable to
reject both Fig. 10(a) and Fig. 11.) Of course, the above
statement is a rough description, and the real criterion is
whether or not the drawing satisfies Facts 1-4. In order
to remove ‘‘misinterpretations’’ completely, we must
check the *‘gradient space,’’ or preferably, measure the
xy-coordinates of the vertices and algebraically check the
““planarity,’” i.e., test if there exists a solution composed
of the desired lines and planes in three dimensions. This
procedure as well as a complete classification of *‘impos-
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Fig. 12. A partly rectangular object. The present interpretation process can
be applied to the part known or assumed to be rectangular.

sible objects’’ is described by Sugihara [17], [18] for a
general polyhedron, so that we do not discuss them here.
In this paper, we assumed orthographic projection,
which applies when the focal length of the camera is large
or the size of the object is small compared to its distance
from the camera. However, any real camera images have
the effect of perspective projection to some extent. Let us
consider how our formulation is affected by perspective
projection. The quantitative measurement of 3-D orienta-
tion described in the first half still holds if the vertex of
the corner in question is located at the origin of the image
plane (i.e., on the optical axis of the camera), since, as
is easily seen, the corner image is not affected by per-
spective projection in this case. As the vertex lies further
away from the origin, the distortion becomes larger.
Hence, our formulation is applicable if the camera posi-
tion is chosen so that the object of interest can lie near the
center of the image plane. On the other hand, the inter-
pretation process described in the latter half is not affected
by perspective projection at all. This is because we do not
use metric properties such as length and angle. All we
need is ‘‘identification’’ of the edge orientation, i.e., to
know which edges are parallel. This should not be so dif-
ficult if the projective distortion is not too extreme.
Finally, we should note that the present study is useful
in practice even if the objects are not necessarily rectan-
gular polyhedra. As we mentioned before, rectangular
polyhedra are the most familiar objects in our daily life.
Besides, many objects we encounter which are not
rectangular polyhedra are ‘‘partly’’ rectangular like the
one in Fig. 12. Since the study in this paper can be ap-
plied ‘‘locally,”” our results can be applied to that portion
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