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Calibration of Ultra-Wide Fisheye Lens Cameras
by Eigenvalue Minimization

Kenichi Kanatani, Fellow, IEEE,

Abstract—We present a new technique for calibrating ultra-wide fisheye lens cameras by imposing the constraint that collinear points be
rectified to be collinear, parallel lines to be parallel, and orthogonal lines to be orthogonal. Exploiting the fact that line fitting reduces to an
eigenvalue problem in 3D, we do a rigorous perturbation analysis to obtain a practical calibration procedure. Doing experiments, we point out
that spurious solutions exist if collinearity and parallelism alone are imposed. Our technique has many desirable properties. For example, no
metric information is required about the reference pattern or the camera position, and separate stripe patterns can be displayed on a video
screen to generate a virtual grid, eliminating the grid point extraction processing.

Index Terms—Fisheye lens, camera calibration, eigenvalue minimization, perturbation theorem, perspective rectification.
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1 INTRODUCTION

F ISHEYE lens cameras are widely used for surveillance
purposes because of their wide angles of view. They are

also mounted on vehicles for various purposes including
obstacle detection, self-localization, and bird’s eye view
generation [10], [13]. However, fisheye lens images have
strong distortion, so that in order to apply the computer
vision techniques accumulated in the past decades, one first
needs to rectify the image into a perspective view. Already,
there is a lot of literature for this [2], [5], [7], [8], [11], [12],
[13], [14], [18], [19].

The standard approach is to place a reference grid plane
and match the image with the reference, whose precise
geometry is assumed to be known [2], [4], [5], [7], [19].
However, this approach is not very practical for recently
popularized ultra-wide fisheye lenses, because they cover
more than 180 degree angles of view and hence any (even
infinite) reference plane cannot cover the entire field of view.
This difficulty can be circumvented by using the collinearity
constraint pointed out repeatedly, first by Onodera and
Kanatani [15] in 1992, later by Swaminathan and Nayar
[18] in 2000, and by Devernay and Faugeras [1] in 2001.
They pointed out that camera calibration can be done by
imposing the constraint that straight lines be rectified to
be straight. This principle was applied to fisheye lenses by
Nakano, et al. [12], Kase et al. [8], and Okutsu et al. [13].
Komagata et al. [9] further introduced the parallelism con-
straint and the orthogonality constraint, requiring that parallel
lines be rectified to be parallel and orthogonal lines to be
orthogonal. However, the cost function has been directly
minimized by brute force means such as the Brent method
and the Powell method [17].
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In this paper, we adopt the collinearity-parallelism-
orthogonality constraint of Komagata et al. [9] and opti-
mize it by eigenvalue minimization. The fact that imposing
collinearity implies eigenvalue minimization and that the
optimization can be done by invoking the perturbation
theorem was pointed out by Onodera and Kanatani [15].
Using this principle, they rectified perspective images by
gradient descent. Here, we apply their principle to ultra-
wide fisheye lens calibration.

The first contribution of this paper is to demonstrate the
usefulness of the eigenvalue minimization principle, which
has not been known in the past collinearity-based work
[1], [8], [12], [13], [18]. The second contribution is to point
out that the orthogonality constraint plays an essential role,
showing by experiments that a spurious solution exists if only
collinearity and parallelism are imposed. This fact has not
been known in the past collinearity-based work, either.

For data acquisition, we take images of stripes of differ-
ent orientations on a large-screen display by placing the
camera in various positions. Like the past collinearity-based
methods, our method is non-metric in the sense that no
metric information is required about the camera position
or the reference pattern. Yet, many researchers pointed out
the necessity of some auxiliary information. For example,
Nakano et al. [11], [12] proposed vanishing point estimation
using conic fitting to straight line images (recently, Hughes
et al. [5] proposed this same technique again). Okutsu
et al. [14] picked out the images of antipodal points by
hand. Such auxiliary information may be useful to suppress
spurious solutions. As we show, however, accurate calibra-
tion is possible without any auxiliary information by our
eigenvalue minimization using the collinearity-parallelism-
orthogonality constraint.

This paper is organized as follows. In Section 2, we de-
scribe our imaging geometry model. Section 3 gives deriva-
tive expressions of the fundamental quantities, followed by
a detailed perturbation analysis of the collinearity constraint
in Section 4, of the parallelism constraint in Section 5, and
of the orthogonality constraint in Section 6. Section 7 shows
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Fig. 1. The imaging geometry of a fisheye lens and the
incident ray vector m.

our experiments of the proposed non-metric technique,
using stripe images on a video display. We point out that a
spurious solution arises if only collinearity and parallelism
are imposed and that it can be eliminated without using
any auxiliary information if orthogonality is introduced. We
compare our calibration results with those of an alternative
and also show real scene application examples. In Section
8, we conclude.

2 GEOMETRY OF FISHEYE LENS IMAGING
We consider recently popularized ultra-wide fisheye lenses
with the imaging geometry modeled by the stereographic
projection

r = 2f tan
θ

2
, (1)

where θ is the incidence angle (the angle of the incident ray
of light from the optical axis) and r (in pixels) is the distance
of the corresponding image point from the principal point
(Fig. 1). The constant f is called the focal length. We consider
(1) merely because our camera is as such, but the following
calibration procedure is identical whatever model is used.

The value f provided by the manufacturer may not be
exact, and the principal point may not be at the center of
the image frame. After all, (1) is an idealization; a real lens
may not exactly satisfy it. So, we generalize (1) into the form

r

f0
+ a1

( r

f0

)3

+ a2

( r

f0

)5

+ · · · =
2f

f0
tan

θ

2
, (2)

and determine the values of f , a1, a2, ... along with the
principal point position. Here, f0 is a scale constant to keep
the powers rk within a reasonable numerical range (in our
experiment, we used the value f0 = 150 pixels). The linear
term r/f0 has no coefficient because f on the right side is an
unknown parameter. Letting a1 = a2 = · · · = 0 corresponds
to the stereographic projection. Since a sufficient number of
correction terms could approximate any function, the right
side of (2) could be any function of θ, e.g., the perspective
projection model (f/f0) tan θ or the equidistance projection
model (f/f0)θ. We adopt the stereographic projection model
merely for the ease of initialization.

In (2), even power terms do not exist, because the lens
has circular symmetry; r is an odd function of θ. We assume
that the azimuthal angle of the projection is equal to that of
the incident ray. In the past, these two were often assumed
to be slightly different, and geometric correction of the
resulting “tangential distortion” was studied. Currently, the
lens manufacturing technology is of sufficiently high levels

so that the tangential distortion can be safely ignored. If
not, we can simply include the tangential distortion terms
in (2), and the subsequent calibration procedure remains
unchanged.

In the literature, the model of the form r = c1θ + c2θ
3 +

c3θ
5 + · · · is frequently assumed [7], [8], [13], [12]. As we

see shortly, however, the value of θ for a specified r is
necessary in each step of the optimization iterations. So,
many authors computed θ by solving a polynomial equation
using a numerical means [7], [8], [13], [12], but this causes
loss of accuracy and efficiency. It is more convenient to
express θ in terms of r from the beginning. From (2), the
expression of θ is given by

θ = 2 tan−1
( f0

2f

( r

f0
+ a1

( r

f0

)3

+ a2

( r

f0

)5

+ · · ·
))

. (3)

3 INCIDENT RAY VECTOR
Let m be the unit vector in the direction of the incident ray
of light (Fig. 1); we call m the incident ray vector. In polar
coordinates, it has the expression

m =

 sin θ cos φ
sin θ sin φ

cos θ

 , (4)

where θ is the incidence angle from the Z-axis and φ is the
azimuthal angle from the X-axis. Since φ, by our assump-
tion, equals the azimuthal angle on the image plane, the
point (x, y) on which the incident light focuses is specified
by

x = u0 + r cos φ, y = v0 + r sin φ,

r =
√

(x − u0)2 + (y − v0)2, (5)

where (u0, v0) is the principal point. Hence, (4) is rewritten
as

m =

 ((x − u0)/r) sin θ
((y − v0)/r) sin θ

cos θ

 . (6)

Using ∂r/∂u0 and ∂r/∂v0 obtained from (5), we obtain the
derivatives of (6) with respect to u0 and v0 in the form

∂m
∂u0

=

−1/r + (x − u0)2/r3

(x − u0)(y − v0)/r3

0

 sin θ

+

 (x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 ∂θ

∂u0
,

∂m
∂v0

=

 (x − u0)(y − v0)/r3

−1/r + (y − v0)2/r3

0

 sin θ

+

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 ∂θ

∂v0
. (7)

Differentiating (3) with respect to u0 and v0 on both sides
and rearranging the result, we obtain ∂θ/∂u0 and ∂θ/∂v0 in
the form
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∂θ

∂u0
= − 1

f
cos2

θ

2

(
1 +

∞∑
k=1

(2k − 1)ak

( r

f0

)2k)x − u0

r
,

∂θ

∂v0
= − 1

f
cos2

θ

2

(
1 +
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k=1

(2k − 1)ak

( r

f0

)2k)y − v0

r
.

(8)

Next, we consider derivation with respect to f . Differenti-
ating (2) with respect to f on both sides, we obtain

∂θ

∂f
= − 2

f
sin

θ

2
cos

θ

2
= − 1

f
sin θ. (9)

It follows that the derivative of (6) with respect to f is

∂m
∂f

= − 1
f

sin θ

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 . (10)

Finally, we consider derivation with respect to ak. Differen-
tiating (2) with respect to ak on both sides, we obtain

∂θ

∂ak
=

f0

f

( r

f0

)2k+1

cos2
θ

2
. (11)

It follows that the derivation of (6) with respect to ak is

∂m
∂ak

=
f0

f

( r

f0

)2k+1

cos2
θ

2

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 (12)

As we now show, all the cost functions in the subsequent
optimization are expressed in terms of the incident ray vector m.
Hence, the derivatives of any cost function with respect to
any parameter can by evaluated simply by combining the
above expressions. This fact is the core of our eigenvalue
minimization principle.

4 COLLINEARITY CONSTRAINT

We first show that, unlike existing collinearity-based work
[1], [8], [12], [13], [18], the collinearity constraint can be
imposed without fitting lines in the image plane; all we need
to do is 3D scene analysis in terms of the incident ray vector
m.

Suppose we observe a collinear point sequence Sκ (the
subscript κ enumerates all existing sequences) consisting of
N points p1, ..., pN , and let m1,..., mN be their incident ray
vectors. If the camera is precisely calibrated, the computed
incident ray vectors should be coplanar. Hence, if nκ is the
unit normal to the plane passing through the origin O (lens
center) and Sκ, we should have (nκ,mα) = 0, α = 1, ..., N

(Fig. 2). In the following, we denote the inner product of
vectors a and b by (a,b). If the calibration is incomplete,
however, (nκ,mα) may not be strictly zero. So, we adjust
the parameters by minimizing∑

α∈Sκ

(nκ,mα)2 =
∑

α∈Sκ

n>
κ mαm>

α nκ

= (nκ,
∑

α∈Sκ

mαm>
α nκ) = (nκ,M(κ)nκ), (13)

where we define

p
1

p
N

O
mN

m1

nκ

Fig. 2. The incident ray vectors mα of collinear points p1, ...,
pN are coplanar.

M(κ) =
∑

α∈Sκ

mαm>
α . (14)

Since (13) is a quadratic form of M(κ), its minimum equals
the smallest eigenvalue λ

(κ)
min of M(κ), nκ being the corre-

sponding unit eigenvector. Thus, for enforcing the collinear-
ity constraint for all collinear point sequences Sκ, we only
need to determine the parameters that minimize

J1 =
∑
all κ

λ
(κ)
min, (15)

which is the origin of the term “eigenvalue minimization.”
We now evaluate the first and second derivatives of λ

(κ)
min

with respect to c, which represents the parameters u0, v0, f ,
a1, a2, ... In the past, many authors used finite difference
approximation for derivatives or resorted to brute force
optimization schemes, such as the Brent method and the
Powell method [17], that do not require derivatives [1],
[7], [8], [9], [11], [12], [13], [14], [18]. This might perhaps
be because many people thought that eigenvalues cannot
be differentiated in analytical terms. As pointed out by
Onodera and Kanatani [15], Kanatani [6], and Papadopoulo
and Lourakis [16], however, analytical expressions of the
derivatives of eigenvalues and singular values are easily
obtained. We begin with first derivatives.

4.1 First derivatives
Differentiating the defining equation

M(κ)nκ = λ
(κ)
minnκ (16)

with respect to c on both sides, we have

∂M(κ)

∂c
nκ + M(κ) ∂nκ

∂c
=

∂λ
(κ)
min

∂c
nκ + λ

(κ)
min

∂nκ

∂c
. (17)

Computing the inner product with nκ on both sides, we
obtain

(nκ,
∂M(κ)

∂c
nκ) + (nκ,M(κ) ∂nκ

∂c
)

=
∂λ

(κ)
min

∂c
(nκ,nκ) + λ

(κ)
min(nκ,

∂nκ

∂c
). (18)

Since nκ is a unit vector, we have (nκ, ∂nκ/∂c) = 0, because
variations of a unit vector should be orthogonal to itself. The
matrix M(κ) is symmetric, so we have (nκ,M(κ)∂nκ/∂c) =
(M(κ)nκ, ∂nκ/∂c) = λ

(κ)
min(nκ, ∂nκ/∂c) = 0. Thus, (18) implies
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∂λ
(κ)
min

∂c
= (nκ,

∂M(κ)

∂c
nκ). (19)

This result is well known as the perturbation theorem of
eigenvalue problems [6]. From the definition of M(κ) in (14),
we see that

∂M(κ)

∂c
=

N∑
α=1

(∂mα

∂c
m>

α + mα

(∂mα

∂c

)>)
= 2S[

N∑
α=1

∂mα

∂c
m>

α ] ≡ M(κ)
c , (20)

where S[ · ] denotes symmetrization (S[A] = (A + A>)/2).
Thus, the first derivatives of the function J1 with respect to
c = u0, v0, f , a1, a2, ... are given as follows:

∂J1

∂c
=

∑
all κ

(nκ,M(κ)
c nκ). (21)

4.2 Second derivatives

Differentiating (19) with respect to c′ (= u0, v0, f , a1, a2, ...),
we obtain

∂2λ
(κ)
min

∂c∂c′
= (

∂nκ

∂c′
,M(κ)

c nκ) + (nκ,
∂2M(κ)

∂c∂c′
nκ)

+(nκ,M(κ)
c

∂nκ

∂c′
)

= (nκ,
∂2M(κ)

∂c∂c′
nκ) + 2(

∂nκ

∂c′
,M(κ)

c nκ). (22)

First, consider the first term. Differentiation of (20) with
respect to c′ is

∂2M(κ)

∂c∂c′
= 2S[

N∑
α=1

(∂2mα

∂c∂c′
m>

α +
∂mα

∂c

(∂mα

∂c′

)>)
]. (23)

Hence, we have

(nκ,
∂2M(κ)

∂c∂c′
nκ) = 2

N∑
α=1

(
(nκ,

∂2mα

∂c∂c′
)(mα,nκ)

+(nκ,
∂mα

∂c
)(

∂mα

∂c′
,nκ)

)
. (24)

If the calibration is complete, we should have (mα,nκ) =
0. In the course of the optimization, we can expect that
(mα,nκ) ≈ 0. Hence, (24) can be approximated by

(nκ,
∂2M(κ)

∂c∂c′
nκ) ≈ 2

N∑
α=1

(nκ,
∂mα

∂c
)(

∂mα

∂c′
,nκ)

= 2(nκ,M(κ)
cc′ nκ), (25)

M(κ)
cc′ ≡

N∑
α=1

(∂mα

∂c

)(∂mα

∂c′

)>
. (26)

This is a sort of the Gauss-Newton approximation.
Next, consider the second term of (22). Because nκ is a

unit vector, its variations are orthogonal to itself. Let λ
(κ)
1 ≥

λ
(κ)
2 ≥ λ

(κ)
min be the eigenvalues of M(κ) with nκ1, nκ2, and nκ

the corresponding unit eigenvectors. Since the eigenvectors

of a symmetric matrix are mutually orthogonal, any vector
orthogonal to nκ is expressed as a linear combination of nκ1

and nκ2. Hence, we can write
∂nκ

∂c
= β1nκ1 + β2nκ2, (27)

for some β1 and β2. Substituting (19) and (27) into (17) and
noting that M(κ)nκ1 = λ

(κ)
1 nκ1 and M(κ)nκ2 = λ

(κ)
2 nκ2, we

obtain

β1(λ
(κ)
1 − λ

(κ)
min)nκ1 + β2(λ

(κ)
2 − λ

(κ)
min)nκ2

= (nκ,M(κ)
c nκ)nκ − M(κ)

c nκ. (28)

Computing the inner product with nκ1 and nκ2 on both
sides, we obtain

β1(λ
(κ)
1 − λ

(κ)
min) = −(nκ1,M(κ)

c nκ),

β2(λ
(κ)
2 − λ

(κ)
min) = −(nκ2,M(κ)

c nκ), (29)

from which β1 and β2 are determined. Hence, (27) is written
as follows:

∂nκ

∂c
= − (nκ1,M

(κ)
c nκ)nκ1

λ
(κ)
1 − λ

(κ)
min

− (nκ2,M
(κ)
c nκ)nκ2

λ
(κ)
2 − λ

(κ)
min

. (30)

This is also a well known result of the perturbation theorem
of eigenvalue problems [6]. Thus, the second term of (22)
can be written as

2(
∂nκ

∂c′
,M(κ)

c nκ) = −2(nκ1,M
(κ)
c nκ)(nκ1,M

(κ)
c′ nκ)

λ
(κ)
1 − λ

(κ)
min

−
2(nκ2,M

(κ)
c nκ)(nκ2,M

(κ)
c′ nκ)

λ
(κ)
2 − λ

(κ)
min

.

(31)

Combining (25) and (31), we can evaluate (22). Thus, the
second derivatives of the function J1 with respect to c and
c′ are given by

∂2J1

∂c∂c′
= 2

∑
all κ

(
(nκ,M(κ)

cc′ nκ)

−
2∑

i=1

(nκi,M
(κ)
c nκ)(nκi,M

(κ)
c′ nκ)

λ
(κ)
i − λ

(κ)
min

)
. (32)

5 PARALLELISM CONSTRAINT

We next show that the parallelism constraint can also be
imposed by a direct 3D scene analysis. Let Gg be a group of
parallel collinear point sequences (the subscript g enumer-
ates all existing groups) with a common orientation lg (unit
vector). The normals nκ to the planes passing through the
origin O (lens center) and lines of Gg are all orthogonal to
lg (Fig. 3). Hence, we should have (lg,nκ) = 0, κ ∈ Gg , if
the calibration is complete. So, we adjust the parameters by
minimizing ∑

κ∈Gg

(lg,nκ)2 =
∑
κ∈Gg

l>g nκn>
κ lg

= (lg,
∑
κ∈Gg

nκn>
κ lg) = (lg,N(g)lg), (33)
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O

l
nκ l

g
g

Fig. 3. The surface normals nκ to the planes defined by
parallel lines are orthogonal to the common direction lg of
the lines.

where we define

N(g) =
∑
κ∈Gg

nκn>
κ . (34)

Since (33) is a quadratic form of N(g), its minimum equals
the smallest eigenvalue µ

(g)
min of N(g), lg being the corre-

sponding unit eigenvector. To enforce the parallelism con-
straint for all groups of parallel collinear sequences, we
determine the parameters that minimize

J2 =
∑
all g

µ
(g)
min. (35)

5.1 First derivatives
Doing the same perturbation analysis as in Section 4, we
obtain the first derivatives of the function J2 with respect
to parameters c in the form

∂J2

∂c
=

∑
all g

(lg,N(g)
c lg), N(g)

c = 2S[
∑
κ∈Gg

∂nκ

∂c
n>

κ ], (36)

where ∂nκ/∂c is given by (30).

5.2 Second derivatives
Doing the same perturbation analysis as in Section 4, we
obtain the second derivatives of the function J2 with respect
to parameters c and c′ in the form

∂2J2

∂c∂c′
= 2

∑
all g

(
(lg,N

(g)
cc′ lg)

−
2∑

i=1

(lgi,N
(g)
c lg)(lgi,N

(g)
c′ lg)

µ
(g)
i − µ

(g)
min

)
, (37)

N(g)
cc′ ≡

∑
κ∈Gg

(∂nκ

∂c

)(∂nκ

∂c′

)>
, (38)

where µ
(g)
i , i = 1, 2, are the first and the second largest

eigenvalues of the matrix N(g) and lgi are the corresponding
unit eigenvectors.

6 ORTHOGONALITY CONSTRAINT

The orthogonality constraint is also easily imposed by a
direct 3D scene analysis. Suppose we observe two groups Gg

and Gg′ of parallel line sequences with mutually orthogonal
directions lg and lg′ (Fig. 4). The orientation lg of the

lg

g’l

Fig. 4. If two sets of parallel lines make right angles, their
directions lg and lg′ are orthogonal to each other.

sequences in the group Gg is the unit eigenvector of the
matrix N(g) in (34) for the smallest eigenvalue. The same
holds for lg′ , too. If the calibration is complete, we should
have (lg, lg′) = 0, so we adjust the parameters by minimizing

J3 =
∑

all orthogonal
pairs {Gg , G′

g}

(lg, lg′)2. (39)

6.1 First derivatives
The first derivatives of the function J3 with respect to
parameters c are given by

∂J3

∂c
= 2

∑
all orthogonal
pairs {Gg , G′

g}

(lg, lg′)
(
(
∂lg
∂c

, lg′) + (lg,
∂lg′

∂c
)
)
. (40)

The first derivative ∂lg/∂c is given by

∂lg
∂c

= −
2∑

i=1

(lgi,N
(g)
c lg)lgi

µ
(g)
i − µ

(g)
min

, (41)

and ∂lg′/∂c similarly.

6.2 Second derivatives
Using the Gauss-Newton approximation (lg, lg′) ≈ 0, we
obtain the second derivatives of the function J3 with respect
to parameters c and c′ in the form

∂2J3

∂c∂c′
= 2

∑
all orthogonal
pairs {Gg , G′

g}

(
(
∂lg
∂c

, lg′) + (lg,
∂lg′

∂c
)
)

(
(
∂lg
∂c′

, lg′) + (lg,
∂lg′

∂c′
)
)
. (42)

7 EXPERIMENTS

7.1 Optimization procedure
To incorporate all of the collinearity, parallelism, and or-
thogonality constraints, we minimize

J =
J1

γ1
+

J2

γ2
+

J3

γ3
, (43)

where γi, i = 1, 2, 3, are the weights to balance the magni-
tudes of the three terms. Note that J1 À J2 À J3, since J1 is
proportional to the number of all points, J2 to the number
of all lines, and J3 to the number of orthogonal pairs of
parallel lines. In our experiment, we used as γi the initial
value of Ji, so that J is initially 1 + 1 + 1 = 3.
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Fig. 5. Stripe patterns in four directions are displayed on a
large video screen.

Now that we have derived the first and second deriva-
tives of all Ji with respect to all the parameters, we can com-
bine them into the Levenberg-Marquardt (LM) procedure
[17], which search for the minimum of J in the (K + 4)-
dimensional parameter space of u0, v0, f , a0, a1, ..., aK .
Here, K, which we call the correction degree, is the number
of the terms on the left hand side of (2), meaning that the
left side of (2) is approximated by a (2K + 1)th degree
polynomial. In the past, the number of correction terms was
limited to a small number, typically three. This is partly
because optimization often involved heuristic means such
as finite difference approximation of derivatives. Our eigen-
value minimization allows us to incorporate any number of
correction terms in an analytical form.

7.2 Setup
The four stripe patterns shown in Fig. 5 (above) were
displayed on a large video screen (Fig. 5 below). We took
images by placing the camera in various positions so that
the stripe pattern appears in various parts of the view (recall
that the view cannot be covered by a single planar pattern

TABLE 1
Computed Parameters for Each Correction Degree

degree 0 1 2 3 4 5
u0 −1.56744 −1.57819 −1.60647 −1.60103 −1.61170 −1.61145
v0 0.529648 0.501021 0.427590 0.431905 0.432015 0.433677
f 146.648 149.567 148.110 146.724 146.793 146.499

a1/10−2 — 0.645886 −0.30601 −1.41625 −1.68918 −1.80625
a2/10−3 — — 2.38948 7.57041 11.1085 9.34660
a3/10−4 — — — −8.05083 −22.2515 −0.40049
a4/10−5 — — — — 18.1185 −61.6432
a5/10−6 — — — — — 0.935930

(a) (b)

Fig. 6. (a) Fisheye lens image of a stripe pattern. (b)
Detected edges.

image). The four patterns were cyclically displayed with
blank frames in-between, and the camera is fixed in each
position for at least one cycle to capture the four patterns;
Fig. 6a shows one shot. The image size is 640 × 480 pixels.
From each image, we detected edges; Fig. 6b shows the
edges detected from the image in Fig. 6a. We manually
removed those edges outside the display area. We also
removed too small clusters of edge points. Then, we ran
an edge segmentation algorithm to create connected edge
segments. On each segment was imposed the collinearity
constraint; on the segments in one frame were imposed the
parallelism constraint; on the segments in one frame and the
frame after the next with the same camera position were
imposed the orthogonality constraint. In all, we obtained
220 segments, consisting of 20 groups of parallel segments
and 10 orthogonal pairs, to which the LM procedure was
applied.

The conventional approach using a reference grid board
[2], [5], [7], [18], [19] would require precise localization of
grid points in the image, which is a rather difficult task.
Here, all we need to do is detect “continuous edges.” We
can use a video display instead of a specially designed grid
board, because our method is non-metric: we need no metric
information about the pattern or the camera positions. We
do not even know where each edge point corresponds to in the
reference pattern.

7.3 Results
Table 1 lists the calibration result up to the fifth correction
degree. We set the frame center to be (0, 0) to specify the
principal point (u0, v0). We stopped the LM iterations when
the update increments in u0, v0, and f were less than ε0 in
magnitude and that in ak less than εk in magnitude, where
we let ε0 = 10−3, ε1 = 10−5, ε2 = 10−6, ε3 = 10−7, ε4 =
10−8, and ε5 = 10−9. Using various different initial values,
we confirmed that the LM always converges to the same
solution after around 10 to 20 iterations.
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(a) (b) (c)

Fig. 7. The dependence of the distance r (pixels) from the focal point on the incidence angle θ (degrees) obtained by
(a) using the collinearity, parallelism, and orthogonality constraints; (b) using only the collinearity constraints; (c) using the
collinearity and parallelism constraints.

Fig. 7a plots the graph of (3) for different correction
degrees. For the convenience of the subsequent applications,
we numerically converted (3) to express the angle θ in terms
of the distance r. As we see, the stereographic projection
model in (1) holds fairly well even without any correction
terms (degree 0). The result is almost unchanged for the
degrees 3, 4, and 5, i.e., including powers up to r7, r9, and
r11. Thus, there is no need to increase the correction terms
any further.

7.4 Spurious solutions
For comparison, Fig. 7b shows the same result using
collinearity alone, i.e., J = J1/γ1 instead of (43); Fig. 7c
shows the result using collinearity and parallelism, i.e., J
= J1/γ1 + J2/γ2 instead of (43). In both cases, the graph
approaches, as the degree increases, some r-θ relationship
quite different from the stereographic projection. In order
to see what this means, we did a rectification experiment.
Fig. 8a shows a fisheye lens image viewing a square grid
pattern in approximately 30 degree direction, and Fig. 8b
is the rectified perspective image, using the parameters of
correction degree 5 in Table 1. The image is converted to a
view as if observed by rotating the camera by 60 degrees
to face the pattern (see Section 7.6 for the procedure). The
black area near the left boundary corresponds to 95 degrees
or more from the optical axis. Thus, we can obtain a correct
perspective image to the very boundary of the view.

Fig. 8c shows the result obtained by the same procedure
using the spurious solution. We can see that collinear points
are certainly rectified to be collinear and parallel lines to be
(a skewed view of) parallel lines. We have confirmed that
this spurious solution is not the result of a local minimum.
Let us call the parameter values obtained by imposing
collinearity, parallelism, and orthogonality the “correct so-
lution.” The cost functions J = J1/γ1 and J = J1/γ1 +J2/γ2

(a) (b) (c)

Fgi. 8. (a) Fisheye lens image viewing a square grid pattern in approximately 30 degree direction. (b) Rectified perspective image to be
observed if the camera is rotated by 60 degrees to face the pattern. (c) Similarly rectified image using a spurious solution.

are certainly smaller at the spurious solution than at the
correct solution, meaning that the spurious solution is not
attributed to the minimization algorithm but is inherent in
the formulation of the problem itself.

The fact that spurious solutions should exist is easily un-
derstandable if one considers perspective cameras. Suppose
no image distortion exists. Then, if the assumed camera
parameters, such as the focal length, the principal point,
the aspect ratio, and the skew angle, are wrong, the re-
sulting 3D interpretation is a projective transformation of
the real scene, called projective reconstruction [3]. Projective
transformations preserve collinearity but not parallelism
or orthogonality. Imposing parallelism, we obtain affine
reconstruction. Further imposing orthogonality, we obtain
so called Euclidean reconstruction. Thus, orthogonality is
essential for camera calibration; collinearity and parallelism
alone are insufficient. This fact has been overlooked in the
past collinearity-based work [1], [8], [12], [13], [15], [18],
partly because spurious solutions can be prevented by using
auxiliary information such as vanishing point estimation
[2], [5], [11], [12] or antipodal point extraction [14], and
partly because usually a small number, typically three, of
collection terms are retained [1], [8], [12], [13], [15], [18],
providing insufficient degrees of freedom to fall into a
spurious solution.

7.5 Comparisons
Our fisheye lens camera was a specially designed one,
and the camera manufacturer conducted calibration in a
controlled environment by placing multiple grid patterns
around the lens and manually detecting grid points in the
image. We compared their r(θ) curve and ours shown in
Fig. 7a with K = 5. Fig. 9 shows the difference of ours from
theirs. We find that the difference in r is less than 0.5 pixels
for θ between 0 and 75 degrees. However, the difference
gradually
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Fig. 9. The difference of our r(θ) curve from that of the
camera manufacture.

increases beyond that, and 6 to 10 pixel differences arise
beyond 90 degrees. Since the ground truth is unknown,
we do not know which result is closer to the reality, but
this comparison tells that precise calibration beyond the
90 degrees direction is rather difficult. According to the
manufacture, this much difference is permissible for many
practical applications in view of the saving of the cost and
labor of controlled calibration.

7.6 Applications

Once the r(θ) relationship is obtained, we can not only
perspectively rectify the fisheye lens image to a front view
but also create a perspective view that would be observed
if the camera were rotated by any given angle.

Define a world XY Z coordinate system with the origin
O at the lens center and the Z-axis along the optical axis
(Fig. 1). As far as the camera imaging is concerned, the
outside scene can be regarded as if painted inside a sphere
of a specified radius R surrounding the lens. The angle θ of
the incident ray from point (X,Y, Z) on the sphere is

θ = tan−1

√
X2 + Y 2

Z
= tan−1

√
R2 − Z2

Z
. (44)

The point (X,Y, Z) is projected to an image point (x, y) such
that (

x
y

)
=

(
u0

v0

)
+

r(θ)√
R2 − Z2

(
X
Y

)
. (45)

Suppose we want to obtain a rectified perspective image
with focal length f̄ . Then, the pixel (x̄, ȳ) of the rectified
image should be the projection of the 3D point (X,Y, Z)
that satisfies

x̄ = f̄
X

Z
, ȳ = f̄

Y

Z
, (46)

from which we obtain

Z =
f̄R√

x̄2 + ȳ2 + f̄2
. (47)

Hence,  X
Y
Z

 =
R√

x̄2 + ȳ2 + f̄2

 x̄
ȳ
f̄

 . (48)

Thus, the rectification to a front view can be done as follows
(Fig. 10):

f

(X, Y, Z)

(x, y)

R

ρ

θ

r (u  ,v  )0 0

f

(x, y) (0,0)

(X, Y, Z)

Fig. 10. The pixel (x̄, ȳ) of the rectified perspective image of
focal length f̄ should be an image of the 3D point (X,Y, Z)
that is actually projected to (x, y) on the fisheye lens image
of focal length f .

1) For each pixel (x̄, ȳ), compute the 3D coordinates
(X,Y, Z) in (48), where the radius R is arbitrary (we
may let R = 1).

2) Compute the corresponding pixel position (x, y) by
(45) and copy its pixel value to (x̄, ȳ). If (x, y) are not
integers, interpolate its value from surrounding pixels.

Now, let us hypothetically rotate the camera by R. Since
rotation of the camera by R is equivalent to the rotation of
the scene sphere by R−1, the 3D point (X,Y, Z) given by
(48) on the rotated sphere corresponds to the 3D point X

Y
Z

 =
R√

x̄2 + ȳ2 + f̄2
R

 x̄
ȳ
f̄

 . (49)

on the original sphere. Its fisheye lens image should be at
the pixel (x, y) given by (45). Thus, the mapping procedure
goes as follows:

1) For each pixel (x̄, ȳ), compute the 3D coordinates
(X,Y, Z) in (49).

2) Compute the corresponding pixel position (x, y) by
(45) and copy its pixel value to (x̄, ȳ).

The top-left of Fig. 11 is an image of a street scene taken
from a moving vehicle with a fisheye lens camera mounted
below the bumper at the car front. The top-right of Fig. 11 is
the rectified perspective image. The second and third rows
show the rectified perspective images to be observed if the
camera is rotated by 90 degrees left, right, up and down,
confirming that we are really seeing more than 180 degree
angles of view. Using a fisheye lens camera like this, we can
detect vehicles approaching from left and/or right or create
an image as if viewing the road from above the car.

8 CONCLUDING REMARKS

We have presented a new technique for calibrating ultra-
wide fisheye lens cameras. Our method can be contrasted to
the conventional approach of using a grid board as follows:

1) For ultra-wide fisheye lens cameras with more than
180 degrees of view, the image of any large (even
infinite) plane cannot cover the image frame. Our
method allows us take multiple partial images of the
reference by freely moving the camera so that every
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Original fisheye lens image Rectified front view

Rectified left 90◦ view Rectified right 90◦ view

Rectified down view Rectified up view

Fig. 11. Fisheye lens image of an outdoor scene taken from
a moving vehicle, rectified front images, and rectified images
after virtually rotating the camera to left, right, up, and down.

part of theframe is covered by some reference images.
2) The grid-based approach requires detection of “grid

points” in the image, but accurate processing of a grid
image is rather difficult. In our method, we only need
to detect “continuous edges” of a stripe pattern.

3) The grid-based approach requires the correspondence
of each detected grid point to the location on the
reference. This is often difficult due to the periodicity
of the grid. In our method, we need not know where
the detected edge points correspond to in the reference.

4) In the grid-based approach, one needs to measure the
camera position relative to the reference board by a
mechanical means or by computing the homography
from image-reference matching [2], [19]. Our method
does not require any information about the camera
position.

5) In the grid-based approach, one needs to create a
reference pattern. This is not a trivial task. If a pattern
is printed out on a sheet of paper and pasted to a
planar surface, wrinkles and creases may arise and the
glue may cause uneven deformations of the paper. In
our method, no metric information is required about the
pattern, so we can display it on any video screen.

6) In the grid-based approach, one can usually obtain
only one image of the reference pattern from one
camera position. In our method, we can fix the camera
anywhere and freely change the reference pattern on
the video screen.

7) The difficulty of processing a grid image with cross-
ings and branches is circumvented by generating a
“virtual grid” from separate stripe images of different

orientations; each image has no crossings or branches.
The basic principle of our calibration is the imposition of
the constraint that collinear points be rectified to collinear,
parallel lines to parallel, and orthogonal lines to be orthogo-
nal. Exploiting the fact that line fitting reduces to eigenvalue
problems in 3D, we derived an optimization procedure in
analytical terms, and did experiments, displaying a variable
reference pattern on a video screen. Video screen patterns
were also used by Komagata et al. [9] as a reference, but
our eigenvalue minimization technique can fully exploit
this scheme. We found that a spurious solution exists if
the collinearity constraint alone is used or even combined
with the parallelism constraint. However, we have shown
that incorporating the orthogonality constraint allows an
accurate calibration without using any auxiliary information
such as vanishing point estimation [2], [5], [11], [12]. We
have also shown a real image example using a vehicle-
mounted fisheye lens camera. It is expected that our proce-
dure is going to be a standard tool for fisheye lens camera
calibration.
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[4] J. Heikkilä, “Geometric Camera Calibration Using Circular Control
Points,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22,
no. 10, pp. 1066–1077, Oct. 2000.

[5] C. Hughes, P. Denny, M. Glavin and E. Jones, “Equidistant Fish-
Eye Calibration and Rectification by Vanishing Point Extraction,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 12,
pp. 2289–2296, Dec. 2010.

[6] K. Kanatani, Statistical Optimization for Geometric Computation: Theory
and Practice. Elsevier, 1996.

[7] J. Kannala and S.S. Brandt, “A General Camera Model and Calibration
Method for Conventional, Wide Angle, and Fisheye-Lenses,” IEEE
Trans. Pattern Analysis and Machine Intelligence., vol. 28, no. 8, pp. 1335–
1340, Aug. 2006.

[8] S. Kase, H. Mitsumoto, Y. Aragaki, N. Shimomura and K. Umeda, “A
Method to Construct Overhead View Images Using Multiple Fish-Eye
Cameras,” J. Japan Soc. for Precision Eng., vol. 75, no. 2, pp. 251–255,
Feb. 2009.

[9] H. Komagata, I. Ishii, A. Takahashi, D. Wakabayashi and H. Imai,
“A Geometric Calibration Method of Internal Camera Parameters for
Fish-Eye Lenses,” IEICE Trans. Information and Systems, vol. J89-D,
no. 1, pp. 64–73, Jan. 2006.

[10] Y.-C. Liu, K.-Y. Lin, and Y.-S. Chen, “Bird’s Eye View Vision System
for Vehicle Surrounding Monitoring,” Proc. Second Int’l Workshop Robt
Vision, pp. 207–218, Feb. 2008.

[11] M. Nakano, S. Li and N. Chiba, “Calibration of Fish-Eye Camera for
Acquisition of Spherical Image,” IEICE Trans. Information and Systems,
vol. J89-D-II, no. 9, pp. 1847–1856, Sept. 2005.



822 IEEE TRANSACTIONS OF PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 4, APRIL 2013

[12] M. Nakano, S. Li and N. Chiba, “Calibrating Fisheye Camera by Stripe
Pattern Based upon Spherical Model,” IEICE Trans. Information and
Systems, vol. J89-D, no. 1, pp. 73–82, Jan. 2007.

[13] R. Okutsu, K. Terabayashi, Y. Aragaki, N. Shimomura, and K. Umeda,
“Generation of Overhead View Images by Estimating Intrinsic and
Extrinsic Camera Parameters of Multiple Fish-Eye Cameras,” Proc.
IAPR Conf. Machine Vision Applications, pp. 447–450, May 2009.

[14] R. Okutsu, K. Terabayashi and K. Umeda, “Calibration of Intrinsic
Parameters of a Fish-Eye Camera Using a Sphere,” IEICE Trans.
Information and Systems, vol. J89-D, no. 12, pp. 2645–2653, Dec. 2010

[15] Y. Onodera and K. Kanatani, “Geometric Correction of Images
without Camera Registration,” IEICE Trans. Information and Systems,
vol. J75-D-II, no. 5, pp. 1009–1013, May 1992.

[16] T. Papadopoulo and M. I. A. Lourakis, “Estimating the Jacobian of
the Singular Value Decomposition: Theory and Applications,” Proc.
Sixth European Conf. Computer Vision, vol. 1, pp. 554–570, June/July
2000.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, second ed.
Cambridge Univ. Press, 1992.

[18] F. Swaminathan and S. K. Nayar, “Nonmetric Calibration of Wide-
Angle Lenses and Polycameras,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 10, pp. 1172–1178, Oct. 2000.

[19] Z. Zhang, “Flexible New Technique for Camera Calibration,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 11,
pp. 1330–1334, Nov. 2000.

Kenichi Kanatani received his B.E., M.S., and Ph.D.
in applied mathematics from the University of Tokyo
in 1972, 1974 and 1979, respectively. After serving
as a orofessor of computer science at Gunma Uni-
versity, Gunma, Japan, he is currently a professor of
computer science at Okayama University, Okayama,
Japan. He is the author of many books on com-
puter vision, including Group-Theoretical Methods
in Image Understanding (Springer, 1990), Geomet-
ric Computation for Machine Vision (Oxford Univer-
sity Press, 1993), and Statistical Optimization for

Geometric Computation: Theory and Practice (Elsevier 1996). He is a fellow
of the IEEE.

¤ For more information on this or any other computing topic, please
visit our Digital Libaray at www.computer.org/publications/dlib.


