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SUMMARY

A method is presented which recovers
the 3-D shape of a polyhedron under the as-
sumption of a large number of parallel edges.
The method is based on the fact that three
or more parallel edges intersect at a point
(vanishing point) when extended on the image
plane. To determine a pair of two parallel
edges, a heuristic method based on the struc-
ture of polyhedra is employed. To cope with
the error in the image, a threshold process-
ing based on the causes of error is proposed.

When parallel edges are found, the 3-D
orientation of each edge can be determined
from the vanishing point. However, contra-
dictions may arise in the calculated 3-D
orientations of the edges due to errors. To
overcome such a problem, an optimization
technique based on the constraint on poly-
hedra is proposed. Then our method is ap-
plied to an actual image. )

1. Introduction

In viewing a 2-D image, a human can per-
ceive a 3-D shape drawn on the image. One
approach to simulate this behavior by com-
puter is the automated interpretation of a
line figure for polyhedra [1, 15]. Even
though this approach can label the edges as
convex or concave, or determine whether or
not there exist corresponding 3-D objects,
the 3-D objects cannot be reconstructed
uniquely. To do this, there must be strong
constraints.

Considering that humans can do this
easily, many studies have been made to in-
corporate various heuristic hypotheses in
relation to cognitive psychology. Typical
hypotheses are the orthogonality hypothesis,
which assumes the orthogonality of edges
(2, 5, 6, 9, 10}, the skew-symmetry
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hypothesis concerning shapes of faces [5]
and the closed contour hypothesis concerning
closed curves [3]. This paper attempts a
3-D recovery using the parallelism hypothe-
sis. This assumption is reasonable since
many man-made objects are composed of paral-
lel edges.

In this paper, we assume that necessary
image data have already been obtained by
image processing stages, and focus on a
mathematical method which can recover the
3-D shape of the object uniquely from a
single image. When parallel edges in a
scene are projected onto the image plane,
the projected edges intersect at a single
point. This intersection is called the van-
ishing point.

The basic principle of 3-D recovery in
this paper is based on the well-known fact
that the position of the vanishing point
determines the 3-D orientation of the edges
[13, 15]. However, the vanishing point is
only a partial information. If the image
contains errors, a consistent polyhedron
cannot always be recovered. To circumvent
this, we present an optimization technique
based on the constraint on polyhedra and
recover a 3-D consistent shape uniquely.

2. Vanishing Point and 3-D Direction
of Edge

Consider an XYZ coordinate system with
the Z axis as the optical axis of the camera.
Let XY plane be the image plane. Letting
point (0, 0, -f) on the Z axis be the view-
point, point (X, Y, Z) in the scene is pro-
jected perspectively onto the point (z, y)
on the image plane, where (Fig. 1)
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Fig. 1. Perspective projection onto the
image plane.
Theorem 1. The vanishing point of a

line with 3-D direction m = ﬂml, Mos m3) is
given' by (ﬁnl/m3, fmz/m3).

Proof. The line passing through point
(Xo, Yo, Zo) with direction m = Owl, My, m3)

is given by

Y = Yo+ tm., Z=2Zot1tms (2)

(t:

X=Xo+lm|.
real)

By Eq. (1), this line is projected onto the
image plane as follows: -

_JX = Xot+im
=¥ Z T A Zot tms .
fY Yo+ tm.

V=757 F¥ Zot tms

Letting t + «, the vanishing point (a, b) of
this line is obtained as follows:
a=fm[ms,  b=fmz/ms %)
Corollary 1. The 3-D orientation of
the line with vanishing point (a, b) on the
image plane is given by the following unit
vector:

m=i( a ’ b '
Ja@+ 8+ Ja+ 2+ 2

f (5)
yrayEy )

Consequently, when parallel edges are
found on the image plane, their. 3-D orienta-
tion can be determined by detecting their
vanishing point (Appendix 1). The algorithm
for finding parallel edges is described in
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Fig. 2. Incompatibility of edge adja-
cency.
Sect. 5. However, there exists a serious

problem: Even if 3-D edge orientations are
determined, the 3-D shape of the object can-
not necessarily be recovered.

Theoretically, it suffices to place
edges in the scene according to the computed
orientations and the projection relations.
However, errors of image processing are in-
evitable. It is not always true, for exam-
ple, that the edges forming a boundary of a
face close themselves (Fig. 2). In view of
this, unique recovery of consistent 3-D -
shape must incorporate constraints on poly-
hedra [7, 8, 17, 18].

3. Constraint on Polyhedra

Let the coordinates of vertex V;, =1,
2 Zi)° Let the
ceey Mbe Z =

«ees N in the scene be (Xi’ Y
equation of face F;, a=1,

an + an +r. Here, (pa, qa) is the gradi-
ent of face FLB and r, is the distance of
face Fa from the image plane measured along
the Z axis. When vertex Vé is on face Fa’
we say that vertex Vé is incident to face Fu'

The relation is defined by the incidence pair
(Fa’ Vk) [16, 18]. Let the number of inci-

dence pairs be L. The condition (F“, Vi) is
expressed as follows:
Zi=paXitqaYitra (6)

We introduce variables Tys Ygs By 8S

follows:

fZi
f+2Z:

fY;

X
Z F+z:;' %7

Tz VT

@)

Then by Eq. (1), (xi, yi) are exactly the
image coordinates of vertex Vé. The inverse

relation is written as follows:



S, Sy
f—z f—=z

Substituting this into Eq. (6), we ob-
tain

__Jz
Zl'— f—;g

Xi= Yi= (8)

__Jba faa ., Jfra

= It Y Y e, ®)
Let
= Sfba = Sfqa =_1Va
P.= ft+re' Q.= f+rs R"—j'+r., (10)

Then (Pa’ Qa’ Ru) are considered to be
the parameters specifying face Fa in the
plane of Py 9y o' The inverse relation

is written as

—_PFa __Qa /.
pa— l—Ra’ QG—I_Ra, ra_l_Ra (11)
Equation (9) is written as follows:
2i=Puxi+ Qayi+ fRa (12)

Since the image coordinates (xi, yi)

are known, the scene coordinates of vertex
Vk can be determined from Eq. (8) if 2, is

known. Consequently, 2, can be used as the

parameter specifying the space coordinate of
vertex Vi in the place of Zi' Note that Eq.

(12) is linear with respect to the unknowns
2 Pa’ Qu”Ra' So that 3-D recovery is pos-

sible, the incidence structure must be regu-
lar [16, 18]. If the structure is not regu-
lar, it can be made regular [17, 18]. 1In
the following, the structure is always as-
sumed to be regular.

3. 3-D Recovery by Optimization

Assume that parallel edges have been
found (the algorithm is shown in Sect. 5),
their vanishing points have been detected
(the algorithm is shown in Appendix 1), and
3-D orientations of edges have been deter-
mined. Let the edges on face Fa for which

3-D orientations are determined be €ra’ ka =
1, coey ”a’ Let the unit vectors represent-—
ing their 3-D orientations be Raa= (7xcan
Nraiz) Miaa)) o

Let the gradient of face Fa be (pa, qa).
Then the unit surface normal to face Fa is
given by surface (Pa ga, —1)/V/pa*+aa2+1. All

unit vectors nag £a=1, ", No should be ortho-
gonal to this unit surface normal. In view
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Fig. 3. One solution is chosen from
among infinitely many consistent poly-
hedron solutions by optimization.

of this, it makes sense to determine (pa, qa)

in such a way that the (half) squared sum of
scalar products

1 Na

2_[;—2_-!-_(12—+1*§‘( RrayDat NraGa— Nran ) -
a a
(13)

is minimized.

Hence, we multiply the forementioned
expression by weight Wa of face Fu and sum

it for all the faces, and minimize the re-
sulting expression. Then the minimization
for all the faces can be executed in one
stage. The expression to be minimized is
obtained after substituting Eq. (11) and re-
writing Py 9 by Pa’ Qa’ Ra:

z Wa /f+rq)’
a=l/p°z+qaz+l\ f .

Na
2
3 (#ra)Pat Nra@Qa+t NranRa— Nrat)
ka=1 .

(14)

-1
I=3
X

Estimation of vanishing points becomes
inaccurate as the distance r, along the 2

axis becomes large or when the gradient of
the face ‘is small. Consequently, the weight
W& is defined as follows:

_ ~"2mm—.é.-." —j—'_ 2
Wa"‘\/pa +Qa +l(f+7’g) (15)
Then the 3-D shape is recovered by mini-
mizing Eq. (14) under the constraint (12)
for all incidence pairs (Fa, V{) (Fig. 3).

However, since the recovery is made from a
single image with gradient cues of the faces,
the absolute distance cannot be determined.
Consequently, the Z coordinate is assumed

for one of the vertices. Let that vertex be
Vne ’



Fig. 4. 1In the presence of noise, paral-

lel edges, when extended, may not neces-

sarily intersect at a single vanishing
point.

If Lagrange multipliers Aai for inci-
dence pairs (F&, Vi)’ the problem is to mini-

mize
- 1 m Na 2
J= _21 2|( nlm(l)I)a"' nlza(z)Qa‘l" nka(J)Ra— mm))
a=la=

+f}/1..—(P;r.-+ Qayi+ fRa—z:)
a.x ( 16)

without a constraint. The equations to de-
termine the solution are Eq. (12) as-well as
those obtained by partial differentiations
of Eq. (16) by Pa’ Qa’ Ra' In summary,

Theorem 2. n+3m+L—1 unknowns 'zi,

1=1, eoayn-1, Pa’ Qa’ Ra" a=1, ..., m
and Aai are determined from the following

linear equations:

PaJ.'.+ Qa!/x+fRa-Z:=O (Far Vl) (17)

Nale¢+Nalea+ Nal!Rc"'zxiAai: Nas

a=l,,m (18)

R

Neaa Po+ NazzQa"‘ NazaR«"'?!/ani: Nezs

a=1,,m (19)
Nes1 Pe+ Nasz Q0+N033Ra+f2Aat=Na:3

a=1,-m (20)

Za}/lat=0 i=1,,n—1 (21)
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Fig. 5. The image sphere of radius f
centered at the viewpoint.

where ”a'ij is given by

Na
Noei;= Elnka(i)nka(j) i,j=1.23 (22)

Summations in Eqs. (18) - (20) are performed
over all 7 for which (Fa" V’i)'

In Theorem 2, it is assumed that each
face has at least an edge for which 3-D
orientation is computed. However, this
assumption is not necessary. If the terms
corresponding to the face Fa’ whose edges are

not given 3-D orientations, are removed from
the right-hand side of Eq. (16), Eqs. (18)
to (20) are replaced by the following equa-
tions:
Srila=0, (23)

glli/lm’ =0, 2/10:‘ =0

where summations are performed over all i for
which (Fu.’ Vi)'

5. Algorithm to Find Parallel Edges

To find parallel edges from a projected
image, it may seem reasonable to search for
almost parallel edges on the image plane.
Such a naive approach is insufficient, since
the angle on the image plane formed by paral-
lel edges in the scene depends on the direc-
tion of projection. The proposed method
makes use of the fact that parallel edges in
the scene have a single vanishing point on
the image plane. In other words, if three
or more edges, when extended on the image
plane, intersect at a point, they are judged
as parallel in space.

In general, images resulting from image
processing stages, however, contain errors.
Consequently, it may happen that parallel
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edges, when extended, do not intersect at a
single point (Fig. 4). Hence, a threshold ¢
must be set, and if the maximum separation
between the intersections is less than e,
they are judged as parallel. However, we
cannot use a fixed value for €, since the
error becomes larger as the intersections
are further apart from the center of the
image.

Another point to consider is the over-
flow of computation, since the intersection
of two edges may be far out of the image.

To deal with this case, the image sphere
(Gauss sphere) [4, 11, 19] with radius f
centered at the viewpoint (0, 0, -f) is used
instead of the image plane (Fig. 5). Con-
sider a spherical rectangular triangle
AOPQ drawn on the image sphere (Fig. 6).

Let the arc lengths of OP and 0Q be s
and L, respectively, and let the angle
formed by PO and P be ¢. Then by differen-
tiating the formula tan¢ = tan(L/f)/sin{s/f)
for spherical triangles, we obtain

L _ {1 (1 L
d_¢_f( sin(s/f) (sin(s/f) sinz f)cos f) 26

Letting s/f<1, we obtain

dL 'F(l cos¥(L/f))

b (25)

The foregoing expression is regarded as the

uncertainty of the intersection of two lines
separated by distance s. We identity L with
the arc length from the origin to the inter-
section of two edges on the image sphere.

Let the unit surface normal to the
plane passing through edge e and the view-
point (0, 0, -f) be n. Similarly, let the
-unit surface normal in regard to edge e' be
n'. Let k= (0, 0, 1). Then the arc length
L to the intersection of extensions of edges
e and e’ from the center O of the image is
given by

L=fcos ' 7ee (26)
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Fig. 7. The average separation 8,0t of

edges e, e’.

where |mm'k| is the scalar triple product
and

- |nnk|
an (27

Using the forementioned expression, the
threshold for two edges e and e’ is defined
as follows:

) =Izsd¢fe' (1= 7ee?) (28)

Eee’

Here, s
> Yee

between the two edges, and A¢ee

, is the average separation
, 1s the ad-

" missible error of the orientations of the

two edges. They are determined as follows.
Let the coordinates of the endpoints of edge
e be (xo, yo) and (xl, yl), and those of

edge e’ be (zo', yo') and (ml', yl’). Then
let

e=(x1— X0, 11— ¥o)

el=(1']'_xo,, y]'—yol) (29)

The average orientation I weighted by the
lengths of edges e and e’ is defined by

-ﬂ:—IiTu- (e, €')=0
= , (30)
€”€ - (e €)<0

Te=eT

The average separation see' is defined

as the distance of the projection of the seg-
ment connecting midpoints of edges e and e’
onto the axis perpendicular to the average
orientation = (I, 1,) (Fig. 7)

)i

[ xotxs Xtz
See'= ) 2



Fig. 8. The concur-

Concurrency test:
rency of three lines is tested on the
image sphere.

_( Yoty _y'+y' )ln
2 2 (31)

Since the error is likely to be larger
with the decrease of the edge length, the
admissible error of edge orientation 1is de-
fined by

const.

Ageer= min((el,Te’ )

where |e| and |e’| are the lengths of edges
e and e', respectively. The algorithm to.
find the parallel edges is given in the
following. .

(32)

(1) Concurrency test -

First, a pair of edges e and e’, which
do not share end points, are selected as a
candidate for parallel edges. Let the inter-
section of their extensions be P". Consider
a third edge e”. Let the intersection of the
the extensions of edges e¢” and e be P and
that of edges e and e’ be P'. If

PP’<E¢¢"+€¢‘¢", PP”<.83¢'+53"e'

P’ P"<€eet€ere (33)
measured in arc length on the image sphere,
these three edges are judged as parallel,
and they are registered into the list of par-
allel edges (Fig. 8). Since the arc length
on the image sphere is used, there is no
danger of computational overflow.

If edges that share end points are
judged to be parallel, the one which passes
this test with a larger threshold is deleted
from the list. If no other edges are found
to be parallel to the first selected edges e
and e', the first selected edges are judged
to be not parallel.
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Fig. 9. Parallelogram test: If edges

e and e, are parallel, edges ey and e,

cannot be parallel in (a) but can be
parallel in (b).

(2) Vanishing point heuristic

It makes sense to select the candidates
for parallel edges in the order likelihood
of being parallel. It is assumed in this
paper that a pair of edges is more likely to
be parallel since their intersection is
further apart from the center of the image.
We called this the vanishing point heuristic.
In other words, one should start from two
edges e and e' with the smallest value of

Moot defined by Eq. (27). 1If the intersec-

tion is near the center of the image, the
two edges are less likely to be parallel.
Consequently, those edges for which Neet >

cos(Lo/f) are not selected, where L, is the

0
distance to the vertex position farthest
from the center of the image.

(3) Coplanarity test

The foregoing procedure detects a set
of three or more parallel edges. The re-
maining parallel edges are found by the fol-
lowing procedure. It is quite exceptional
that two edges which are not on the same
face happen to be parallel, and yet no other
edges are parallel to those. Consequently,
only those pairs of edges that share common
faces but no common end points are tested.
The following two tests are applied to such
pairs of edges, and those edges that pass
both of those tests are judged to be parallel
edges.

(4) Parallelogram test

Consider two pairs of parallel lines.
When projected, two half lines starting from
their respective vanishing points must yield
four intersections (Fig. 9) (for the algor-
ithm, see Appendix 2).
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Fig. 10. Collinearity test: The vanish-

ing points of parallel edges belonging to
the same face must be collinear.

Fig. l1. Vanishing point heuristic:

Two edges are more likely to be parallel

if their intersection is farther away
from the image origin.

(5) Collinearity test

If there exists a set of three or more
parallel edges sharing the same face, their
vanishing points must be located on a common
line (Fig. 10, the algorithm is given in
Appendix 3).

If an edge is judged as parallel to
more than one edge, the one whose vanishing
point is farthest from the center of the
image is selected by invoking the vanishing
point heuristic (Fig. 11).

6. Example

Figure 12(a) is an actual image of a
polyhedron. Assume that the line drawing of
Fig. 12(b) is obtained from the image. The
concurrency test detects the following sets
of parallel edges:

{eh e, €3, 24},
{es.ee,e7}

104

X
Ve
€s ex&o Vi
Vs F, 3\e,
e ol % y
Vo\ \&2 // €n
7 Ve
4 e
e 7
V. Vo
& +&
12
Vi
(b)

Fig. 12. (a) An image of a polyhedron;

(b) labelling of its drawing; and (c)

the top view and the side view of the
reconstructed shape.

Among the remaining edges, the follow-
ing pairs of edges share common faces but no
common end points (coplanarity test).

{es, ea}, {em, en), {es, elz}, {ebn, en}

All those pairs pass the parallelogram

test and the collinearity test. Since g is

shared by the pairs {es, e9} and {eg, e12}.



Hence, the former, whose intersection is
farther away, is selected (the vanishing
point heuristic). Similarly, edge en is

selected. As a result, the following pairs
of parallel edges are obtained, ’

{éh ez, €3, 84}. {es' es, €1}, {es. es}, {em, en)

Then their vanishing points are computed and
their 3-D orientations are estimated. Final-
ly, the optimization is applied, and the 3-D
shape shown in Fig. 12(c) is recovered.

7. Conclusions

This paper has presented a mathematical
method that recovers the 3-D shape of a poly-
hedron from its image under perspective pro-
jection. If parallel edges are detected,
then 3-D orientations are determined from
their vanishing points. The error of image
processing is overcome by our optimization
technique based on the structure of the poly-
hedron, and a consistent 3-D shape is
recovered.

The method in this paper is based on
the nonlinear optimization constrained by
the incidence structure of polyhedra origin-
ally presented by Sugihara [17, 18]. Our
method employs a special variable transforma-
tion to reduce the problem into a system of
linear equations. Consequently, we need not
guess a starting point and do iterative
searches. We have also presented a method
to find parallel edges based on the concur-
rency test, the vanishing point heuristic,.-
the coplanarity test, the parallelogram test,
and the collinearity test. The proposed
method was applied to an example derived
from an actual image.
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APPENDIX

1. Algorithm for Computing Vanishing

Points without Overflow

Three or more parallel edges should
have the same vanishing point, which, how-
ever, is not true in the presence of error
(Fig. 3). Consequently, the least-mean-
square method is employed as follows.

Assume that lines L;: Az +Biy+Ci=0,
i=1,-, N are projections of parallel edges.
Let the plane passing through line Li on the

image plane and the viewpoint (0, 0, -f) be

5;. Let its unit surface normal be n;=(7iu,
Nian Mim). Let the shared vanishing point to
be determined be (a, b). The distance from

point (a, b) to planme S is | mima+ nib+

niaf | (Fig. Al).

Consequently, (a, b) is determined by
minimizing the following expression:

N
Z:‘( nana+ ninb+ niaf (A1)

Differentiating the foregoing expression
with respect to a and b, and equating the
results to 0, we obtain

a=fm1'/ma'. b=fm2'/m3' (A2)

where

N N N N
m’'= 21 ni(n)nt(a);:l ni(z)z - 21 nuzmm@l nimRi2,
i= = ia )

N N N N
my = _2-..'.‘71.'(1)221 Ni@Ni— E, mumi(z)gl i Nicn
i= i= i= )

p .
%@nm)bﬁnia)ﬂ .
XY
0 (@,b,0)
n, m
\—f
Fig. Al., The distance from point (a, b)

on the image plane Z = 0 to the plane Si
passing through the viewpoint and line Li
on the image plane is minimized.
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, N N N 2
ms =“(g‘lni(nzgm(zyz—(ig‘na‘(unuz)) )
(A3)

Then m' = (m1 ' m2', m3') is the vector in-

dicating the 3-D orientation of those paral-
lel edges. Since no division is required,
there is no danger of overflow.

2. Algorithm of Intersection Test for
Half-Lines without Overflow

The parallelogram test splits into
tests for the existence of intersections of
two half lines. Let the half line starting
from point (a, b) and passing through point
(x, y) be L, and let the one starting from
point (a', b') and passing through point (z’,
y') be L' (Fig. A2).

The intersection of L and L' exists if
and only if there exist t, t' > 0 such that

at+i(x—a)=a+1'(x'~d'),

b+1ly—b)=b+1'(y' —b) (a4)

It follows from the foregoing expres-
sions that

t=~2—[(x'—a)(b'*b)—(y'—b)(a’—a)].

1 (A5)
t'=Z[(x—a)(b’— b)—(y—bXa'—a)l,

A=(x—aXy’'—b)—(y—b)x'—a)

Thus, the decision can be made by examining
whether or not all the following expressions
have the same sign:

(' = a)b' —b)—(y'—b)a'—a),

(a,b) (a’.b"
x.y)
(x'y)
Fig. A2. Test for intersection of two

half-lines.
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Fig. A3.. Duality principle: The lines

dual to collinear points are concurrent

and the common intersection is dual to

the common line passing through the col-
linear points.

(x—a)b'—b)—(y—b)Na' —a),

(x—a)(y'—b)—(y—b)z"—a) (A6)
However, if points (a, b) and (a’, b')
correspond to the vanishing points of paral-
lel edges, they may be located far from the
center of the image, causing computational
overflow. In terms of the vectors n and n'
starting from the viewpoint and pointing to-
ward (a, b) and (a’, b') on the image plane,
a, b and a’, b' are represented as follows:

a=fn|/ns. b=fn2/n3.

a'=fnn'/ns', b'=fnz'/m’ (a7)

Substituting those expressions into ﬁﬁ.
(A6) and multiplying the denominators by
n, (>0) and n3’ (>0), we obtain

n2ms’)
’
” ns )1

(nax—fm )(nz'ns—
—(nay— fr2 )" na—
(ns'z’ + fr)' Y n2 ms— mams’)
—(ns'y’ = S0 Y ma— mma’ ),
(mx —fn: )( ns'y'—fnz')

—(nsy— fr2)(ma'x’ = fmi")
(a8)
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Hence, no overflow occurs. If all of the
foregoing expressions are of the same sign,
we conclude that the half-lines L and L'
intersect.

3. Algorithm for Line Fitting
without' Overflow

If the unit vector starting from the
viewpoint (0, 0, -f) and pointing toward P
on the image plane is at the same time the
unit surface normal to. the plane passing
through the viewpoint (0, 0, -f) and the
line L on the image plane, the point P and
the line L are said to be dual. The point
dual to line Ax + By + C = 0 is given by
(f24/C, f2B/C). The line dual to a point
(@, b) is ax + by + f2 =

If multiple lines intersect at a single
point P, the points dual to these lines are
located on a common line L, and L is the
line dual to the intersection P. This is
proved as follows. Let the lines intersect-
ing at point P(a, b) be Ax:+By:+C:i=0,
i=1) "',N . Then Ala+Bib+Cl=0p i=1. "',N
The points (f2A:/C:i, f*Bi/Ci), i v N dual
to those are always located on the line
L: ax+ by + f2 = 0.

If multiple points are located on the
same line I, the lines dual to these points
intersect at a common point P, and P is the
point dual to the line L. This is proved as
follows. Let points (ai, bi)’ T=1, 4oy

N be on line L given by Ax + By + C = 0.

Then Aa:+Bbi+C=0, i=1,--, N. Consequent-
ly, the dual lines ax+bw+f*=0, i=1,-,N
always pass through point P(f*A/C, f*B/C ).

In view of the forementioned duality
principle, the decision as to whether multi-
ple points are on a common line is reduced
to the decision as to whether their dual
lines have a common intersection (Fig. A3).
Here, fitting of a line to points which are
not necessarily collinear is reduced to de-
termining a common intersection of their
dual lines by the algorithm of Appendix 1.
This is essentially the Hough transform.
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