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The 3D structure and motion of an object are determined from its optical flow under
perspective projection. The solution is given in explicit analytical form in terms of the
parameters characterizing the flow of planar motion. The solution is not unique, but the
spurious solution disappears if two or more planar parts of the same object are observed, and
the adjacency condition of optical flows is explicitly obtained. Unique interpretation also
becomes possible by considering the transition to the “pseudo-orthographic approximation,”
since no spurious solution arises in this approximation. The choice of the coordinate system
and parameterization of rigid motion are discussed in relation to robustness of computation.
© 1987 Academic Press, Inc.

1. INTRODUCTION

This is a continuation of Kanatani’s paper [15], in which the 3D structure and
motion of an object are recovered from its optical flow under orthographic projec-
tion. The solution is given explicitly in analytical terms, from which various
geometrical interpretations are obtained in invariant forms. In this paper, exactly
the same analysis is given for optical flows under perspective projection.

Recovery of the 3D structure and motion from perspectively projected images has
already been studied by many people, and many different approaches have been
presented. One approach is to reconstruct numerically the 3D structure from the 2D
displacements of a finite number of points, making no assumptions about the object
except rigidity {4, 5, 17, 21, 23, 25, 28, 29]. When motion is infinitesimal, the
displacement is identified with the velocity, or the optical flow. The problem
becomes somewhat simpler if we assume an object model, say a planar surface.
From an optical flow, various clues are used for computation—the velocity values at
particular points, global characteristics such as the vanishing points or lines,
coefficients of the equations fitted to the observed flow, contour evolution, etc.
[3, 16, 18, 19, 24, 26, 27, 30, 31].

In this paper, we fit global equations to the observed optical flow and express the
3D structure and motion analytically in terms of the parameters characterizing the
flow. We consider objects whose surfaces consist of, or are approximated by, planar
faces and focus on each of these planar portions. For the case where the object is a
planar surface, a complete solution, including the existence of spurious solution, has
already been given by Longuet-Higgins [18), and Subbarao and Waxman [27].
However, the present approach is different from theirs in some respects.

First, the choice of the coordinate system is different. In almost all existing
studies of this type of problem, the origin of the xyz-coordinate system is chosen as
the “ viewpoint” or the “camera focus.” Here, however, we choose the xy-plane as
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the image plane. If the viewpoint is moved away from the image plane (mathemati-
cally, in the limit of the focal length approaching infinity), the orthographic
projection is obtained as the limit. Thus, both perspective and orthographic projec-
tions can be treated in the same framework. Special scaling is necessary if we want
to obtain the orthographic limit in the conventional setting. Moreover, in our
setting, we can obtain an intermediate approximation, which we call the pseudo-
orthographic approximation, in the transition to the orthographic limit.

As was pointed out first by Hay [7] and later by Longuet-Higgins [18] and
Subbarao and Waxman [27], two different solutions exist for the same optical flow if
the object surface is a plane, and it has been believed that one cannot distinguish
the true solution from the spurious one from a single optical flow field, since the two
solutions yield exactly the same optical flow. However, we will show that the
distinction is possible in some sense, because no spurious solution exists for the
pseudo-orthographic approximation. Hence, we can pick out one of the perspective
solutions which corresponds to the pseudo-orthographic solution. This means, as
will be shown later, that we are picking out one solution for which the surface is far
away and projective distortion is small.

As is well known, instantaneous rigid motion is specified by the translation
velocity and rotation velocity at an arbitrarily chosen reference point. Almost all
existing studies of this type of problem adopt the camera-based interpretation; i.e.,
the coordinate origin, or the viewpoint, is chosen as the reference point. This is
equivalent to replacing the object motion by camera motion, or egomotion. In
contrast, we adopt the object-based interpretation, taking a reference point on the
object surface. The choices are equivalent from a mathematical point of view.
However, these two interpretations are not equivalent from an engineering point of
view.

Suppose the object is located far away from the camera. Then, in order to
describe a very small spinning motion, a very large translation velocity must be
assigned. This is necessary to compensate for the effect that a small rotation velocity
at the origin causes a large displacement if the object is located far away. For
robustness of computation, however, the velocity should be specified in such a way
that a small observed change is caused by a small velocity (cf. Appendix C). Thus,
taking the reference on the object surface is the best choice from an engineering
point of view, and the subsequent mathematical treatment is no more complicated
than for the camera-based interpretation.

The analysis of Longuet-Higgins [18] is embedded into matrix calculus based on
the 3D geometry of projection. This surely makes it easy to produce a numerical
solution. However, it is not so easy to interpret and understand the geometrical
meaning of the observed image and its motion. In this paper, the solution of the 3D
structure and motion is expressed analytically like that of Subbarao and Waxman
[27]. However, the analysis is described in terms of complex algebra based on group
representation theory. This treatment makes clear the invariant, and hence physical
or geometrical, properties of the quantities involved. We construct parameters
defining irreducible representations of the 2D rotation group SO(2) [6, 32, 33). These
parameters describe invariant characteristics of the observed flow on the image
plane.

Using our complex expressions, we can easily derive the adjacency condition,
which tests whether or not two adjacent optical flows are images of different planar
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FiG. 1. A plane having equation z = px + gy + r is moving with translation velocity (a, b, ) at
(0,0, r) and rotation velocity (w,, w,, w;) around it. An optical flow is induced on the xy-plane by
perspective projection, (0,0, —f) being the viewpoint.

portions of the same object in rigid motion. This condition also tells us where the
boundaries of those planar portions are located, even if these boundaries are not
observed on the image plane. The formulation presented in this paper is quite
general, and many useful applications can be derived from our analysis, a typical
one being the correspondenceless approach [9-13).

2. CHARACTERIZATION OF OPTICAL FLOW

As discussed in the previous section, we take an xyz-coordinate system in the
scene and regard the xy-plane as the image plane, choosing (0,0, —f), the point on
the z-axis at distance f from the image plane on the negative side, as the viewpoint
or camera focus (Fig. 1). A point in the scene is projected to the intersection
between the image plane and the ray connecting the point and the viewpoint.
Hence, point (X, Y, Z) in the scene is projected to point (x, y) on the image plane,
where

JX Y

x iz vz (2.1)
This convention enables us to consider orthographic projection to be simply the
limit of f — oo without requiring special scaling.

Suppose a plane is moving in the scene, and let z = px + gy + r be its equation.!
Then p, g designate the gradient of the plane, and r the distance of the plane from
the image plane (not the focal point) along the z-axis, which we call the absolute
depth. The instantaneous rigid motion is specified by the translation velocity
(a, b, c) at a reference point and the rotation velocity (w,, w,, w;) around it (i.e.,
with (@,, w,, ;) as the rotation axis and yw? + w3 + w} (rad/sec) as the angular
velocity screwwise around it). While any point can be chosen as the reference point,
we choose (0,0, ), the intersection between the surface and the z-axis. As is
mentioned in the previous section, this is the best choice from an engineering point
of view (see also Appendix C). Thus, the instantaneous position and motion of the

1This parameterization excludes the case where the plane is perpendicular to the image plane. Since we
are analyzing the optical flow projected onto the image plane, we are implicitly assuming that the surface
gradient is not large.
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plane are specified by nine parameters p, g, r, a, b, ¢, @, @,, @3, which we call the
structure and motion parameters. The objective here is to recover them by observing

the image motion on the image plane.?

If the motion is as described above, the optical flow x = u(x, y), y = v(x, y)
induced on the image plane is given as follows (Appendix A):

u(x,y) =uy+ Ax + By + (Ex + Fy)x,
v(x,y)=vy+ Cx + Dy + (Ex + Fy)y.

(2.2)

Here, the eight coefficients u,, vy, 4, B, C, D, E, F, which we call the flow parame-

ters,? are given by

fa /b
T e i e
pa+c qa
A= — N B= _— --—,
pw, f+r qu; — W3 f+r 23)
c N pb gb+ ¢ )
= —pw, wa‘f+r: = —quw Trr’
1 pc 1 qc
E=—|w, + F=—|-u, + .
f(“” f+r)’ f( o f+r)

Thus, we are viewing a very restricted form of motion specified by only eight
parameters; if the flow parameters are the same, the motions seem identical to the
viewer. Hence, one of the nine structure and motion parameters p,q,7r, a,
b, ¢, w;, w,, @; Must remain indeterminate.*

If the focal length f is sufficiently large compared with the size of the object
image, the projection must be regarded as orthographic. This is achieved by simply
taking the limit f — oo, resulting in the orthographic approximation

u, = a, vy =b,

A = pw,, B = qu, — ws, C=-puw, + w;, D= -qu,, (2.4)

E=0, F=0.
A complete analysis of this case is given in Kanatani [15].5

2See footnote 4.

3They can be regarded as u,v, du/dx, du/dy, Ju/dx, dv/3y,(1/2)3%u/dx* (= 3% /dx dy),
(1/2)3%/3y? (= 3%u/dx 3y), respectively, evaluated at the origin (0,0). The flow equations are
quadratic in x, y for planar surfaces. For general curved surfaces, however, the flow equations are
expressed in an infinite Taylor series (Waxman and Ullman [30]). For curved surfaces, see also Subbarao
and Waxman (27] and Subbarao [26].

4It is not true that the absolute depth r must necessarily be regarded as indeterminate and hence
should be removed from the structure and motion parameters. We later say that the absolute depth r is
indeterminate. This is because that choice is the most convenient one, not because it is a logical
consequence. Indeed, we can regard, say, a as indeterminate and express all the rest (including the
absolute depth r) in terms of a. See footnote 8.

5We show the explicit analytical solution of Egs. (2.3) for perspective projection in the form of Egs.
(5.11) and (5.12). However, we cannot obtain the orthographic solution by merely taking the limit f — oo
in Egs. (5.11) and (5.12). Most terms become indeterminate in the form of co/c0. Hence, we must solve
Egs. (2.4) from the beginning, as is done in Kanatani [15]. In other words, the perspective solution is not
well “connected” with the orthographic solution.
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On the other hand, if the focal length f is large but not large enough for the
orthographic approximation, we may omit terms of O(1/f2) but not terms of
O@/f). Then, E and F in Egs. (2.3) are replaced by

(.02 wl
=, = ——, 2.
E=— F 7 (2.5)

respectively. We call this approximation the pseudo-orthographic approximation.
Suppose the optical flow is already obtained on the image plane by some available

means (e.g., [8, 22, 29]). Then, the flow parameters u,, vy, 4, B,C, D, E, F are

estimated by fitting equations of the form (2.2), say by the least square method,
inimizing

M= 2[("0 + Ax; + By, + (Ex; + Fy)x; — u(x,, }’i))2
i (2.6)
+(vy + Cx; + Dy, + (Ex; + Fy,) y; — v(x;, yi))Z]’

where the summation is taken over all feature points belonging to the same planar
surface where the velocity is observed.

By computing the “residual” of Eq. (2.6), we obtain a planarity criterion; if the
resulting M is not less than a prescribed threshold value, the object cannot be
regarded as a plane. This also suggests the following segmentation procedure:
starting from a small number of feature points where the residual M is very small,
add feature points from their vicinity one by one, each time recomputing the flow
parameters and checking the residual M, until it reaches a prescribed threshold
value. Then, we end up with a region which is regarded as an image of a planar or
almost planar part of the object surface. We call such a region a planar patch. If this
procedure is repeated, the image domain is theoretically segmented into planar
patches. (Exact boundaries of these planar patches are not necessary. They are
reconstructed by the procedure described in Section 6.)

In practice, however, this process might be unreliable for noisy data, and the
resulting segmentation might be affected by the order of adding the points. Hence,
other clues and measurements might be necessary to detect moving objects (for
actual techniques, see Adiv [1]). Since what we want is the flow parameters, not the
flow itself, there also exist methods of estimating the flow parameters directly from a
sequence of images without computing the optical flow, i.e., without using the
point-to-point correspondence. For example, Waxman and Wohn [30] presented a
method of computing the flow parameters from the normal velocities of contour
images, and Kanatani [12, 13] computed global “features” and estimated the flow
parameters. (See also Kanatani [9-11].)

In this paper, we do not deal with detection techniques. The subsequent analysis
is concentrated on recovery of the structure and motion parameters from the flow
parameters which are assumed to be already determined.

3. INVARIANT PARAMETERS OF OPTICAL FLOW

Once the flow parameters u,, vy, 4, B,C, D, E, F are computed from a given
optical flow, the structure and motion parameters p,q,r, a, b, ¢, w,, w,, w; are
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given as a solution of Egs. (2.3), which are the only restrictions constraining the
solution, for the motions seem identical to the viewer if the flow parameters are the
same. An important fact is that an optical flow is described in the form of egs. (2.3)
in reference to an xy-coordinate system on the image plane and that the choice of
the coordinate system is completely arbitrary. Suppose we use an x’y’-coordinate
system obtained by rotating the xy-coordinate system around the z-axis by angle ¢
counterclockwise. Since we are observing the rigid motion of a plane, the optical
flow must have the same form

u' =ul+Ax + By +(E'x+ F'y)x’,

(3.1)
v =vh+ C'x’+ D'y + (E'x"+ F'y')y’,

i.e., the form of the optical flow is form invariant.
The old coordinates x, y and the new coordinates x’, y’ are related by

x| _ [ cos@ sinOHx]

[y'] [—sinﬂ cos@llyl (3.2)
Since the (2D) velocity components are transformed as a (2D) vector, the old
components u, v and the new components u’, v’ are related by

w)l _| cos@ sind||u
[v’] [—sin0 COSOHU]' (3.3)
If Egs. (3.2) and (3.3) are substituted in Eqs. (3.1) and compared with Egs. (2.2), we

find that ugy, v, and E, F are transformed as vectors and that A4, B,C, D are
transformed as a tensor (Appendix B):

ug cosf sinf|[u, E’ cosf sin@)[E

[v()]=[—sin0 cos 8 [00]* F’]=[—sin0 cosB][F]’ (3:4)
A B’] =[ cos 6 sin()][A B] cosf§ —sind (3.5)
c’ D —sinf cos@]lC Dllsind cosfl )

Equations (3.4) and (3.5) describe a linear mapping from u,, vy, 4, B,C, D, E, F
onto u}, vy, A’, B’,C’, D', E’, F’, and this mapping is a representation, or a
homomorphism, from the 2D rotation group SO(2) [6, 32]. As is well known in group
representation theory, any representation of SO(2) is reduced to one-dimensional
irreducible representations due to Schur’s lemma, since SO(2) is a compact Abelian
group [6, 32]. In fact, if we define quantities

Uo=u0+ivo, T=A+D, R=C-B, (36)
S=(4-D)+i(B+C), K=EH+iF, )
where i is the imaginary unit, the transformation rule becomes

U =e®, T'=T, R=R, S§=e25, K=" (37)

(Appendix B). In other words, T, R are (absolute) invariants (of weight 0), Up, K
are (relative) invariants of weight —1, and S is a (relative) invariant of weight —2.
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F16.2. (a) Translation by (u,, v,). (b) Divergence by T. (c) Rotation by R. (d) Shearing with Q; and
0, as the axes of maximum extension and maximum compression. (¢) Fanning along (E, F).

Since these quantities are irreducible representations, each of them should have a
distinctive geometrical meaning (Weyl [33]). In fact, U, represents translation (Fig.
2a), T divergence (Fig. 2b), R rotation (Fig. 2c), S shearing (Fig. 2d) and K what we
call fanning (or foreshortening [7]) of the optical flow (Fig. 2¢). These quantities are
also derived by decomposing the flow according to tensor symmetry properties as
was shown in Kanatani [15).6

Similarly, the gradient components p, g, the translation velocities a, b and the
rotation velocities w,, w, are transformed as vectors with respect to the coordinate
rotation, while r, ¢, w, are scalars. Namely,

[p’] _| cos@ sina][p]
q' —sin@ cosflilql
[a'] _[ cos@ sino][a] ["’i] _[ cosé sinO]["’I] (3.8)
b’ —sin@ cos@lLb) w) —sind cosfll @]
r=r, ¢’ =c, W) = W;.
Hence, if we combine them into complex parameters

P=p+ig, V=a+ib, W= +iw,, (3.9)

61t should be emphasized that this is the only decomposition that has an invariant (hence physical or
geometrical) meaning irrespective of the choice of the coordinate system. Other choices such as
“stretching” and “shearing” by Hay [7] and v,, 1,, €,, €5y, €, €xxxs €xxys Cxyys €yy, by Waxman and
Uliman [30] can be given physical or geometrical interpretations only in reference to a particular
coordinate system. However, these coordinate-dependent quantitics may be sometimes very useful in
practical computation. (Invariant quantities are in general complex numbers, as we have shown.)
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they are (relative) invariants of weight —1:
P'=e"p,  V'=eY, W =eUW. (3.10)

4. ANALYTICAL SOLUTION FOR PSEUDO-ORTHOGRAPHIC PROJECTION
If Eqgs. (2.3) are substituted in Eqs. (3.6), we obtain

f(a+ ib)
o f+r ’
pa+gb+ 2c
T=P“’z_qwl—?"
pb—qa
R= —pw, — qu, + 2w, — i (4.1)
pa—gb pb+ qa
S =pw, + qu, — F+r +1(qw2—pw1— T+ )’
1 cp ( 1 cq )
K==+ ——+i|l-=0, + ——|.
2 f(f+r) s+

If these equations are rewritten in terms of the complex expressions P, V, W of Egs.
(3.10), then T and R in Egs. (4.1) are combined into one complex equation for
R + iT in the form

R+iT PW* +2 i(PV" + 2c) (4.2)
i = w; f +r ’ .
where * denotes the complex conjugate. Next, S in Egs. (4.1) is expressed as
S iPW il (4.3
- f+r 3)
Hence, Eqs. (4.1) are now equivalently rewritten as
U=-L—v, plwrsive)=o-r) i 2 4T
0_f+r’ fO - W3 — )_l f+l'+ s
i i cP
P|W-=-Ul|=iS, K=-—-W+——0. (44)
( f °) 7 ()

Thus, the eight real equations (2.3) are equivalently reduced to four complex
equations in unknowns P, r,V, ¢, W, w,.

If the pseudo-orthographic approximation is applied, then K in Egs. (4.4) is
replaced by

K=—-W. (4.5)

The solution is given as follows.
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THEOREM 1.  For the pseudo-orthographic approximation, the structure and motion
parameters are given by

V= &U P=———  W=iK
~T % Py MY ‘e
1 f+r (46)
Wy = E(R + Im[Se~%¢]), c¢= —2—(T— Re[ Se~2]),
where
a = arg(fK — Up/f), (4.7)

and arg denotes the argument of complex numbers. Hence, in general,’ (i) the absolute
depth r is indeterminate,® (i) a/(f+r),b/(f+r),c/(f+r) are uniquely de-
termined,’ and (iii) p, q, w,, W, W, are uniquely determined. In particular, no
spurious solution exists.

Proof. Equation (4.4.1) gives V in the form of Eq. (4.6.1), and Eq. (4.5) gives W
in the form of Eq. (4.6.3), which on substitution in Eq. (4.4.3) gives P in the form of
Eq. (4.6.2). Taking the real and the imaginary parts of Eq. (4.4.2), we obtain

1 i
5 R+ Re[P(W* + ?Uo*)]),

(03 = -
(4.8)
+r i
c= 5 T+ Im[P(W* + ?Uo*)]).
If we note that
i K* = U/f .

P{W*+ U | = —iS————— = —iSe™ %", 49
( f°) /K — Up/f (“49)

Egs. (4.6.4) and (4.6.5) are obtained.

ExaMmpPLE 1. Consider the flow of Fig. 3 for f= 2. The flow parameters are
u, = —0.04, v, = 0.04, 4 = —0.068, B= —0.196, C = 0.142, D = —0.079, E =
0.059, F = —0.054. The invariant parameters become U, = —0.04 + 0.04i,
T'= -0.146, R =0.338, S = 0.011 - 0.054i, K = 0.059 — 0.054i. Since [T| > |S]|
= 0.055, this flow cannot be regarded as an orthographic projection of a planar
motion (Kanatani [15]). In the pseudo-orthographic approximation, we obtain
a/(r+2)=-002 b/(r+2)=0.02 c/(r+2)=010, p=0238, ¢g= —0.171,
w; = 6.19 (deg/sec), w, = 6.76 (deg/sec), w, = 9.88 (deg/sec), and the absolute
depth r is indeterminate. No spurious solution exists.

"Indeterminacy occurs when S = 0 and fK = Uj,/f. See also footnote 10.
8See footnote 11.
9See footnote 12.
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F1G. 3. An example of optical flow.

5. ANALYTICAL SOLUTION FOR PERSPECTIVE PROJECTION

Now, consider the case of perspective projection. If we put
, c — i
“Trer T
Egs. (4.4) are further reduced to

f+r , .
V= —f—Uo, PW’'* = 2w, — R) —i(2¢"+ T),

Us, (5.1)

(52)
PW’

1
S, cP= W =K~ LU

Since V is already explicitly given by the first of Egs. (5.2), we only need to solve the
remining equations for ¢/, P, W’, w,. First, we must check if ¢’ = 0 or not.

LEMMA 1. We can conclude ¢’ = 0 if and only if
Re[Se~2%¢] =T (5.3)

is satisfied (within a certain threshold), where « is defined by Eq. (4.7). In this case,
the structure and motion parameters are given as follows'°:

f+r
f

1
W=iK, w= E(R + Im[ Se~%]).

V= Uo, C=0,

(5.4)
==

1%Indeterminacy occurs when 7=0, $=0 and fK = Up/f. In this case, P is completely inde-
terminate. In fact, it can be shown (Kanatani [14]) that this occurs if and only if the surface is orbiting
around the camera focus, always keeping the configuration relative to the camera focus rigidly fixed. In
other words, the configuration of the rays from the camera focus to the feature points is always the same.
Hence, no information is obtained about the position and orientation of the surface, i.c., the optical flow
is uninformative.
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Proof. 1f ¢’ =0, Eq. (5.2.4) gives W as Eq. (5.4.4), and then Eq. (5.2.3) gives P
as Eq. (5.4.3). These are solutions if and only if they satisfy the imaginary part of
Eq. (5.2.3), or equivalently Eq. (5.3), and Eq. (5.4.5) is obtained by taking the real
part of Eq. (5.2.3).

Now, suppose we have already checked that ¢’ is not zero. Noting that Eq. (5.2.3)
is rewritten as (¢'P)(—iW'’) = ¢S, we see that Egs. (5.2.3) and (5.2.4) imply that
¢’P, —iW' are the two roots of the quadratic equation

X*—LX+¢'S =0, (5.5)
where
L= K- Uy/f. (5.6)

Hence, P, W’ are given as functions of ¢’ by

P(e) = 5o (L2 VP 4eS), W)= L(LF VD=4, (57)

Taking the real and the imaginary parts of Eq. (5.2.2), we obtain

wy = %—(R + Re[P(c)W'(c')*]), ¢’ = — %(T+ Im[P(c)W'(c')*]). (58)

If Egs. (5.7) are substituted in Egs. (5.8), they become

o= SR+ %C,Im[L*\/LI —acs],

2
/16|S|%"> — 8Re[ LIS *]¢’ + |L|* = —8¢c'2 — 4Tc’ + |L|>.

(59

The second of Egs. (5.9) is the equation to determine ¢’. If ¢’ is determined, then P,
W', wy are given by Egs. (5.7.1), (5.7.2) and the first of Eq. (5.9), respectively.

Now, the left-hand side of the second of Egs. (5.9) is a smooth concave function
(or constant if S = 0) passing through (0, |L|?), while the right-hand side is a
smooth convex quadratic function also passing through (0, |L|*) (Fig. 4). Since we
know that the solution is nonzero, we can see from Fig. 4 that there exists a single
unique nonzero solution ¢’. Taking the squares of both sides and dropping off ¢’
from both sides, we obtain

1 1
¢+ Te? + Z(zr*2 =S =|L]*)¢" + g(Re[Lzs] - T|L|?) =0. (5.10)

From Fig. 4, we can easily see that Eq. (5.10) has three real roots and that the
middle one is the desired root. The other two roots were introduced by squaring of
both sides. Thus, we obtain the following result.
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J161S12¢2_8Rell2S*1c WLI%

\u.l2 \

-8¢2-4TchILI2

F1G. 4. Existence and uniqueness of nonzero ¢’.
THEOREM 2. If c is known to be nonzero, the solution is given as follows. Let ¢’ be
the middle root of the cubic equation
1 1
X+ TX*+ Z(T2 — 181> =|L*)X + §(Re[L2S] - TI|L1*) =0. (5.11)

Then the structure and motion parameters are given by

+r 1 72 _ J.r¢
V= fTUO’ c:(f-l-r)c', P"—‘E(Li L2_4C'S),
i i
W= E(L FVL?—4c's) + ;Uo, (5.12)
1 1
o= ZR & 4c,Im[L*\/L2 —4c5).

Thus, (i) the absolute depth r is indeterminate," (ii) a/(f + r), b/(f + r), ¢/(f + 1)
are uniquely determined,** and (iii) two sets of solutions exist for p, q, w,, @5, @;.

Since an explicit form of the solution of a cubic equation exists, we can express
the solution ¢’ of Eq. (5.11) explicitly, as is done by Subbarao and Waxman [27].
However, from a practical point of view, the use of iteration, say the Newton-
Raphson method, to solve the second of Eqs. (5.9) seems more feasible, because the
equation is known to behave as shown in Fig. 4. Rough bounds of ¢’, w, are given
as follows.

Remark. The solutions for ¢’, w, are bounded by

1 1 1 1
- 5(|S| +T)<c' < 5(|S| -T), E(R —IS) £ w0 < E(R +18)). (5.13)

Undeterminacy of the absolute depth » has been well known, but, strictly speaking, the absolute
depth r is treated as an indeterminate just because this is the most convenient choice, for r is an absolute
invariant and this choice makes the forms of the translation velocities a, b, ¢ the same. However, this is
not a unique logical consequence. For example, we can also choose a as an indeterminate, determining r
in the form r = f(a/u, — 1), and we can assert that b/a, c/a are uniquely determined. In this case, a is
a single indeterminate. Similarly, we can choose b or ¢ as an indeterminate.

12 This may seem contradictory, since in the camera-based interpretation the translation velocity scaled
by the absolute depth is not uniquely determined (e.g., [5, 18, 20, 27, 30]). However, as stated in Section
2, any 3D rigid motion is represented by the translation velocity at a reference point and the rotation
velocity around it, and this decomposition of a motion into the translation part and the rotation part is
different if the reference point is different. In fact, the translation in the camera-based interpretation is a
linear combination of our translation and rotation in the object-based interpretation. Thus, the distinc-
tion between the camera-based interpretation and the object-based interpretation is very important. See
also Appendix C.
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Proof. Since |PW’*| = |PW’|, we see from Egs. (5.2.2) and (5.2.3) that
(2w, — R)* + (2¢' + T)* =S (5.14)

In other words, point (w,, ¢’) is on the circle of center (R/2, —T/2) and of radius
|S|/2 in the two-dimensional plane.

ExampLE 2. Consider again the flow of Fig. 3. We obtain a/(r + 2) = —0.02,
b/(r +2) =002, ¢/(r+ 2) =0.10, and two sets of solutions (i) p = 0.300, g =
—0.200, w, = 5.00 (deg/sec), w, = 5.00 (deg/sec), w, = 10.00 (deg/sec) and (ii)
p=1073, g= —1073, w, =000 (deg/sec), w,=0.57 (deg/sec), w;=9.39
(deg/sec). The absolute depth r is indeterminate.

Note that solution (i) is close to the pseudo-orthographic solution of Example 1.
The geometrical interpretation of these two solutions is as follows. As is seen in Fig.
2e, the fanning K is caused by rotation W around an axis parallel to the image
plane. However, as is seen in the last of Egs. (4.4), this deformation is also caused
by the velocity ¢ along the z-axis when the focal length f and the absolute depth
are not large compared with the gradient P. Intuitively speaking, the translation
along the line of sight mimics the effect of rotation when the surface is too near to
the viewer and the projective distortion is too large. The pseudo-orthographic
approximation of Eq. (4.5) removes this effect, eliminating the spurious solution.

Thus, if the surface is known to be far away from the viewer compared with the
camera focal length f and the projective distortion is not so large, we can identify
with the true solution the one which corresponds to the pseudo-orthographic
solution. In the above example, solution (i) is the desired one in the sense above
mentioned.

The fact that an optical flow of planar motion yields, other than the true solution,
a spurious (or confusable [7]) solution was pointed out first by Hay [7] and later by
Longuet-Higgins [18] and Subbarao and Waxman [27]. Hence, it seems that one
cannot distinguish the true solution from the spurious one, for both solutions yield
exactly the same optical flow. However, our analysis makes clear the geometrical
meaning of the spurious solution, making it possible to distinguish the true one from
the spurious one in the sense described above.

Since the flow is characterized by eight flow parameters, the minimum number of
feature points whose velocities must be observed in order to determine the flow
uniquely is four. It is easily checked that the flow parameters are uniquely de-
termined if velocities are measured at four coplanar points no three of which are
collinear.

EXAMPLE 3. Suppose velocities are measured at four points (0.4, 0.2), (—0.4,
04), (-0.2, —0.4), (0.6, —0.2) for f= 2, resulting in (—0.105, —0.015), (0.036,
0.067), (—0.085, 0.112), (~0.196, —0.011), respectively (Fig. 5). The corresponding
flow is given by flow parameters u, = —0.037, v, = 0.023, 4 = —0.162, B = 0.124,

= —0.120, D = —0.080, E = 0.019, F = 0.059 (Fig. 6). The procedure shown
previously yields a/(r + 2) = —0.14, b/(r + 2) = 0.09, ¢/(r + 2) = 0.40 and two
sets of solutions: (i) p = 1.24, g = 0.65, w, = —3 (deg/sec), w, = —5 (deg/sec),
w3 = —9 (deg/sec) and (ii) p = —0.50, ¢ = 0.30, w, = —5 (deg/sec), w, =35
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(deg/sec), wy; = —5 (deg/sec). The z-coordinates of the four vertices are obtained
by substituting the xy-coordinates in the last of Egs. (A.2), resulting in (i) z, = 0.91
+ 1.46r, z, = —0.21 + 0.89r, z; = —0.41 + 0.80r, z, = 0.89 + 1.44r, or (ii) z, =
-0.13 +093r, z,=038 + 119, z;= —-0.02 + 0.99r, z,= —0.31 + 0.85r.
Thus, the absolute depth r is indeterminate.

However, this process may be very sensitive to noise and misdetection of
correspondence. If we want to obtain accurate estimates of the flow parameters, the
velocity must be observed at many feature points of one planar patch.

6. ADJACENCY OF OPTICAL FLOWS

So far, only one planar patch has been considered on the image plane. Here, let us
consider the relationship among planar patches when they are images of one and the
same rigid object. First, note that Egs. (2.2) are combined into a single equation in
complex variables of the form

1
U=U,+ E((T+1R)Z+SZ*+KZZ*+K*Zz), (6.1)
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where U= u+ iv,Z = x + iy.Let UJ, T’, R’, S’, K’ be the parameters for another
patch. If the two patches correspond to two planes of the same object, the induced
optical flows must be continuous over the intersection line (or, to be precise, the
image of the intersection line of the two planes). In other words, at any point (x, y)
on the intersection line, which may or may not appear on the image plane, we have
the relation

QU] =)20y] + [T+ iR]Z + [S1Zz* + [K]ZzZ* + [K]*Z?=0, (6.2)
where [ ] designates the difference, e.g., [Uy] = Uy — U,. Since Eq. (6.2) holds at
any point on the intersection line, it must be the actual equation of the intersection
line.

First, consider the case of [K] # 0. Equation (6.2) is rewritten as

([K1Z + [S])z* + ([K]*Z2 + [T + iR} Z + 2[,]) = 0. (6.3)
This equation reduces to two linear equations if and only if polynomial [K]*Z? +

[T + iR]Z + 2[U,] in Z is divisible by [K]Z + [S]. By the well-known “remainder
theorem,” the necessary and sufficient condition for that is

[K1*[ST = [T+ iR][SI[K] + 2[L][K]* = 0. (6.4)
If this condition is satisfied, Eq. (6.3) is factored into

(K)Z + [s])| z* + [[I; ]]* Z+2 [[';"]] 0. 6.5)

Since [K]Z + [S] = 0 describes one point, the intersection line must be

N A
Z* + K] Z+2 S = 0. (6.6)
In terms of x, y, this becomes
[E]x + [F]y + [%IIK] 0. (6.7)

[s]

This is an equation of a line if and only if [[},][K]/[S] is a real number, namely if
and only if

Im([G][K1[S]*) =0 or arg([Up]) + arg([K]) = arg([S]) (mod 7). (6.8)

We say that two optical flows are adjacent if the corresponding surfaces (ex-
tended if necessary) have a fixed intersection (or are “hinged together”). Then, from
the above result, we obtain
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LEMMA 2. For [K) # 0, the necessary and sufficient condition that two optical
Slows are adjacent is

[KT*[ST - [T+ RI[SIK] + 2[4][K]* = o,
Im([][K1S]*) = 0 or arg([L5]) + arg([K]) = arg([S]) (mod 7). (6.9)

If this condition is satisfied, the equation of the intersection line is given by

[Gl[K] _

[E]x + [F]y + T =0. (610)

If [K] = 0, then Eq. (6.3) is linear in x, y and is rewritten as
([uol + ilve]) + ([4] +i[CD)x + ([B] + i[D])y = 0. (6.11)

Hence, we have

LEMMA 3. For [K} =0, the necessary and sufficient condition that two optical
flows are adjacent is

[uol: [vo] = [4]:[C] = [B]: [D]. (6.12)
If this condition is satisfied, the equation of the intersection line is given by
[uo] + [4lx + [Bly=0 or [u,] +[C]x+ [D]ly=0. (6.13)

In other words, if Eq. (6.9) or (6.12) is not satisfied, the two patches are images of
two different independently moving objects, while if they are satisfied, the intersec-
tion line is immediately obtained even if it does not appear on the image plane.
Thus, once portions of planar patches are detected on the image plane, the exact
boundaries between them are completely determined as long as all the patches
belong to the same object, and there is no need for edge detection.

However, adjacency does not necessarily mean “ rigid connection,” which must be
determined by analyzing each planar patch and recovering a/(f +r), b/(f+ r),
¢/(f+r), and two sets of p, ¢, w,, w,, w,. If the motion is rigid, then w,, w;, w,
must be common to both patches, and hence we can pick out the true solution for
each patch. If common w,, w,, @, are not found, the corresponding planar surface
cannot be rigidly connected.

For the connection of two planes, we obtain the following important observation:

LemMA 4. If the intersection line on the image plane is Y = mx + n (obtained by
Lemmas 2 and 3) and the equations of the corresponding planar surfaces are
z=px+qy+r,z=px+q’y+r, the relative depth [r] = r’ — r is given by

(f+r)n (f+r)n
[r]= m[l’] = W[fll (6.14)
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Proof. 1If a point (X,Y,Z) is on the intersection line of the two planes
z=px+qy+r, z=p'x+q’y+r’, it satisfies both of these equations, so that
[P]X + [q]Y + [r] = 0 is satisfied. Substituting the first and the second of Egs.
(A.2) in Appendix A, we obtain the equation of the intersection line on the image
plane in the form

(f+0)p] =plrDx+ (f+1)a] = qlr])y + f[r]=0.  (6.15)
Comparison of this equation with y = mx + n yields Eq. (6.14).

Lemma 4 states that if the absolute depth is known or assumed for one patch, the
depths for all other patches are uniquely determined. In conclusion, we have

THEOREM 3.  The structure and motion of an object whose surface consists of, or is
approximated by, planar faces are uniquely determined from its optical flow under
perspective projection only up to a single indeterminate absolute depth r.

This fact' was first found by Hay [7] and later rediscovered by many people in

many different forms, though the analytical result of Lemmas 2 and 3 is not found
elsewhere.

ExampLE 4. Consider the flow of Fig. 7 for f = 2. The flow as whole does not
satisfy the planarity criterion discussed in Section 2, and hence it cannot be
regarded as a single flow. For the upper right part, the flow parameters are
estimated to be uy, = —0.061, v, =0.126, 4 = 0.003, B = —0.134, C = 0.056,
D = —-0.148, E=0.112, F= —0.077 and for the lower left part u} = —0.097,
vy = 0167, A4’ = —0.176, B’ = —0.264, C’ = 0.252, D’ = -0.006, E’ = 0.071,

PStrictly speaking, the solution may not be unique if the optical flows of a// the planar patches
happen to have two identical sets of w,, w,, w;. However, it is known that this type of ambiguity occurs
only for a special type of quadric surface (cf. Fang and Huang [5), Tsai and Huang [28], Maybank [20]
and Subbarao [26]).
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F’ = —0.109. The adjacency condition (Eqgs. (6.9)) is satisfied within rounding
error, and the intersection line is estimated to be y = —1.30x — 0.27, which is
indicated by a broken line in the figure. For the upper right part, we obtain
w, = 10.0, —4.7 (deg/sec), w, = 10.0, 1.1 (deg/sec), w; = 10.0, 0.9 (deg/sec), and
for the lower left part w, = —2.3, 10.0 (deg/sec), w, = —4.6, 10.0 (deg/sec),
w; = 19.5, 10.0 (deg/sec). Hence, the true solution is w, = 10.0, w, = 10.0, w; =
10.0 (deg/sec). The gradients are p = 0.5, g = 0.2 for the upper right part and
p' = —03, g’ = —0.4 for the lower left part. The equations of the two planes are
z=05x+02y+r, z= —03x — 04y + (0.92r — 0.16), respectively.

7. CONCLUDING REMARKS

We have presented a complete analysis of the optical flow resulting from planar
surface motion under perspective projection and expressed the solution in analytical
closed form including the spurious solution. The underlying principle is invariance
with respect to coordinate changes on the image plane, and the equations are
written in terms of invariants, which are in general complex numbers, based on
group representation theory. The adjacency condition of optical flows and the
equation of intersection are obtained in simple forms by means of complex algebra.
Hence, analyzing each planar patch, we can reconstruct the structure and shape of
the object whose surface consists of, or is approximated by, planar faces.

It should be pointed out that explicit analytical solutions are obtained for both
perspective and pseudo-orthographic projections not because complex quantities are
introduced. In fact, all complex equations can be rewritten in terms of real
quantities alone, separating the real and the imaginary parts, or the same analytical
solutions can be attained without using complex algebra or matrix calculus from the
beginning, as was done by Waxman and Ullman [30] and Subbarao and Waxman
[27]. The merit of complex expressions is that they make clear the invariant
properties with respect to coordinate changes and that various types of analysis,
including error sensitivity and the adjacency condition, become very easy.!

We have also emphasized the importance of a good parameterization of the
underlying geometry such as the choice of the reference point and the position of
the viewpoint. This is closely related to the robustness of parameter estimation. Adiv
[2], for example, claims that any algorithm of 3D recovery is “inherently ambigu-
ous” because, among other things, “ translational flows” and “rotational flows” have
very similar patterns, and hence it is very difficult to distinguish them. However,
translational flows and rotational flows look quite different in our object-based
interpretation. Thus, his assertion is not “algorithm independent.” There are many
factors that come into play (Appendix C). One of them is a bad parameterization;
one cannot expect robustness if the problem is parameterized in such a way that
large changes induce small observed effects.

Our parameterization also makes it possible to treat orthographic projection and
perspective projection in the same framework. Moreover, we can obtain the pseudo-
orthographic approximation, for which no spurious solution exists. This enables us to
distinguish the true solution from the spurious one for perspective projection of
planar motion. The geometrical interpretation for this is also given.

14 See footnote 15.
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In addition, the pseudo-orthographic solution is expected to be more robust than
the exact solution. As Adiv [1, 2] points out, estimation of E, F (hence K = E + iF)
of Egs. (2.2) may be difficult and vulnerable to errors. However, as is seen from Eqs.
(4.6), K enters the solution of the pseudo-orthographic approximation in a very
straightforward way, so that it is expected that a small error in K will cause only
small errors in the solution.'®

In our analysis, all the computations are done on the flow parameters extracted
from the optical flow. Therefore, the optical flow is not necessary if the flow
parameters can be estimated. This idea leads to detection of structure and motion
without correspondence and is fully studied by Kanatani [12, 13}, who computed
“features” to estimate the flow parameters.

APPENDIX A: EquaTions OF OpTicAL FLow
If a point (X,Y, Z) in the scene is on the plane z = px + gy + r, there is a
one-to-one correspondence between the point (X, Y, Z) in the scene and its projec-
tion (x, y) on the image plane. In fact, solving Egs. (2.1) and
Z=pX+qY+r (A1)

simultaneously for X, Y, Z, we obtain

() 1)y _f(px+gqy+r)
rme UTrmeo T Tirm-o - (A2)

which, together with Eqgs. (2.1), establish the one-to-one correspondence between
(X,Y,Z) and (x, y).

In our object-based interpretation (Fig. 1), the velocity of point (X, Y, Z) in the
scene is given by

):( a N X
Yi=|b|+]|a|X| ¥ | (A.3)
zZ c w, Z-r

Substituting Eq. (A.1) for Z, we obtain

X=a+pu,X+ (qu, - w,)Y,
Y=b+ (w,—pw)X - qo,Y, (A4)

Z=c—w,X+wY.
Differentiating both sides of Eqs. (2.1), we obtain the velocity of the image point

13From Eq. (4.6.1), we see that V is not affected by the error in K. From Egs. (4.6.2), we see that P is
stably computed unless fK — U,/f is very close to zero. From Eq. (4.6.3), we see that W is not so greatly
affected by the error in K. From Eq. (4.7), we see that a is not so greatly affected by the error in X
unless fK — U, /f is very close to zero. From Egs. (4.6.4) and (4.6.5), we see that the errors in w, and ¢
due to the error in K are proportional to the magnitude |S| of the shearing. In sum, the computation is
stable except when fK — U, /f is very close to zero or S has a very large magnitude. This exceptional
case is exactly when the surface gradient P has a very large magnitude, which is intuitively understand-
able as well.
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(x, y) as follows:

Y Y X xZ
X = - = - )
f+Z (f+2z) f+Z f+Z a5)
N R N U |
YoTv¥zZ  (Gvz? fvz f+z
From Egs. (A.4) and Egs. (2.1), we see that
12 fa
f+Z=f+Z+pw2x+(qw2_w3)y’
Y /b
iz 7z " (@3 = pwy)x = qu,y, (A.6)
4 fe
fvz fez e
Substituting these in Eqgs. (A.5) and eliminating 1/(f + Z) by
1 - px —
f—px—qy (A7)

f+z f(f+n

which is obtained from the last of Egs. (A.2), we obtain the result of Egs. (2.2) and
(2.3).

APPENDIX B: TRANSFORMATION OF OPTICAL FLOW
Let us define vectors

S R R

and a matrix
_ |4 B
A= [C ol (B.2)

Let us also denote the rotation matrix in Egs. (3.2) and (3.3) by R(#). Then, the
optical flows of Eqs. (2.2) and (3.1) are expressed as

u=u,+Ax + (k,x)x, w =up+ A'x’ + (k’,x’")x’, (B.3)

respectively, where (-, -) denotes the inner product.
Equations (3.2) and (3.3), respectively, become

x’=R(8)x, u =R(#)u. (B.4)
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Hence, from u of Egs. (B.3), we obtain

v = R(0)(uy + Ax + (k,x)x)

= R(8)(u, + AR(0)"x’ + (k,R(8)"x")R(8) x") (B.5)

= R(0)u, + R(8)AR(8)"x’ + (R(0)k,x")x".

Note that R(#) "' = R(6)" and (R(f) -, -) = (-,R(#)T - ). Comparing this with v’
of Egs. (B.3), we find
uy =R(0)u,, A’ =R(0)AR(A)", k’=R(O)k. (B.6)
Thus, Egs. (3.4) and (3.5) are obtained.
Equations (B.6) describe a linear mapping from uy, vy, 4, B,C, D, E, F onto
ug, vy, A’, B, C’, D', E’, F’. If we pick out the vector and tensor components,
Egs. (B.6) are rearranged into the following form:

cos @ sin 8

ug ¢ (uo

v —sinf cos § o

A cos28 cosfsin@ cosfsind sin?8 A

B’ —cos @ sind cos?d —sin*  cosfsind B

c’ —cos@sind —sin%0 cos?  cosfsin@ cl

D’ sin’@ —cosfsinf —cosfsind  cos’f D

E’ cos & sin @ E

| F’1 L —sinfcosf L F

(B.7)

This linear transformation is a representation, or a homomorphism, from the 2D
rotation group SO(2), but it is reducible. The matrix is diagonalized if the flow
parameters are rearranged as follows:

[ ul + i}

(A" = D’) +i(B' + C')
(A = D"y —i(B'+ C")

e—2i0

E’ + iF’
L E’' - iF’ i
[ -0 i ugy + ivg i
e uy — iv,
1 A+ D
1 B-C

(A-D)+i(B+C) |
(A—-D)—-i(B+ ()
E + iF

E-iF

(B.8)

Thus, the representation of Eq. (B.6) is reduced to the direct sum of one-dimen-
sional irreducible representations. This is possible due to Schur’s lemma, because
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SO(2) is a compact Abelian group [6, 32]. Hence, each of these new parameters
should have an invariant, hence physical or geometrical, meaning (Weyl [33]). This
reduction is also related to the decomposition of a tensor with respect to symmetry
familiar in fluid dynamics (cf. Kanatani [15]).

APPENDIX C: ROBUSTNESS OF ESTIMATION

We generalize the problem a little so that the underlying mathematical structure
becomes clear. As stated earlier, the rigid motion is represented by the (3D)
translation velocity at a reference point and the (3D) rotation velocity around it. The
decomposition is different if the reference point is different. We called it the
camera-based interpretation when the reference point is at the viewpoint or camera
focus, and the object-based interpretation when it is taken in the object.

Let us take a reference point (xg, o, 2o) arbitrarily. Suppose, then, the rigid
motion is represented by translation velocities a, b, ¢ and rotation velocities
®,, ,, w;. This is one interpretation of the object motion. If we take another
reference point (xj, ¥§, z4) and extract translation velocities a’, b’, ¢/, they are
linear combinations of a, b, ¢, w,, @,, w, in the form

a’ a AN Xy — Xg
b= b+ |w|x|Yo—Do|. (c1)
¢’ c Wy zZp— Zg

(The rotation velocities ,, w,, w; are the same.) As is well known, any two
interpretations are mathematically equivalent, because we can move from one
interpretation to another freely by Eq. (C.1).

Let us choose one interpretation arbitrarily. Consider the motion where a =1
and all the other velocity components are zero. Let us symbolically denote by
U,(x, y) the optical flow induced on the image plane by this motion. Similarly,
define the optical flows Uy(x, y), U(x, y), U, (x, y), U, (x, y), U, (x, y), each
representing a “pure” motion in this interpretation. (Flows U, (x, y), U,(x, y),
U.(x, y) are independent of interpretation.)

Let U(x, y) be the observed optical flow of the object in unknown motion. The
motion parameters can be determined if we can express the optical flow U(x, y) as
a linear combination of the “pure” component flows:

U(x, y) = aU,(x, y) + bU,(x, y) + cU(x, y)
+wlUm,(x’ y) + wZUwz(x? y) + w3Uw,(x9 y)' (C'z)

The coefficients a, b, ¢, w,, @,, w; of this linear combination give the motion param-
eters in this interpretation.

If the problem is stated as above, we can observe the following. From a
mathematical point of view, any interpretation is equivalent as long as the compo-
nent flows are linearly independent. However, there are other things that must be
taken into account from an engineering point of view. As is well known in many
similar circumstances, in order that the coefficients of a linear decomposition are
robustly computed, the component flows U,(x, y),..., U, (x, y) must be not only
linearly independent but also “ very different” from each other. If some of them are
“very similar,” the coefficients cannot be robustly computed. Also, the component
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flows must have almost the same “magnitude” in some sense. Alternatively, we can
also say that a small observed change must be caused by a small (3D) velocity. In
other words, computation is not robust if some large velocity components result in a
small observed flow by cancellation due to subtraction or by contraction. This
occurs if the component flows are “nearly linearly dependent” or some component
flows are “disproportionately small”. In mathematical terms, the most desirable case
is when the component flows form an orthonormal system, each having “unit
magnitude” and being “orthogonal” to each other, by introducing the inner product
between two flows in some natural manner.

On the other hand, if the object is a planar surface, the optical flow always has the
form of Eq. (2.2), no matter what interpretation we may adopt. This flow is
naturally decomposed into “(2D) translation,” “(2D) divergence,” “(2D) rotation,”
“(2D) shearing,” “(2D) fanning,” as described in Section 3. This decomposition is
based on the invariance properties obtained through group theoretical considera-
tion, and is quite natural. Indeed, if we define the inner product of two flows

ul(x’ )')’ vl(x! )’) and “2(3‘, y)’ vz(x, y) by
(U U} = [ [ [i(x, s, 9) + 0a(x p)a(, )] dedy,  (C3)

where integration is performed over a region W symmetric with respect to both the
x- and the y-axis on the image plane (this definition clearly satisfies the axiom of
inner product), we can easily check that the translational flow, the divergent flow, the
rotational flow and the shearing flow are mutually orthogonal. The fanning flow is
also orthogonal to the divergent flow, the rotational flow and the shearing flow. (The
translational flow and the fanning flow are not orthogonal.)

From this nice property of the (2D) linear decompasition of an optical flow, it is
desirable to choose an interpretation of the motion in such a way that the
component flows U(x, y),..., U, (x, y) of Eq. (C.2) coincide with this (2D)
decomposition of an optical flow on the image plane. However, this (2D) decom-
position does not correspond to any interpretation. (The coefficients of this (2D)
decomposition cannot be regarded exactly as the (3D) velocity components of the
object.) However, if we adopt the object-based interpretation, the (2D) translational
flow is dominantly affected by the (3D) translation along the x- and y-axes, the
(2D) divergent flow by the (3D) translation along the z-axis, the (2D) rotational flow
by the (3D) rotation around the z-axis, and the (2D) fanning flow by the (3D)
rotation around the x- and y-axes. Hence, we can conclude that the object-based
interpretation is quite appropriate, although it may not be optimal.

If we adopt the camera-based interpretation, the components U,(x, y) and U,
are very “similar” (except for the sign). So are U,(x, y) and U, (x, ). These similar
flows may cancel each other, resulting in a small observed flow on the image plane.
Hence, this choice is undesirable.

A question naturally arises. What if we are only interested in determining the
egomotion, i.e., the motion of the camera or the viewer, not the object motion? Is the
object-based interpretation any better than the camera-based interpretation in
computing egomotion? The answer is as follows. If we use the object-based
interpretation, we can compute the object motion in reference to the camera with
some error, but as stated above this is the best we can do. Then, we move to the
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camera-based interpretation by Eq. (C.1). This transition process amplifies the error
when the object is far away from the camera. If the camera rotation is small,
cancellation due to subtraction may take place on the right-hand side of Eq. (C.1),
resulting in a large relative error. Overall, determination of egomotion from optical
flow is a very difficult problem.

In short, determination of the object motion from optical flow is not in itself
ill-posed or “inherently ambiguous™ as claimed by Adiv [2]. Various other factors
reduce the problem to being ill-posed. The transition from an object motion into an
equivalent camera motion is one of them. Another case is when the object is very far
away or f is very large. In this case, the component flow U.(x, y) becomes very
small, making the decomposition of Eq. (C.2) very difficult. Still another possibility
is when the surface is small and the gradient is close to zero. In this case, the
component flows U, (x, ¥), U, (%, y) become very small, again making the decom-
position of Eq. (C.2) difficult.

Error sensitivity is greatly reduced if some a priori knowledge about the motion is
available, e.g., the object may be known to be translating but not rotating, or may
be constrained on a horizontal plane, or the ground. Then, the number of degrees of
freedom of the motion becomes small. Thus, in order to cope with the computa-
tional robustness problem, we must accurately identify the rrue sources of difficulty,
analyze them and devise supplementary means to overcome them. After all, this is
what a theoretical study like this one is all about.
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