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3-D Motion Analysis of a Planar Surface

by Renormalization

Kenichi KANATANI', Member and Sachio TAKEDA'!, Nonmember

SUMMARY  This paper presents a theoretically best algorithm
within the framework of our image noise model for reconstruct-
ing 3-D from two views when all the feature points are on a
planar surface. Pointing out that statistical bias is introduced if
the least-squares scheme is used in the presence of image noise,
we propose a scheme called renormalization, which automatically
removes statistical bias. We also present an optimal correction
scheme for canceling the effect of image noise in individual fea-
ture points. Finally, we show numerical simulation and confirm
the effectiveness of our method.

key words: computer vision, 3-D motion analysis, planar surface,
projective transformation, renormalization, statistical bias

1. Introduction

3-D motion analysis from two images, known as struc-
ture from motion, is one of the most fundamental prob-
lems of computer vision, and many algorithms have
been studied for this problem[1]—[3],[6],[9]. How-
ever, usual 3-D reconstruction algorithms fail if all the
feature points are on a planar surface in the scene. Al-
gorithms for coplanar feature points have also been pro-
posed in various forms [3],[7], [9]; they are all based on
the following principle.

If a 3-D motion of a planar surface is observed by
a camera, the resulting 2-D image motion is a projec-
tive transformation, which is specified by a 3 x 3 ma-
trix called the fransformation matrix [3],[8]. Once the
transformation matrix is computed from the observed
image motion, it can be easily decomposed into the pa-
rameters of the planar surface and the parameters of
the camera motion[3],[7],[9]. Hence, the 3-D motion
analysis consists of the following two stages:

1. computing the transformation matrix from the ob-
served image motion;

2. decomposing the computed transformation matrix
into surface and motion parameters.

In the past, the second stage has been intensively stud-
ied[3],[7],[9], but not much attention has been paid
to the first stage; only the use of the least-squares fitting
scheme has been suggested. Also, it has been widely
thought that the goal of the analysis is to determine the
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camera motion and reconstruct the planar surface. In
real circumstances, however, reconstructing individual
Jfeature points is also important. The aim of this paper
is as follows:

e We point out that statistical bias is introduced if
the least-squares scheme is used in the first stage in
the presence of image noise.

e We propose a scheme called renormalization for
computing the transformation matrix in an optimal
way.

e We present an optimal correction scheme for cancel-
ing the effect of image noise so that the 3-D posi-
tions of individual feature points are reconstructed
in an optimal way.

e We show numerical simulation by using random
noise and confirm the effectiveness of our method.

2. 3-D Analysfs of Planar Surface Motion

The camera is associated with an XY Z coordinate sys-
tem with origin O at the center of the lens and Z-axis
along the optical axis. The plane Z = 1 is identified
with the image plane, on which an zy image coordinate
system is defined around the Z-axis such that the z- and
y-axes are parallel to the X - and Y -axes, respectively. A
point on the image plane with image coordinates (z, y)
is represented by its position vector ¢ = (z,y,1) T, where
the superscript T denotes transpose.

Consider a planar surface in the scene. Let n be
its unit surface normal, and d its distance (positive in
the direction of n) from the origin O: if we put r =
(X,Y,Z)", the equation of the surface is (n,r) = d. In
this paper, we write (a, b) to denote the inner product of
vectors @ and b. We call {n, d} the surface parameters.

Since an object motion relative to a stationary cam-
era is equivalent to a camera motion relative to a sta-
tionary object, we assume that the camera moves in a
stationary scene. Displacing one camera is equivalent
to positioning two cameras in the scene, so we consider
two cameras positioned in such a way that the second
camera is translated from the first camera position by k
and rotated around the center of the lens by R (Fig. 1):
we call {h, R} the motion parameters.
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X, Y
Fig. 1

Camera motion.

Suppose we observe N feature points in the scene.
Let z, and &/, be the position vectors of the ath feature
point before and after the camera motion, respectively,
in the absence of image noise. The necessary and suf-
ficient condition that the feature point is on the planar
surface is

z, X Az, =0, (1)
where A is a matrix given as follows[17,[3],[7]-[9]:
A=R"(hn" —dI). ()

Here, I denotes the unit matrix. In the presence of noise,
the observed position vectors x, and !, do not neces-
sarily satisfy Eq.(1). Hence, the 3-D motion analysis
reduces to the following two subproblems:
Problem 1: Estimate the transformation matrix A that
satisfies Eq. (1) for o = 1, ..., N from the data {z} and
{zo}
Problem 2: From the computed transformation matrix
A, compute the surface and motion parameters {n, d}
and {h, R} that satisfy Eq.(2).

Here, we note the following two facts:

1. As will be shown shortly, any nonsingular matrix
A can be decomposed into {h, R} and {n, d} (al-
though not uniquely). Hence, the transformation
matrix A in Problem 1 is unconstrained.

2. Equation (1) implies that the transformation ma-
trix A is determined only up to scale. As a result,
the scale of the the translation h and the distance
d is indeterminate. This corresponds to the well
known fact that given an image motion a large cam-
era motion relative to a large object in the distance
is indistinguishable from a small camera motion
relative to a small object nearby.

3. Estimation of the Transformation Matrix

Writing o, = 2, + Az, and @, = &/, + A/, we
regard the noise terms Az, and Az/, as independent
random variables and define their covariance matrices
by Viza] = E[Az,Az]] and Vx| = ElAz), Az, T],
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where the symbol E[-] denotes expectation. These ma-
trices are singular and in general have rank 2. The noise
distribution is in general different from point to point.
In practice, it is very difficult to estimate the co-
variance matrix of each feature point exactly. However,
it is often easy to predict the qualitative properties of
noise characteristics such as uniformity and isotropy: In
view of this, we assume that the covariance matrices are
known only up to scale. In other words, we write

V[:I:OJ = Ezvo[ma], V[ml ] = ezvo[wzlx]:

21

(3)

and assume that the matrices Vplx,] and Vp[z!] are
known while the constant € is unknown. We call Wolea)
and Vy[z,,] the normalized covariance matrices and e the
noise level.

If the image noise is Gaussian and the product of
image terms are approximated by a Gaussian random
variable, a statistically optimal estimator of the trans-
formation matrix A is obtained by minimizing the fol-
lowing function [4]:

N
JA] = (2, x Aza, Wo(A)(z, x Az,)). (4)

a=1

The matrix W, (A) is defined by

Wa(A) = (m'a x AVplza]AT x @,
+(Azy) x Volzy] x (Az,)

+e[AVleaAT x Volall]) ()
where the symbol (---); denotes the (Moore-Penrose)
generalized inverse whose rank is constrained to be 2
(i.e., obtained by replacing the smallest eigenvalue by O
in the spectral decomposition [4]). For vectors a = (a;)
and b = (b;) and matrices U = (Uy;) and V = (V;),
we write @ X U x b and [U x V] to denote the matri-
ces whose (i7) elements are szl,mvnzl €ikl€5mn0kbm Uty
and Zil,m}n___l €ik1€jmnUkm Vin, Tespectively, where €y,
is the Eddington epsilon, taking values 1 and —1 if (t7k)
Is an even and odd permutation of (123), respectively,
and taking value O otherwise.

It is easily seen from Eq. (5) that J[cA] = J[A] for
an arbitrary nonzero constant c. Hence, we can arbitrar-
ily normalize A for removing the scale indeterminacy.
For simplicity, we adopt the normalization ||A| = 1,
where the norm of a matrix U = (Uj;) is defined by

Ul = /320, Ui,

4. Statistical Bias

If W,(A) is replaced by a constant matrix W, in
Eq.(4), the optimization takes the following form:

J[A] = (A; MA) — min. (6)
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Here, we define the inner product of matrices U = (Us;)

and V. = (Vi) by (U;V) = 3}, Ui;Vi;. In the
above equation, M is a tensor defined by
TR
= LSS W (e® xat])
a=1k,l=1 :
®(el” x zz,), @

where W™ is the (kl) element of matrix W,. We call
M the moment tensor. In the above equation, e =
(1,0,0)7, e® = (0,1,0)7, and e® = (0,0,1)7, and
the symbol ® denotes tensor product. For a tensor 7
= (T;jx) and a matrix U = (Uy;), we define the action
TU of tensor 7 to matrix U to be the matrix whose (i)
element is Zkl 1 TijiiUne. I TU = AU for a scalar
A, we say that A is the ezgenvalue of tensor 7 for the
eigenmatrix U .

The solution to the minimization (6) under the con-
straint ||A|| = 1 is given by an eigenmatrix of norm 1
for the smallest eigenvalue of the moment tensor M [3].
Eigenvalues and eigenmatrices of M are computed by
regarding M as a 9 X 9 matrix by rearranging its el-
ements and computing its eigenvalues and eigenvec-
tors[3]. We call (6) the least-squares approximation
with weights Wékl)

From this observation, it appears that the solution
that minimizes Eq. (4) is obtained by the following pro-
cedure. First, we guess an initial estimate Ay. Replac-
ing W,(A) by W,(Ap), we obtain an updated solu-
tion A;. Replacing W, (A) by W, (A1), we repeat the
same computation and iterate this process. However,
this process introduces statistical bias into the solution.
This is reasoned as follows.

Let M be the unperturbed moment tensor obtained
by replacing =, and z/, by &, and &,,, respectively, in
Eq. (7). Equation (1) implies that MA = O, ie, A
is the eigenmatrix of tensor M for eigenvalue 0. From
Eq.(7), we can easily see that E[M] = M + O(€?).
Hence, the expectation of the computed eigenmatrix of
M is perturbed from A by O(€?) according to the per-
turbation theorem [ 3].

5. Renormalization

By a detailed analysis, we can evaluate the exact amount
of the statistical bias of M and subtract it from M in
the form

M=M—END 4+ AN, ®)

where tensors A1) = (Ni(jl,zl) and N® =
defined by

mn
z]kl N Z Z elmpeknq )

a=1m,n,p,q=1

(Vb[%]jzwa(p)%(q) + Vb[w/a]pq%(ﬁ%(l)) » )

(N{%) are
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gkl = NZ Z Ezmpekan(mn)

a=1m,n,p,g=1
%[wa]JlVO[ alpa- (10)

Here Ty and wa( ) are the ¢th components of x,, and
, respectively, and Vo[wa]w and Vp[x!];; are the (i)
elements of Vo[za] and Vo[xl,], respectively. It can be
shown that E[M] = M. For this reason, we call M
the unbiased moment tensor. It follows that an unbiased
estimator of A is obtained by the optimization

J[A] = (A; MA) — min. (11)

However, Eq. (8) involves the noise level €, which is un-
known. Here, we introduce an iterative scheme called
renormalization [5], which adaptively removes the sta-
tistical bias without using the knowledge of the noise

level € and at the same time updates the weight W(kl)
The procedure is as follows:

1. Letc =0and W, =1I,a =1, .., N.

2. Compute the tensors M, NV, and N given by
Egs. (8), (9), and (10), respectively.

3. Compute the smallest eigenvalue A of the tensor
M=M-cND +AND, (12)

and the corresponding eigenmatrix A of unit norm.

4, If A = 0, return A. Else, update ¢ and W, as

follows:
D= ((AN®4) - 20(A; N 4))’
—4NA; NP A), (13)
S (A;NDA)—2¢(A; NP A)—VD
e 2(A; N@ A) ’
(14)

W, — (m; X AVO[:BQ]AT X Tl
+ (Az,) x Volzl] x (Azy)
+e[AVolwaAT x Volatl) . (19)

If D < 0, Eq.(14) is replaced by ¢ + ¢ +
M (A;NDA),

5. Go back to Step 2.
6. Surface and Motion Parameters

After the transformation matrix A is obtained, we need
to solve Problem 2 for computing the surface and mo-
tion parameters {n, d} and {h, R}. Since the scale of
the transformation matrix A is indeterminate, we rescale
it so that |A| = 1. Also, we distinguish the following
two types of camera motion:
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Case 1: The camera moves on only one side of the pla-
nar surface; the two images are views from the same side
of the surface.
Case 2: The camera penetrates through the planar sur-
face; the second image is a view from the opposite side
of the surface.

Then, the surface and motion parameters are com-
puted by the following procedure[3],[7],[9]:

1. Let A1 = Ay = A3 (> 0) be the eigenvalues of ma-
trix A' A, and {u1, w2, uz} the orthonormal set

of the corresponding eigenvectors. Let o; = +/A;
(>0),i=1,2,3.

2. The surface parameters {n, d} in Case 1 are given

by
n = N[y/oi—odu;+1/02—0c2uy, (16)
d=—22_ (17)
g1 — 03
where the symbol N -] denotes normalization to

a unit vector. In Case 2, the above distance d is
replaced by d = 02/(01 + 03).

3. The motion parameters {h, R} in Case 1 are given

by
h = N[—o03y/0?—02ui+014/02 —02us],
(18)
1
R=— (I+ agphT) AT, (19)
g2

and in Case 2 by

h = Nlosy/0?—03ui+014/02—0c2uz], (20)

1

R— — (_I + agphT) AT, 1)
o3

where the double sign + corresponds to that in

Eq.(16).

Thus, eight solutions are obtained. This ambiguity
is due to the following two facts:

¢ The surface and motion parameters are computed
from the transformation matrix A, not from indi-
vidual feature points.

o It is implicitly assumed that the camera can observe
a surface behind the camera.

Suppose there exists no image noise. If the surface
and motion parameters are {n, d} and {h, R}, respec-
tively, the 3-D position of the ath feature point with
position vectors «,, and !, is Z,x, with respect to the
first camera system and Z/,«/, with respect to the second
camera system, where the depths Z, and Z/, are given

by
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d ,  d—(n,h)

% ey P Rl 2
Hence, if the feature points are all in front of the camera
before and after the camera motion, we can impose the
condition Z, > 0 and Z/, > Ofora = 1, ..., N. Then,
the number of the solution reduces to at most two and
in most cases determined uniquely[4].

7. Optimal Correction of Feature Points

If the correct surface and motion parameters are cho-
sen, the depths of each feature point is determined by
Egs. (22) if there exists no image noise. In the presence
of image noise, however, the lines of sight determined
by x, and ], do not meet on the surface determined by
{n, d} (Fig.2), which is equivalent to saying that Eq. (1)
is not satisfied. Hence, we correct z, and z, into &,
and &/, so that Eq. (1) is exactly satisfied. Letting &,
= x4+ Az, and &), = !, + Az, substituting them
into Eq. (1), and taking a first order approximation, we
obtain

Azl x Az + ), X Az = —x!, X Az, (23)

The correction is done optimally by minimizing the
square sum of the Mahalanobis distances

J = (Azy, Volma] ™ Azy) + (Axl, Vol ]~ Azl,).
(24)
The solution is obtained in the following form:
Az, = —(Volza]AT x 2,)W (2!, x Az,),
Az, = (Volzl] x (Azy))W (), x Ax,), (25)

W= (m; x AVplza]AT x !,

+(Amo) X Volzl] (Aa:a)) (26)

2

For a vector @ = (a;) and a matrix U = (U;;), we write
a x U and U x a to denote the matrices whose (3, 5)
elements are Zi,l:l eikiarUy; and Zz,zzl eiuUikay, e-
spectively. Since Eq.(24) is a first order approximation,
the corrected values &, and &, may not exactly satisfy
Eq.(1). So, the above correction is iterated until Eq. (1)
is sufficiently satisfied. From the resulting &, and :i:;,
the depths Z,, and Z/, are computed by using Egs. (22).

Fig. 2 Optimal correction.
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8. Numerical Simulation where  and 1 are, respectively, the axis and angle
of the relative rotation R = RR™' (= RR").

Figure 3 shows two simulated motion images (512 x 512

pixels) of a planar grid. The focal length is assumed to Figures 4(a), 5(a), and 6(a) plot Au, Ah, and Af2, re-

be f = 600 (pixels). Gaussian noise with standard de- spectively, in three dimensions for 100 trials, each time
viation of five pixels is added to the z and y coordinates using different noise. As a comparison, Figs. 4 (b), 5(b),
of each grid point independently, and the surface and and 6(b) show the corresponding result computed by the
motion parameters {n, d} and {h, R} are computed. optimal least-squares approximation (the weights W<
The deviation from their true values {@, d} and {h, R} are computed from the true values). It is clearly seen
is measured as follows: that statistical bias exists for the least-squares approxi-

mation and the bias is removed by renormalization.
Figure 7(a) shows one example of a reconstructed
by grid. This example corresponds to the white dots in
_ _ Figs.4—6. The true position is drawn in dashed lines.
+ ||h||d_ —d 7 27) Figure 7(b) shows the reconstructed surface from the
d ’ same data without applying the optimal correction. We
can see that the correction enhances the accuracy of 3-D

e The error in the surface parameters is represented

Au = Pp(n—n)

where Pj, = I—nn | is the projection matrix onto
the plane orthogonal to 7.

e The error in translation is represented by

Ah=P g (b= NIh]), (28)

where P p =T - N[h|N[h]T is the projection

matrix onto the plane orthogonal to h.

e The error in rotation is represented by

(b)

AL =AM, (29) Fig. 5  Errors in translation. (a) Optimal solution. (b) Least-
squares solution.

Fig. 3 Motion images of a planar grid. (2) (b)

Fig. 6  Errors in rotation. (a) Optimal solution. (b) Least-
squares solution.

(b) (b)

Fig. 4  Errors in the surface parameters. (a) Optimal solution. Fig. 7  (a) Optimal 3-D reconstruction. (b) Simple 3-D recon-
(b) Least-squares solution. struction.
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reconstruction.
9. Concluding Remarks

In this paper, we have presented a theoretically best al-
gorithm within the framework of our image noise model
for reconstructing 3-D from two views for coplanar fea-
ture points. Pointing out that statistical bias is intro-
duced if the least-squares scheme is used in the presence
of image noise, we have proposed a scheme called renor-
malization, which automatically removes statistical bias.
We have also presented an optimal correction scheme for
canceling the effect of image noise in individual feature
points. Finally, we showed numerical simulation and
confirmed the effectiveness of our method.

One remaining issue is how to switch from the gen-
eral algorithm to the planar surface algorithm when we
have no knowledge about the scene. In the past, many
researchers endorsed wsing the general algorithm Sirst
and switching to the planar surface algorithm when the
general algorithm fails due to such anomalies as mul-
tiplicities of eigenvalues and zero division. However,
we endorse using the planar surface algorithm first and
switching to the general algorithm when the solution
does not sufficiently fit to the observed image motion for
an estimated noise level. To be specific, let ¢ be the
noise level expected from the accuracy of image pro-
cessing, and € its a posteriori estimate computed by

2 c

- 1-4/N’
where NV is the number of the feature points and ¢ is the
value returned by the renormalization procedure. It can
be shown that 2(N — 4)é%/¢? is a x? random variable
with 2(N — 4) degrees of freedom. Hence, the hypothe-
sis that the object is planar is rejected with significance
level a% if

(30)

é? X%(qu) a
- > — 31
27 AN —4) 1)

where X%(N—él),a is the upper a% point of the x? distri-
bution with 2(N — 4) degrees of freedom.
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